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Directed networks are ubiquitous and are necessary to represent
complex systems with asymmetric interactions—from food webs
to the World Wide Web. Despite the importance of edge direction
for detecting local and community structure, it has been disregarded
instudying a basic type of global diversity in networks: the tendency
of nodes with similar numbers of edges to connect. This tendency,
called assortativity, affects crucial structural and dynamic properties
of real-world networks, such as error tolerance or epidemic spread-
ing. Here we demonstrate that edge direction has profound effects
on assortativity. We define a set of four directed assortativity mea-
sures and assign statistical significance by comparison to rando-
mized networks. We apply these measures to three network
classes—online/social networks, food webs, and word-adjacency
networks. Our measures (i) reveal patterns common to each class,
(ii) separate networks that have been previously classified together,
and (iii) expose limitations of several existing theoretical models.
We reject the standard classification of directed networks as purely
assortative or disassortative. Many display a class-specific mixture,
likely reflecting functional or historical constraints, contingencies,
and forces guiding the system'’s evolution.

omplex networks reveal essential features of the structure,
function, and dynamics of many complex systems (1-4).
While networks from diverse fields share various properties
(3, 5-7) and universal patterns (1, 3), they also display enormous
structural, functional, and dynamical diversity. A basic measure
of diversity is assortativity by degree (hereafter assortativity): the
tendency of nodes to link to other nodes with a similar number of
edges (4, 8, 9). Despite its importance, no disciplined approach to
assortativity in directed networks has been proposed. Here we
present such an approach and show that measures of directed
assortativity provide a number of insights into the structure of
directed networks and key factors governing their evolution.
Assortativity is a standard tool in analyzing network structure
(4) and has a simple interpretation. In assortative networks with
symmetric interactions (i.e., undirected networks), high degree
nodes, or nodes with many edges, tend to connect to other high
degree nodes. Hence, assortative networks remain connected
despite node removal or failure (9), but are hard to immunize
against the spread of epidemics (10). In disassortative networks,
conversely, high degree nodes tend to connect to low degree
nodes (8, 9); these networks limit the effects of node failure
because important nodes (with many edges) are isolated from
each other (11). Assortativity has a convenient global measure:
the Pearson correlation (r) between the degrees of nodes sharing
an edge (8, 9). It ranges from —1 to 1, with (» > 0) in assortative
networks and (r < 0) in disassortative ones. Earlier work pro-
posed a simple classification of networks on the basis of assorta-
tivity, in which social networks are assortative and biological and
technological networks are disassortative (4, 8, 9). Recent work
suggests that this classification does not hold for undirected
networks: Many online social networks are disassortative (12).
We go further, demonstrating that the simple assortative/disas-
sortative dichotomy misses fundamental features of networks
where edge direction plays a crucial role. In fact, we show that
many networks are neither purely assortative nor disassortative,
but display a mixture of both tendencies. These patterns provide a
classification scheme for networks with asymmetric interactions.

www.pnas.org/cgi/doi/10.1073/pnas.0912671107

In directed networks, an edge from source to target (A — B)
represents an asymmetric interaction; for example, that Web site
A contains a hyperlink to Web site B, or organism A is eaten
by organism B. Edge direction is essential to evaluate and explain
local structure in such networks. For instance, motif analysis
(13, 14) identifies local connection patterns that appear more
frequently in the real-world network than in ensembles of rando-
mized networks. In this context, edge direction distinguishes
functional units like feed-forward and feedback loops. Taking edge
direction into account also overturns the simple picture of the
World Wide Web (WWW) as having a short average distance
between all Web pages (15) in favor of a richer picture of link
flow into and out of a dense inner core (16). More recently,
attempts to identify communities in directed networks have
demonstrated that ignoring edge direction misses key organiza-
tional features of community structure in networks (17-19). Hence
it is striking that assortativity in directed networks has been studied
only by ignoring edge direction entirely (8) or by measuring a
subset of the four possible degree-degree correlations (9, 20).
All four degree-degree correlations were addressed in the specific
contexts of earthquake recurrences (21) and the WWW (22) using
the average neighbor degree, e.g., (k). (k™"), as a measure
rather than the Pearson correlation. However, it is easier to inter-
pret and assign statistical significance to the Pearson correlation.
Moreover, the average neighbor degree cannot be easily used
to quantify the diversity of a given network or to compare networks
of various sizes, unlike the Pearson correlation. Incorporating
edge direction into familiar assortativity measures based on the
Pearson correlation is an essential step to better characterize,
understand, and model directed networks. Indeed, since they scale
as O(E), where E is the number of edges in the network, our
directed assortativity measures can be evaluated for large
networks that are beyond the reach of current motif analysis or
community detection algorithms.

