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The Hungarian mathematician Pál Erdős au-
thored hundreds of research papers, many of 
them in  collaboration  with other mathema-
ticians. His relentless collaborative approach 
to mathematics inspired the Erdős Number, 
which works like this:  Erdős’ Erdős number 
is 0. Erdős’ coauthors have Erdős number 1. 
Those who have written a paper with some-
one with Erdős number 1 have Erdős number 
2, and so on. If there is no chain of coauthor-
ships connecting someone to Erdős, then that 
person’s Erdős number is infinite. Many fa-
mous scientists have low Erdős numbers: Al-
bert Einstein has Erdős Number 2 and Richard 
Feynman has 3. The image shows the collabo-
rators of Pál Erdős, as drawn in 1970 by Ronald 
Graham, one of Erdős’ close collaborators. As 
Erdős’ fame rose, this image has achieved an 
iconic status.

Figure 3.0 (cover image)

Erdős Number
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SECTION 3.1

Imagine organizing a party for a hundred guests who initially do not 
know each other [1]. Offer them wine and cheese and you will soon see 
them chatting in groups of two to three. Now mention to Mary, one of your 
guests, that the red wine in the unlabeled dark green bottles is a rare vin-
tage, much better than the one with the fancy red label. If she shares this 
information only with her acquaintances, your expensive wine appears to 
be safe, as she only had time to meet a few others so far. 

The guests will continue to mingle, however, creating subtle paths be-
tween individuals that may still be strangers to each other. For example, 
while John has not yet met Mary, they have both met Mike, so there is an 
invisible path from John to Mary through Mike.  As time goes on, the guests 
will be increasingly interwoven by such elusive links. With that the secret 
of the unlabeled bottle will pass from Mary to Mike and from Mike to John, 
escaping into a rapidly expanding group. 

To be sure, when all guests had gotten to know each other, everyone 
would be pouring the superior wine. But if each encounter took only ten 
minutes, meeting all ninety-nine others would take about sixteen hours. 
Thus, you could reasonably hope that a few drops of your fine wine would 
be left for you to enjoy once the guests are gone.

Yet, you would be wrong. In this chapter we show you why. We will see 
that the party maps into a classic model in network science called the ran-
dom network model.  And random network theory tells us that we do not 
have to wait until all individuals get to know each other for our expensive 
wine to be in danger. Rather, soon after each person meets at least one oth-
er guest, an invisible network will emerge that will allow the information 
to reach all of them. Hence in no time everyone will be enjoying the better 
wine.

INTRODUCTION

The emergence of an acquaintance network 
through random encounters at a cocktail 
party.

(a) Early on the guests form isolated groups.

(b) As individuals mingle, changing groups, 
an invisible network emerges that con-
nects all of them into a single network.

Figure  3.1
From a Cocktail Party to Random Networks

(a) Early

Later(b)

RANDOM NETWORKS
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THE RANDOM
NETWORK MODEL

SECTION 3.2

Network science aims to build models that reproduce the properties of 
real networks. Most networks we encounter do not have the comforting 
regularity of a crystal lattice or the predictable radial architecture of a spi-
der web. Rather, at first inspection they look as if they were spun randomly 
(Figure 2.4). Random network theory embraces this apparent randomness 
by constructing and characterizing networks that are truly random. 

From a modeling perspective a network is a relatively simple object, 
consisting of only nodes and links. The real challenge, however, is to decide 
where to place the links between the nodes so that we reproduce the com-
plexity of a real system. In this respect the philosophy behind a random 
network is simple:  We assume that this goal is best achieved by placing 
the links randomly between the nodes. That takes us to the definition of a 
random network (BOX 3.1):

A random network consists of N nodes where each node pair is connect-
ed with probability p. 

To construct a random network we follow these steps:  

1) Start with N isolated nodes.

2) Select a node pair and generate a random number between 0 and 1. 
If the number exceeds p, connect the selected node pair with a link, 
otherwise leave them disconnected.

3) Repeat step (2) for each of the N(N-1)/2 node pairs.

