
Izpit iz predmeta Programiranje 1, 3. februar 2026 Kognitivna znanost Čas pisanja: 60 minut → 90 minut 

1. Vožnje 

Vožnje so shranjene v datotekah v obliki, ki jo kaže okvirček na desni: vsaka vrstica vsebuje ime 
voznika in razdaljo. Napišite dve funkciji. 

• kilometri(ime_datoteke) vrne slovar, katerega ključi so imena voznikov, pripadajoče vrednosti 
pa skupna dolžina voženj, ki jih je opravil ta voznik. Za primer iz okvirčka vrne {'Ana': 215, 
'Berta': 236, 'Cilka': 207, 'Dani': 173, 'Ema': 200}. 

• prekrskarji(ime_datoteke, meja) vrne seznam imen voznikov, ki so prevozili več kot meja 
kilometrov. Klic prekrskarji("voznice.txt", 200) vrne ["Ana", "Berta", "Cilka"]. 

2. Potovanje 

Testi vsebujejo funkcijo razdalja(odkod, kam), ki vrne razdaljo med dvema krajema. Klic razdalja("Kranj", 
"Ljubljana") vrne 26. Klic razdalja("Kranj", "Kranj") vrne 0. Te funkcije ne pišite, ta že obstaja! Pač pa napišite: 

• dolzina_vozenj(poti) prejme seznam relacij (v obliki parov krajev), ki jih mora ta voznik prevoziti in vrne skupno 
dolžino teh relacij. Uporabite zgoraj opisano, podano funkcijo razdalja. Klic dolzina_vozenj([("Ljubljana", 
"Kranj"), ("Kranj", "Novo mesto"), ("Lendava", "Ormož")]) vrne 176, kolikor je vsota razdalj med Ljubljano 
in Kranjem, Kranjem in Novim mestom ter Lendavo in Ormožem. 

• prevozeno(zacetek, poti) poleg tega kot prvi argument prejme ime kraja, v katerem se voznik nahaja v začetku. 
Pri računu dolžine poti upošteva, da mora priti voznik do začetnega kraja, poleg tega doda dolžine relacij med 
koncem ene in začetkom naslednje. Če pokličemo prevozeno("Postojna", [("Ljubljana", "Kranj"), ("Kranj", 
"Novo mesto"), ("Lendava", "Ormož")]) bo poleg prej naštetih relacij upošteval še razdaljo med Postojno in 
Ljubljano ter med Novim mestom in Lendavo. 

3. Déjà vu 

Naslednje funkcije prejmejo tri argumente: ime voznika in tabeli v numpyju, ki vsebujeta stolpca, kakršna imajo 
datoteke iz prve naloge, torej ["Ana", "Berta", "Ana", "Berta", "Cilka", ...] in [15, 42, 85, 83, 15, 29 
...]. Uporabite, kar potrebujete. Naloge rešujte z numpyjem; drugačne rešitve bodo prejele polovično število točk. 

• stevilo_vozenj(voznik, vozniki, razdalje) vrne število voženj, ki jih je opravil podani voznik. 
• prevozena_razdalja(voznik, vozniki, razdalja) vrne skupno razdaljo, ki jo je prevozil podani voznik 
• povprecje_treh(voznik, vozniki, razdalja) vrne povprečno razdaljo najdaljših treh voženj. Če je voznik opravil 

le dve vožnji, vrne njuno povprečno dolžino; če le eno, vrne dolžino te. 

4. Kombiniranje voženj 

Imamo nek začetni kraj, recimo LJ. Imamo seznam relacij, ki jih je potrebno prevoziti, na 
primer [("LJ", "ŠL"), ("LJ", "KR"), ("ŠL", "KR"), ("KR", "CE"), ("LJ", "CE"), 
("LJ", "NM"), ("NM", "ČR"), ("NM", "CE"), ("KO", "ČR"), ("KO", "LJ")]. (Te 
relacije so prikazane na sliki.) Relacije ne vsebujejo ciklov – če vozimo po njih, se ne bomo 
nikoli vrnili v kraj, v katerem smo že bili. (To poenostavi funkcijo, ki jo boste pisali!) 

Če začnemo v LJ, lahko gremo v CE in obtičimo tam. Lahko pa gremo LJ – KR – CE. Še daljša 
možnost je LJ – ŠL – KR – CE. To je hkrati najdaljša pot, ki jo lahko sestavimo iz teh relacij, 
če začnemo v LJ. 

Napišite funkcijo kombiniraj(zacetek, relacije), ki prejme začetni kraj in seznam 
relacij ter vrne največje število relacij, ki jih lahko prevozimo. V gornjem primeru vrne 3. 

Če bi namesto tega začeli v KO, bi vrnila 4. (Iz slike je očitno: toliko kot vrne za LJ in še 1 več, ker gremo prej še KO – LJ.) 

Kdor je večji frajer, frajerka, pa bo namesto tega napisal funkcijo tako, da bo vrnila zaporedje krajev. Za gornji primer 
vrne ["LJ", "ŠL", "KR", "CE"] oziroma ["KO", "LJ", "ŠL", "KR", "CE"]. (Ta različica pravzaprav ni nič težja od 
prejšnje, vendar se vam bo prejšnja morda zdela lažja.) 

Ana,15 
Berta,42 
Ana,85 
Berta,83 
Cilka,15 
Berta,29 
Berta,82 
Dani,81 
Cilka,192 
Dani,92 
Ana,115 
Ema,200 

LJ

ŠL

KR

KO

CE

NM

ČR