Here we analyze online and social networks, food webs, and
word-adjacency networks. Classes of directed networks show
common patterns across the four directed assortativity measures:
r(out,in); r(in, out); r(out,out); and r(in,in). The first element in
the parentheses labels the degree of the source node of the
directed edge, and the second labels the degree of the target
node. Thus r(in, out) quantifies the tendency of nodes with high
in-degree to connect to nodes with high out-degree, and so on;
see Fig. 1.

We compare the real-world network with an ensemble of ran-
domized networks. This comparison allows us to assign statistical
significance to each measure.* We use that significance to define
an Assortativity Significance Profile for each network. This pro-
file allows us to distinguish between networks grouped together
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by other measures; indeed, we find that online and social net-
works, which have similar motif structure (14), have substantially
different assortativity profiles. The class-specific profiles point to
forces or constraints that may guide the structure, function and
growth of that class (14, 24, 25). We also uncover limitations of
several theoretical network models. For example, neither of two
plausible models of word-adjacency networks [one proposed by
Milo et al. (14), the other in this paper] can reproduce the direc-
ted assortativity profile we observe in the real-world networks. A
standard model of the WWW (26) is similarly unsuccessful. On
the other hand, the food web models (27) examined here repro-
duce the pattern of assortativity seen in different food webs.
Hence our measures provide useful benchmarks to test models
of network formation.

Table S1 provides descriptions and sources for all networks
examined in this paper; Table S2 collects the full results including
error estimates.

Results and Discussion

Since nodes in directed networks have both an in-degree and an
out-degree, we introduce a set of four directed assortativity
measures. Fig. 1 illustrates this set, with examples typical of
assortative or disassortative networks. Let a,f € {in,out} index
the degree type, and j and klﬂ be the a- and p-degree of the source
node and target node for edge i. Then we define the set of assor-
tativity measures using the Pearson correlation:

E7 Y [(je =) (k] = k)]
r(a.p) =— [

%o’

where E is the number of edges in the network, j = E~! Yj¢, and

o = \/ET' Y, (j* - j*)%; k? and of are similarly defined. In each

correlation the edges point from the node with the a-indexed
degree to the node with the p-indexed degree (Materials and
Methods). We assign errors by jackknife resampling (9) and plot
20-error bars in the figures.

To estimate statistical significance, we compare the degree-de-
gree correlations for each real-world network to a null model. We
use as our null model the ensemble of randomized networks with
the same in- and out-degree sequence [number of nodes
n(k™, k°') with in-degree k™ and out-degree k°'t; hereafter degree
sequence] as the original network (11-14, 24, 25) (Materials and
Methods). The comparison distinguishes features accounted for
by the degree sequence from those that might reflect other forces
or constraints. Our method assigns each correlation r(a, ) a
statistical significance through its Z score:

(out,in) (in,out)
disassortative assortative

(out,out) (in,in)
disassortative assortative

Fig. 1. The four degree-degree correlations in directed networks. The fuzzy
edges indicate that nodes can have any number of edges of this type, as they
do not enter into the specific correlation. For each correlation we show an
example typical of assortative or disassortative networks.
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This quantifies the difference between the assortativity measure of
the real-world network r,, (a, ) and its average value in the ran-
domized ensemble (r,,q(a, #)) in units of the standard deviation,
o[rrana(a, B)]. Larger networks typically have larger Z scores (see
Table S2). To compare networks of various sizes, the Z scores are
normalized (14) by defining an Assortativity Significance Profile
(ASP), where ASP(a.f) = Z(a.p)/[XqsZ(a. )*]'/*. This quan-
tity is directly related to the Z score, and for a given network
the normalization does not change the relative size of the signifi-
cance measures. To separate less significant correlations, we indi-
cate |Z(a,p)| <2 in all figures by an appropriately colored
asterisk. A positive Z(a, ) or ASP(a, ) (“Z assortative”) indicates
that the real-world network is more assortative in that measure
than expected based on the degree sequence. A negative
Z(a, p) or ASP(a, ) (“Z disassortative”) means that the original
network is less assortative than expected.

Online and Social Networks. We first consider online and social net-
works. In an online network, edges represent hyperlinks. In the
social networks considered here, edges represent positive senti-
ment. Online networks are built collaboratively and share motif
patterns with social networks, leading them to be grouped in the
same “superfamily” (14). Fig. 24 shows the ASP of the World
Wide Web sample and two social networks studied in ref. 14.
Each network differs significantly in its ASP, showing that the
ASP discriminates between networks with similar motif structure.
Fig. 2B shows the ASP of the WWW, Wikipedia (28), and a
network of political blogs (29). All three networks are (out, in)
Z disassortative, indicating that the small disassortative effects
measured previously (9, 30) represent substantial deviations from
expected behavior. This may reflect different growth mechanisms
and/or functional constraints. The WWW and Wikipedia are also
(in, out) Z assortative. This property indicates that pages with
high in-degree [corresponding to “authorities” (31)] link to pages
with high out-degree [useful pages (31)] more frequently than
expected based on the degree sequence. Pages can be both autho-
rities and useful, and in the WWW these “multihubs” are highly
interconnected; this effect creates the (in, out) correlation, along
with a tendency for low in-degree nodes to connect to low out-
degree nodes. All three online networks show no assortative or
disassortative tendency in the (out, out) or (in, in) measures, con-
sistent with previous work on the average neighbor in-degree in
Wikipedia (32). The effects of Z-assortative or -disassortative
behavior can be huge, e.g., an increase of 268% in the number
of connections from the top 5% of in-degree nodes (hereafter
in-hubs) to the top 5% of out-degree nodes (hereafter out-hubs)
in the real-world Leadership network, compared to the rando-
mized ensemble. The smallest change is a 1.7% decrease (blogs,
in-hub to out-hub). The (in, out) effect for the WWW is substan-
tial: an 82.3% increase in connections from in-hubs to out-hubs.

Models of online network growth should reproduce the qua-
litative features of each online r(a, 8), Z(a, ), and ASP(a, ). We
tested a directed preferential attachment model for the WWW
(Materials and Methods) (26). This model fails to generate any
of the ASP characteristics of the WWW (Fig. 2C). As shown
in Fig. 2D, r(in,out) is small in the growth model, whereas
r(in,out) = 0.2567 is large for the WWW. This difference arises
because the growth model fails to generate many connections
between multihubs or between low in- and low out-degree nodes.

Thus r(a, f) and ASP(a, ) for the three online networks can-
not be attributed to the degree sequence or simple models of net-
work growth. The (out, in) Z disassortativity may reflect that
hyperlinking and (more generally) information have a hierarch-
ical structure, e.g., the existence of distinct “high-level” topics—
much as disassortativity in protein interaction networks captures