The network obtained after this procedure is called a random graph or 
a random network. Two mathematicians, Pál Erdős and Alfréd Rényi, have 
played an important role in understanding the properties of these net-
works. In their honor a random network is called the Erdős-Rényi network 
(BOX 3.2).

RANDOM NETWORKS

BOX 3.1
DEFINING RANDOM NETWORKS

There are two definitions of a 
random network:

G(N, L) Model

N labeled nodes are connect-
ed with L randomly placed 
links. Erdős and Rényi used 
this definition in their string 
of papers on random net-
works [2-9].

G(N, p) Model

Each pair of N labeled nodes 
is connected  with probability 
p, a model introduced by Gil-
bert [10].

Hence, the G(N, p) model fixes 
the probability p that two nodes 
are connected and the G(N, L) 
model fixes the total number 
of links L.  While in the G(N, L) 
model the average degree of a 
node is simply <k> = 2L/N, oth-
er network characteristics are 
easier to calculate in the G(N, p) 
model. Throughout this book we 
will explore the G(N, p) model, 
not only for the ease that it al-
lows us to calculate key network 
characteristics, but also because 
in real networks the number of 
links rarely stays fixed. 
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BOX 3.2
RANDOM NETWORKS: A BRIEF HISTORY

Anatol Rapoport (1911-2007), a Russian immigrant to the United 
States, was the first to study random networks. Rapoport’s interests 
turned to mathematics after realizing that a successful career as a 
concert pianist would require a wealthy patron. He focused on math-
ematical biology at a time when mathematicians and biologists hard-
ly spoke to each other. In a paper written with Ray Solomonoff in 1951 
[11], Rapoport demonstrated that if we increase the average degree of 
a network, we observe an abrupt transition from disconnected nodes 
to a graph with a giant component. 

The study of random networks reached prominence thanks to the 
fundamental work of Pál Erdős and Alfréd Rényi (Figure 3.2). In a se-
quence of eight papers published between 1959 and 1968 [2-9], they 
merged probability theory and combinatorics with graph theory, es-
tablishing random graph theory, a new branch of mathematics [2]. 

The random network model was independently introduced by Edgar 
Nelson Gilbert (1923-2013) [10] the same year Erdős and Rényi pub-
lished their first paper on the subject. Yet, the impact of Erdős and 
Rényi’s work is so overwhelming that they are rightly considered the 
founders of random graph theory. 

Hungarian mathematician known for 
both his exceptional scientific output 
and eccentricity. Indeed, Erdős published 
more papers than any other mathema-
tician in the history of mathematics. 
He co-authored papers with over five 
hundred mathematicians, inspiring the 
concept of Erdős number. His legendary 
personality and profound professional 
impact has inspired two biographies [12, 
13] and a documentary [14] (Online Re-

source 3.1).

Hungarian mathematician with funda-
mental contributions to combinatorics, 
graph theory, and number theory. His 
impact goes beyond mathematics: The 
Rényi entropy is widely used in chaos the-
ory and the random network theory he 
co-developed is at the heart of network 
science. He is remembered through the 
hotbed of Hungarian mathematics, the 
Alfréd Rényi Institute of Mathematics in 
Budapest.

(a) Pál Erdős (1913-1996)

(a) (b)

(b) Alfréd Rényi (1921-1970)

Online Resource  3.1
N is a Number: A Portrait of Paul Erdős 

>

The 1993 biographical documentary of Pál 
Erdős, directed by George Paul Csicsery, 
offers a glimpse into Erdős' life and scien-
tific impact [14].

Figure  3.2

>

“A mathematician is a device for turning 
coffee into theorems”

Alfréd Rényi (a quote often attributed to Erdős)
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NUMBER OF LINKS
SECTION 3.3

Each random network generated with the same parameters N, p looks 
slightly different (Figure 3.3). Not only the detailed wiring diagram changes 
between realizations, but so does the number of links L. It is useful, there-
fore, to determine how many links we expect for a particular realization of 
a random network with fixed N and p. 

The probability that a random network has exactly L links is the product 
of three terms:

1) The probability that L of the attempts to connect the N(N-1)/2 pairs 
of nodes have resulted in a link, which is pL.

2) The probability that the remaining N(N-1)/2 - L attempts have not 
resulted in a link, which is (1-p)N(N-1)/2-L.

3) A combinational factor,     

      
counting the number of different ways we can place L links among 
N(N-1)/2 node pairs.

We can therefore write the probability that a particular realization of a 
random network has exactly L links as

As  (3.1) is a binomial distribution (BOX 3.3), the expected number of links 
in a random graph is

RANDOM NETWORKS
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Hence <L>  is the product of the probability p that two nodes are con-
nected and the number of pairs we attempt to connect, which is Lmax = N(N 
- 1)/2 (CHAPTER 2). 

Using (3.2) we obtain the average degree of a random network

Hence <k> is the product of the probability p that two nodes are con-
nected and (N-1), which is the maximum number of links a node can have 
in a network of size N.

In summary the number of links in a random network varies between 
realizations. Its expected value is determined by N and p. If we increase p 
a random network becomes denser: The average number of links increase 
linearly from <L> = 0 to Lmax and the average degree of a node increases 
from <k> = 0  to <k> = N-1.

Top Row
Three realizations of a random network gen-
erated with the same parameters p=1/6 and 
N=12. Despite the identical parameters, the 
networks not only look different, but they 
have a different number of links as well (L=10, 
10, 8). 

Bottom Row
Three realizations of a random network with 
p=0.03 and N=100. Several nodes have degree 
k=0, shown as isolated nodes at the bottom.

Figure 3.3
Random Networks are Truly Random

RANDOM NETWORKS

(3.3)

NUMBER OF LINKS
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BOX 3.3
BINOMIAL DISTRIBUTION:  MEAN AND VARIANCE

If we toss a fair coin N times, tails and heads occur with the same 
probability p = 1/2. The binomial distribution provides the proba-
bility px that we obtain exactly x heads in a sequence of N throws. 
In general, the binomial distribution describes the number of 
successes in N independent experiments with two possible out-
comes, in which the probability of one outcome is p, and of the 
other is 1-p.

The binomial distribution has the form 

   
The mean of the distribution (first moment) is

         
   

Its second moment is

providing its standard deviation as

Equations (3.4) - (3.6) are used repeatedly as we characterize ran-
dom networks.

(3.4)

(3.5)

(3.6)
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DEGREE DISTRIBUTION
SECTION 3.4

In a given realization of a random network some nodes gain numerous 
links, while others acquire only a few or no links (Figure 3.3). These differ-
ences are captured by the degree distribution, pk, which is the probability 
that a randomly chosen node has degree k. In this section we derive pk for a 
random network and discuss its properties. 

BINOMIAL DISTRIBUTION

In a random network the probability that node i has exactly k links is 
the product of three terms [15]:

• The probability that k of its links are present, or pk.

• The probability that the remaining (N-1-k) links are missing, or 
(1-p)N-1-k.

•  The number of ways we can select k links from N- 1 potential links a 
node can have, or           

Consequently  the degree distribution of a random network follows the 
binomial distribution

      

The shape of this distribution depends on the system size N and the 
probability p (Figure 3.4). The binomial distribution (BOX 3.3) allows us to 
calculate the network’s average degree <k>, recovering (3.3), as well as its 
second moment <k2> and variance σk (Figure 3.4).

RANDOM NETWORKS

(3.7)

N
k
1−⎛

⎝⎜
⎞
⎠⎟

p
N
k
p p 

1
(1 ) .k
k N k1= −⎛

⎝⎜
⎞
⎠⎟

− − −

The exact form of the degree distribution of a 
random network is the binomial distribution 
(left half). For N ≫ <k> the binomial is well 
approximated by a Poisson distribution (right 
half). As both formulas describe the same dis-
tribution, they have the identical properties, 
but they are expressed in terms of different 
parameters: The binomial distribution de-
pends on p and N, while the Poisson distri-
bution has only one parameter, <k>. It is this 
simplicity that makes the Poisson form pre-
ferred in calculations.