Foster et al.
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Fig.2. Online networks differ from social networks and growth models. (A) The ASP for a subset of the WWW [edges represent hyperlinks (14)] and two social
networks [students in a leadership class and prisoners, edges represent positive sentiment (14)]. The three networks differ substantially, despite having similar
motif patterns (14). In cases where |Z| < 2, the corresponding ASP is marked with an appropriately colored asterisk. Only Prison (in, in) has |Z| < 1. (B) The ASP for
the WWW, a snapshot of Wikipedia (28), and a collection of political blogs (29). All three online networks are more (out, in) disassortative than expected from
the degree sequence alone; the WWW and Wikipedia are significantly (in, out) assortative. The blog network has Z(in, out) = —0.609 and does not differ
significantly from the ensemble in this measure. All other Z scores are significant. (Cand D) Three realizations of the WWW growth model (26) fail to reproduce

the ASP(q, ) or r(a, §) of the WWW. Errors in r, estimated via jackknife (9), are smaller than the symbols.

the existence of weakly connected modules (11). The large (in,
out) assortativity and Z assortativity of the WWW are especially
pertinent for how users navigate the Web. High in-degree nodes
(authorities) may gain their status by aggregating links to useful
pages (with high out-degree). This pairing of trusted authorities
and useful pages would provide broad access to relevant informa-
tion on the Web. We find that more than half of the authorities
(in-hubs) are also useful (out-hubs): Hence they may become
authorities by themselves being useful. We further find that these
multihubs interconnect preferentially, whereas pages with low
in-degree connect preferentially to pages with low out-degree.
These results are consistent with the bow-tie structure revealed
by a much more computationally costly analysis (16): a densely
interconnected and highly navigable core, with less trusted or
useful pages clumping into small clusters or chains.

Food webs. We now turn to food webs (33). Recall that a directed
edge from species A to species B means that A is eaten by B. Food
webs from diverse ecosystems display universal properties, e.g., a
common form for the in- and out-degree distributions (34, 35).
Previous work indicated that food webs are disassortative in
the (out, in) measure (9). As shown in Fig. 34, although
r(out,in) is disassortative for all food webs (36—40), we see a wide
range of values from Z disassortative to Z assortative in the (out,
in) ASP measure of Fig. 3B. Thus, once the degree sequence is
taken into account, no common pattern remains in this measure.

Foster et al.

In contrast, food webs are both disassortative and Z disassorta-
tive in the (in, out) measure. This means that organisms with
many prey species are eaten by organisms with few predator
species (and vice versa) more frequently than expected. This
tendency captures the structuring of ecosystems into trophic levels
(33) and is consistent with an overall “spindle” shape to the food
web (fewer species in the upper and lower levels and a greater
number in the middle) (41). The small number of species at lower
trophic levels follow from the practice of aggregating the lowest
units of the food web into one or a few nodes broadly labeled
“plant,” “detritus,” etc. The consumers of these lowest units have
low in-degrees and are in turn consumed by predators of low
trophic level (with high out-degrees). The food webs are assorta-
tive and Z assortative in both the (out, out) and (in, in) measures
(though in the case of Ythan only slightly); because species at the
same trophic level should have similar in- and out-degrees, these
results may indicate that species are eating species at the same
or similar trophic level—a signature of omnivory (42)—more
frequently than expected based on the degree sequence. The
effects of Z-assortative or -disassortative behavior on linking
between hubs range from a <1% increase (Little Rock, in-hub
to in-hub) to a 135% increase (Coachella, in-hub to in-hub).

To identify the origin of these patterns, we built two theoretical
models for each web (Materials and Methods). The cascade model
assigns each species a random “niche” value and allows species to
eat species of lower value with some probability (27). The niche
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Fig. 3. Simple models largely explain directed assortativity patterns of food webs. A directed edge from A to B indicates that A is eaten by B.
(A) r(a, p) for food webs from several diverse ecosystems (36-40). Errors are estimated by jackknife (11), and we plot 26 error bars. Note the common pattern:
disassortative in the first two and assortative in the second two measures. All networks save St. Marks [(out, in)] and Ythan [(out, out), (in, in)] obey this pattern
including errors. (B) The ASP for these food webs. Controlling for the degree distribution highlights common Z-disassortative and Z-assortative behaviors in the
all measures but (out, in). In cases where |Z| < 2, the corresponding ASP is marked with an appropriately colored asterisk. Only St. Marks (out, in) has |Z] < 1.
(c and d) The cascade and niche models (27) reproduce most common behaviors robustly. Errors and significance levels indicated as above.