Figure 3.4
Binomial vs. Poisson Degree Distribution
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POISSON DISTRIBUTION

Most real networks are sparse, meaning that for them <k> ≪ N (Table 

2.1). In this limit the degree distribution (3.7) is well approximated by the 
Poisson distribution (ADVANCED TOPICS 3.A)

which is often called, together with (3.7), the degree distribution of a ran-
dom network. 

The binomial and the Poisson distribution describe the same quantity, 
hence they have similar properties (Figure 3.4):

•  Both distributions have a peak around <k>. If we increase p the net-
work becomes denser, increasing <k> and moving the peak to the 
right. 

•  The width of the distribution (dispersion) is also controlled by p or 
<k>. The denser the network, the wider is the distribution, hence the 
larger are the differences in the degrees.

 
When we use the Poisson form (3.8), we need to keep in mind that:

•  The exact result for the degree distribution is the binomial form (3.7), 
thus (3.8) represents only an approximation to (3.7) valid in the <k> ≪ N 
limit. As most networks of practical importance are sparse, this con-
dition is typically satisfied.

•  The advantage of the Poisson form is that key network characteris-
tics, like <k>, <k2> and σk , have a much simpler form (Figure 3.4), de-
pending on a single parameter, <k>.

• The Poisson distribution in (3.8) does not explicitly depend on the num-
ber of nodes N. Therefore, (3.8) predicts that the degree distribution 
of networks of different sizes but the same average degree <k> are 
indistinguishable from each other (Figure 3.5).

In summary, while the Poisson distribution is only an approximation 
to the degree distribution of a random network, thanks to its analytical 
simplicity, it is the preferred form for pk. Hence throughout this book, un-
less noted otherwise, we will refer to the Poisson form (3.8) as the degree 
distribution of a random network. Its key feature is that its properties are 
independent of the network size and depend on a single parameter, the 
average degree <k>.

The  degree distribution of a random network 
with <k> = 50 and N = 102, 103, 104. 

Small Networks: Binomial

For a small network (N = 102) the degree dis-
tribution deviates significantly from the Pois-
son form (3.8), as the condition for the Poisson 
approximation, N»<k>, is not satisfied. Hence 
for small networks one needs to use the exact 
binomial form (3.7) (green line). 

Large Networks: Poisson

For larger networks (N = 103, 104) the degree 
distribution becomes indistinguishable from 
the Poisson prediction (3.8), shown as a con-
tinuous grey line. Therefore for large N the 
degree distribution is independent of the 
network size. In the figure we averaged over 
1,000 independently generated random net-
works to decrease the noise.

Figure 3.5

Degree Distribution is Independent of the

Network Size

RANDOM NETWORKS DEGREE DISTRIBUTION
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REAL NETWORKS ARE 
NOT POISSON

SECTION 3.5

As the degree of a node in a random network can vary between 0 and 
N-1, we must ask, how big are the differences between the node degrees 
in a particular realization of a random network? That is, can high degree 
nodes coexist with small degree nodes? We address these questions by esti-
mating the size of the largest and the smallest node in a random network. 

Let us assume that the world’s social network is described by the ran-
dom network model. This random society may not be as far fetched as it 
first sounds: There is significant randomness in whom we meet and whom 
we choose to become acquainted with. 

Sociologists estimate that a typical person knows about 1,000 individ-
uals on a first name basis, prompting us to assume that <k> ≈ 1,000. Using 
the results obtained so far about random networks, we arrive to a number 
of intriguing conclusions about a random society of N ≃ 7 x 109 of individ-
uals (ADVANCED TOPICS 3.B):

• The most connected individual (the largest degree node) in a random 
society is expected to have kmax = 1,185 acquaintances.

• The degree of the least connected individual is kmin = 816, not that dif-
ferent from kmax or <k>.

• The dispersion of a random network is σk = <k>1/2 , which for <k> = 
1,000 is σk = 31.62. This means that the number of friends a typical in-
dividual has is in the <k> ± σk range, or between 968 and 1,032, a rather 
narrow window.

Taken together, in a random society all individuals are expected to have 
a comparable number of friends.  Hence if people are randomly connected 
to each other, we lack outliers: There are no highly popular individuals, and 
no one is left behind, having only a few friends. This suprising conclusion 
is a consequence of an important property of random networks: in a large 
random network the degree of most nodes is in the narrow vicinity of  <k> 

RANDOM NETWORKS
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(BOX 3.4).  

This prediction blatantly conflicts with reality. Indeed, there is exten-
sive evidence of individuals who have considerably more than 1,185 ac-
quaintances. For example, US president Franklin Delano Roosevelt’s ap-
pointment book has about 22,000 names, individuals he met personally 
[16, 17]. Similarly, a study of the social network behind Facebook has docu-
mented numerous individuals with 5,000 Facebook friends, the maximum 
allowed by the social networking platform [18]. To understand the origin of 
these discrepancies we must compare the degree distribution of real and 
random networks. 

In Figure 3.6 we show the degree distribution of three real networks, to-
gether with the corresponding Poisson fit. The figure documents systemat-
ic differences between the random network predictions and the real data:

• The Poisson form significantly underestimates the number of high 
degree nodes. For example, according to the random network model 
the maximum degree of the Internet is expected to be around 20. In 
contrast the data indicates the existence of routers with degrees close 
to 103.

• The spread in the degrees of real networks is much wider than expect-
ed in a random network. This difference is captured by the dispersion 
σk (Figure 3.4). If the Internet were to be random, we would expect σk = 
2.52. The measurements indicate σinternet = 14.14, significantly higher 
than the random prediction. These differences are not limited to the 
networks shown in Figure 3.6, but all networks listed in Table 2.1 share 
this property. 

In summary, the comparison with the real data indicates that the ran-
dom network model does not capture the degree distribution of real net-
works. In a random network most nodes have comparable degrees, forbid-
ding hubs. In contrast, in real networks we observe a significant number 
of highly connected nodes and there are large differences in node degrees. 
We will resolve these differences in CHAPTER 4.

RANDOM NETWORKS REAL NETWORKS ARE NOT POISSON

BOX 3.4
WHY ARE HUBS MISSING?

To understand why hubs, nodes 
with a very large degree, are ab-
sent in random networks, we 
turn to the degree distribution 

(3.8). 

We first note that the 1/k! term 
in (3.8) significantly decreases 
the chances of observing large 
degree nodes. Indeed, the Stir-
ling approximation

allows us rewrite (3.8) as

   

  
For degrees k > e<k> the term in 
the parenthesis is smaller than 
one, hence for large k both k-de-
pendent terms in (3.9), i.e. 1/√k 
and (e<k>/k)k decrease rapidly 
with increasing k. Overall (3.9) 
predicts that in a random net-
work the chance of observing a 
hub decreases faster than expo-
nentially.   

(3.9)( )p
e
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e k
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The degree distribution of the (a) Internet, (b) 
science collaboration network, and (c) pro-
tein interaction network (Table 2.1). The green 
line corresponds to the Poisson prediction, 
obtained by measuring <k> for the real net-
work and then plotting (3.8). The significant 
deviation between the data and the Poisson 
fit indicates that the random network model 
underestimates the size and the frequency 
of the high degree nodes, as well as the num-
ber of low degree nodes. Instead the random 
network model predicts a larger number of 
nodes in the vicinity of <k> than seen in real 
networks.

Figure 3.6

Degree Distribution of Real Networks
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THE EVOLUTION
OF A RANDOM NETWORK

SECTION 3.6

The cocktail party we encountered at the beginning of this chapter cap-
tures a dynamical process: Starting with N isolated nodes, the links are 
added gradually through random encounters between the guests. This cor-
responds to a gradual increase of p, with striking consequences on the net-
work topology (Online Resource 3.2). To quantify this process, we first inspect 
how the size of the largest connected cluster within the network, NG, varies 
with <k>. Two extreme cases are easy to understand:

• For p = 0 we have <k> = 0, hence all nodes are isolated. Therefore the 
largest component has size NG = 1  and  NG/N→0 for large N.