model relaxes this rigid hierarchy, permitting cannibalism and the
eating of species with higher niche value (27). Fig. 3 C and D
shows the r(a, ) and ASP(a, ) for the cascade and niche models
of the St. Marks food web (38). The model webs shown are typical
of the model and qualitatively reproduce the pattern observed
in Fig. 3 A and B. The ensemble of niche model realizations
for a given food web, however, displays large variance (see
Table S3), favoring the cascade model as more predictable. These
results suggest that ordering species along a single niche dimen-
sion largely explains the observed patterns in r(a,f) and
ASP(a,p) for food webs. Neither model, however, typically
generates the (out, in) Z assortativity seen in certain food webs.

Word-Adjacency Networks. Finally, we analyze word-adjacency
networks, where edges point from each word to any word that
immediately follows it in a selected text (14). For example,
(for — example). These networks are strongly disassortative
for r(a, B); see Fig. 4A4. Fig. 4B shows that they are also strongly
disassortative in their ASP. The effects on linking between high
degree nodes are relatively small, ranging from a decrease of
3.8% (English book, out-hub to out-hub) to a decrease of
15.8% (Japanese book, out-hub to out-hub).

The in- and the out-degree of nodes in these networks are both
increasing functions of word frequency (43); thus the correlation
between a node’s in-degree and out-degree is high (r,,, > 0.86).
Very high frequency words generally have grammatical function
but low “semantic content” (43). While the large r,,,, guarantees

10818 | www.pnas.org/cgi/doi/10.1073/pnas.0912671107

similar values for all four measures, disassortativity could result
from at least two possible mechanisms.

Milo et al. propose a bipartite model (Materials and Methods),
with a few nodes of one type representing high-frequency “gram-
matical” words and many nodes of a second type representing
low-frequency content words; grammatical words must be fol-
lowed by content words, and vice versa (14). The Bipartite model
reproduces the motif pattern of word-adjacency networks and is
thus assigned to the same superfamily in this scheme (14). This
model generates negative values across all r(a, ), as shown in
Fig. 44, but these values are too large compared to the real
network. When compared to its rewired ensemble, however,
the model reproduces the roughly equal, negative ASP(a, ) of
the actual networks; see Fig. 4B. Thus our measures do not
support the classification of the Bipartite model network with
the real networks. Alternately, the observed disassortativity could
result from a broad word-frequency distribution [Zipf’s law (43)].
We scrambled the English text (44) to produce a text with iden-
tical word-frequency distribution but no grammatical structure
(Materials and Methods). The Scrambled text model has r(a, f)
very close to the empirical values (Fig. 44), but it is Z assortative
across all measures (Fig. 4B), unlike the real-world networks.
Neither model yields the relative magnitude of ASP(out,in)
and ASP(in,out), suggesting that this difference results from
genuine linguistic structure.

Foster et al.
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Fig. 4. Simple models cannot explain directed assortativity patterns of word-adjacency networks. A directed edge from word X to word Y indicates that X
precedes Y at some point in the text under consideration. (A) r(a, ) for word-adjacency networks in four languages. The common pattern may result from
grammatical structure (Bipartite model) or a broad word-frequency distribution (Scrambled text model). The Bipartite model (14) overestimates the r(a, $), as
shown in A, while the Scrambled text model (45) produces realistic values. Errors in r as estimated by jackknife are smaller than the symbols. (B) The ASP for
the same networks. The Bipartite model produces realistic values, while the Scrambled text model produces assortative values. The real-world networks are

remarkably similar, despite ranging in size over an order of magnitude. All Z scores are highly significant.