• For p = 1 we have <k>= N-1, hence the network is a complete graph and 
all nodes belong to a single component. Therefore NG = N and NG/N = 1.

One would expect that the largest component grows gradually from NG 
= 1 to NG = N if <k> increases from 0 to N-1. Yet, as Figure 3.7a indicates, this 
is not the case: NG/N remains zero for small <k>, indicating the lack of a 
large cluster. Once <k> exceeds a critical value, NG/N increases, signaling 
the rapid emergence of a large cluster that we call the giant component. 
Erdős and Rényi in their classical 1959 paper predicted that the condition 
for the emergence of the giant component is [2] 

        
 

In other words, we have a giant component if and only if each node has 
on average more than one link (ADVANCED TOPICS 3.C). 

The fact that we need at least one link per node to observe a giant com-
ponent is not unexpected. Indeed, for a giant component to exist, each of 
its nodes must be linked to at least one other node. It is somewhat counter-
intuitive, however, that one link is sufficient for its emergence.

We can express (3.10) in terms of p using (3.3),  obtaining 

RANDOM NETWORKS

(3.10)

A video showing the change in the structure of 
a random network with increasing p. It vividly 
illustrates the absence of a giant component 
for small p and its sudden emergence once p 
reaches a critical value.

Online Resource 3.2

Evolution of a Random Network

=k 1.

>
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Therefore the larger a network, the smaller p is sufficient for the giant 
component.  

The emergence of the giant component is only one of the transitions 
characterizing a random network as we change <k>. We can distinguish 
four topologically distinct regimes (Figure 3.7a), each with its unique char-
acteristics:

Subcritical Regime: 0 < <k> < 1 (p < ,  Figure 3.7b). 

For <k> = 0 the network consists of N isolated nodes. Increasing <k> 
means that we are adding  N<k> = pN(N-1)/2 links to the network.  Yet, giv-
en that <k> < 1, we have only a small number of links in this regime, hence 
we mainly observe tiny clusters (Figure 3.7b).  

We can designate at any moment the largest cluster to be the giant 
component. Yet in this regime the relative size of the largest cluster, NG/N, 
remains zero. The reason is that for <k> < 1 the largest cluster is a tree with 
size NG ~ lnN, hence its size increases much slower than the size of the net-
work. Therefore NG/N ≃ lnN/N→0 in the N→∞ limit. 

In  summary, in the subcritical regime the network consists of nu-
merous tiny components, whose size follows the exponential distribution 
(3.35). Hence these components have comparable sizes, lacking a clear win-
ner that we could designate as a giant component.

Critical Point: <k> = 1 (p = , Figure 3.7c). 

The critical point separates the regime where there is not yet a  giant 
component (<k> < 1) from the regime where there is one (<k> > 1).  At this 
point the relative size of the largest component is still zero (Figure 3.7c). In-
deed, the size of the largest component is NG ~ N2/3. Consequently NG grows 
much slower than the network’s size, so its relative size decreases as NG/N~ 
N -1/3 in the N→∞ limit. 

Note, however, that in absolute terms there is a significant jump in the 
size of the largest component at <k> = 1. For example, for a random net-
work with N = 7 ×109 nodes, comparable to the globe’s social network, for 
<k> < 1 the largest cluster is of the order of NG ≃ lnN = ln (7 ×109) ≃ 22.7. In 
contrast at <k> = 1 we expect NG ~ N2/3 = (7 ×109)2/3 ≃ 3 ×106, a jump of about 
five orders of magnitude. Yet, both in the subcritical regime and at the crit-
ical point the largest component contains only a vanishing fraction of the 
total number of nodes in the network.

In summary, at the critical point most nodes are located in numerous 
small components, whose size distribution follows (3.36). The power law 
form indicates that components of rather different sizes coexist. These 
numerous small components are mainly trees, while the giant component 

RANDOM NETWORKS THE EVOLUTION OF A RANDOM NETWORK
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may  contain loops. Note that many properties of the network at the criti-
cal point resemble the properties of a physical system undergoing a phase 
transition (ADVANCED TOPICS 3.F). 