Conclusions

Our results demonstrate the fundamental importance of edge
direction and the advantages of assortativity—when properly
extended—in the analysis of directed networks. Our most basic
observation is that directed networks are structurally diverse:
Many directed networks are not purely assortative or disassorta-
tive, but a mixture of the two. Our measures apply to any directed
network, and we expect similar diverse but class-specific mixtures
to arise in other directed networks. By comparison with rando-
mized ensembles, we are able to detect statistically significant fea-
tures such as (in, out) assortativity in the WWW.

Our measures display common patterns for classes of similar
networks (see Figs. S1 and S2) and can be compared to a local
analogue, the Triad Significance Profile (TSP). The TSP assigns
each possible three-node subgraph (motif) a normalized Z score
by comparing the number of appearances of the subgraph in a
real-world network to the average number in a randomly rewired
ensemble; classes of networks have similar TSPs (14). The mea-
sures r(a,p), Z(a, ), and ASP(a,p) are more computationally
tractable and scalable than motif analysis; they also discriminate
between networks grouped together by TSP (online/social), while
confirming the motif-based classification of word-adjacency
networks (14), correctly grouping the online networks (although
the political blogs only weakly), and classifying food webs
together. As illustrated by all three classes, r(a,f) and
ASP(a, f) are best used together for exploring the structure of
the real-world networks and testing theoretical models.

We tested models for all three network classes. The preferen-
tial attachment model of WWW growth (26) does not generate
the observed (in, out) assortativity in the WWW. Neither the
Bipartite (14) nor the Scrambled text model of word-adjacency
networks generates realistic patterns in both r(a,f) and
ASP(a, ). We note that creating a mixture of assortative and
disassortative behavior is nontrivial. While the WWW growth
model fails to do so, both food web models (27) succeed. We sug-
gest that they do so by remaining close to the basic features of the
phenomenon. Our measures can be used to test models for any
type of directed network and thus validate or falsify the prevailing
theoretical understanding.

The straightforward interpretation of directed assortativity
leads to a variety of questions: For example, do the overabundant
connections between authorities and useful pages in the WWW
reflect demands of network navigation, facilitating the spread of
user flow—whereas the negative r(in, out) in food webs reflects
the opposite tendency to concentrate energy flows at higher

Foster et al.

trophic levels? Such questions suggest further applications of
these concepts to build models better tailored to the reality of
asymmetric interactions in complex networks.

Materials and Methods

Defining the Assortativity Measures. Newman (8, 9) defines r in terms of the
excess degree, i.e., the degree of the node minus 1. The correlation coeffi-
cients are exactly the same if the degree itself is used (8). Identical Z-score
results are obtained for any assortativity measure that is related to the Pear-
son coefficient r(a, #) by a linear transformation, e.g., the s metric of Alderson
and Li (45); thus when statistical significance is properly measured, it is suffi-
cient to use the Pearson coefficient.

Constructing the Null Model. We sample the ensemble of randomized net-
works with the same fixed degree sequence (FDS) (13, 24, 25) using a Monte
Carlo rewiring algorithm. The algorithm starts with a directed network with a
given in- and out-degree sequence n(k™™, k°"t) and, by randomly swapping
directed edges between nodes, samples from the FDS ensemble. If the starting
network contains self-edges, we allow them in sampled networks; otherwise,
we reject such rewiring steps. We always forbid multiple edges. To assure
random sampling, we performed 105 edge swaps between samples for most
ensembles, 106 for WWW and related models, and 107 for the Wikipedia net-
work. Before sampling the FDS ensemble, we performed 10 times the number
of intersample edge swaps on the starting network to ensure sampling of
typical networks. We assume that errors in the ensemble averages are nor-
mally distributed and that after i samples the difference between the mean
value of an observable up to that point (A); = i~' 1’3:1 A; and the final mean
(A) is less than bi~'/2 in absolute value, for some constant b. Plotting the dif-
ference as a function of i~'/2 and choosing b to contain approximately 90% of
the data points gives an estimate of the error in the final mean, reported in
Table S2 as ofand,

World Wide Web Growth Model. The growth model for the World Wide Web is
taken from ref. 26; we summarize it here in the original notation. This model
constructs a directed network approximating the power-law in-degree and
out-degree distributions of a target real-world network, n(k™") « (k")=¥n
and n(k°Ut) o« (k°Ut)~*ot, The model is parameterized by the number of nodes
in the network, N; the average out-degree (k°“!); and the exponents v;, and
Vout- At each step, with probability p = 1/(k°“) a new node is born and
attaches to an existing target node in the network, chosen with probability
(depending on its in-degree i) « A; =i+ 1. Otherwise, with probability
g =1-p, a directed edge is added between two existing nodes, with the
source and target nodes selected with probability (depending on the out-de-
gree of the source j and in-degree of the target i) o C(j, i) = (i + 2)(j + ).
Choosing 4, u such that vj, =2 +pi and vo = 14+ g~ +pupq~" generates
the target exponents. We initialize the model with two unconnected nodes
and run until the network has N nodes. We eliminate any multiple edges
to yield a simple graph; this does not substantially alter the degree distribu-
tions or rvalues. For the WWW dataset v;, = 2.32 and vy, = 2.66. For the three
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model webs, the exponents are indistinguishable and are v, =2.240.2
and v,,, =2.5+0.2.

Cascade and Niche Models. The food webs models are taken from ref. 27; we
summarize them here in the original notation. Both are parameterized by
the number of species in the target food web, N, and the connectance
C = E/N?, where E is the number of edges. In the cascade model, every
species is assigned a random niche value chosen uniformly from [0, 1]. With
probability P = 2CN/(N — 1), a species will consume a species with a lower
niche value. In the niche model, every species i is assigned a random niche
value n; as before; the species of smallest niche value is assigned to be
the “basal species” (27). All other species consume every species falling within
some range r;. The center of the range ¢; is chosen uniformly from [0.5r;, n;].
The range r; is chosen such that the expected connectance is that of the real-
world web by setting r; = n;x;, where x; is drawn from a beta distribution
f(xi|1,8) = p(1 —x;)/', 0<x; <1 with expected value E(x;)=1/(1+p) =
2C. Both models yield the connectance of the real-world food web, on aver-
age. We do not check for disconnected or trophically identical species (species
having identical in- and out-neighbors), as these are quite rare. For each food
web, we generated 500 cascade model and niche model networks with E
within 5% of the original food web. To identify typical networks (shown
in the paper and Tables S1 and S2), we selected the model network with
the smallest Euclidean distance to the ensemble average values of r(a, j).
The standard deviations in each ensemble are shown in Table S3.

Bipartite and Scrambled Text Models for Word-Adjacency Networks. The Bipar-
tite model (14) assumes that there are two categories of words: a few high
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frequency grammatical words and many low-frequency content words.
Words of the first type alternate with words of the second type, resulting
in a bipartite word-adjacency network. We build the model with Ngm =
10 and Nont = 1,000. For all pairs of grammatical and content words we
draw a random number x. If x < p = .06, we put an edge from the gramma-
tical word to the content word; if p < x < 2p we put an edge from the content
word to the grammatical word; and if 2p < x < 2p + g for g = .003 we put an
edge going each way. The values of p, g are taken from ref. 14. We con-
structed the Scrambled Text Model by randomly scrambling the order of
the words in the underlying text for one of the word-adjacency networks
[English, On the Origin of Species by Charles Darwin (45)]. The scrambling
destroys any syntactic structure, although the high frequency of articles,
prepositions, etc., remains. The assortativity across all ASP(q, ) of networks
generated from the scrambled text is subtle. The high correlation between
the in- and out-degrees of a node guarantees that all values will be similar. In
the scrambled text, high frequency (high degree) words are more likely to
follow one another. But since multiple links are disallowed, rewiring, on aver-
age, destroys links between high degree nodes, making the ensemble less
assortative than the Scrambled Text word-adjacency network, and making
all ASP(q, p) assortative.
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