Supercritical Regime: <k> > 1 (p >  , Figure 3.7d).

This  regime has the most relevance to real systems, as for the first time 
we have a giant component that looks like a network. In the vicinity of the 
critical point the size of the giant component varies as

or

where pc  is given by (3.11). In other words, the giant component contains a 
finite fraction of the nodes. The further we move from the critical point, 
a larger fraction of nodes will belong to it. Note that (3.12) is valid only in 
the vicinity of <k> = 1. For large <k> the dependence between NG and <k> is 
nonlinear (Figure 3.7a).  

In summary in the supercritical regime numerous isolated components 
coexist with the giant component, their size distribution following (3.35). 
These small components are trees, while the giant component contains 
loops and cycles.  The supercritical regime lasts until all nodes are absorbed 
by the giant component.

Connected Regime: ‹k› > lnN (p >       , Figure 3.7e).

For sufficiently large p the giant component absorbs all nodes and compo-
nents, hence NG≃ N. In the absence of isolated nodes the network becomes 
connected. The average degree at which this happens depends on N as (AD-

VANCED TOPIC 3.E)

Note that when we enter the connected regime the network is still rela-
tively sparse, as lnN / N → 0 for large N. The network turns into a complete 
graph only at <k> = N - 1.

In summary, the random network model predicts that the emergence 
of a network is not a smooth, gradual process: The isolated nodes and 
tiny components observed for small <k> collapse into a giant component  
through a phase transition (ADVANCED TOPICS 3.F). As we vary <k> we en-
counter four topologically distinct regimes (Figure 3.7). 

The discussion offered above follows an empirical perspective, fruitful 
if we wish to compare a random network to real systems.  A different per-
spective, with its own rich behavior, is offered by the mathematical litera-
ture (BOX 3.5).

RANDOM NETWORKS THE EVOLUTION OF A RANDOM NETWORK

(3.12)

(3.13)

(3.14)

N
1

N N k/ ~ 1,G 〈 〉 −

N p p N~ ( ) ,G c−

k N= ln .〈 〉

N
N
ln
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BOX 3.5
NETWORK EVOLUTION IN GRAPH THEORY.

In the random graph literature it is often assumed that the connec-
tion probability p(N) scales as Nz, where z is a tunable parameter be-
tween -∞ and 0 [15]. In this language Erdős and Rényi discovered that 
as we vary z, key properties of random graphs appear quite suddenly. 

A graph has a given property Q if the probability of having Q ap-
proaches 1 as N → ∞. That is, for a given z either almost every graph 
has the property Q or almost no graph has it. For example, for z less 
than -3/2 almost all graphs contain only isolated nodes and pairs of 
nodes connected by a link. Once z exceeds -3/2, most networks will 
contain paths connecting three or more nodes (Figure 3.8). 

The threshold probabilities at which dif-
ferent subgraphs appear in a random 
graph, as defined by the exponent z in 
the p(N) ~ Nz relationship. For z < -3/2 the 
graph consists of isolated nodes and edges. 
When z passes -3/2 trees of order 3 appear, 
while at z = -4/3 trees of order 4 appear. At 
z = 1 trees of all orders are present, togeth-
er with cycles of all orders. Complete sub-
graphs of order 4 appear at z =-2/3, and as 
z increases further, complete subgraphs of 
larger and larger order emerge. After [19].

Figure 3.8
Evolution of a Random Graph

-3/2 -2/3 -1/2-4/3 -5/4

p~Nz

-1-2-�z
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REAL NETWORKS
ARE SUPERCRITICAL

SECTION 3.7

Two predictions of random network theory are of direct importance for 
real networks:  

1)  Once the average degree exceeds <k> = 1, a giant component should 
emerge that contains a finite fraction of all nodes. Hence only for 
<k> > 1 the nodes organize themselves into a recognizable network. 

2) For <k> > lnN all components are absorbed by the giant component, 
resulting in a single connected network.

Do real networks satisfy the criteria for the existence of a giant compo-
nent, i.e. <k> > 1? And will this giant component contain all nodes for <k> > 
lnN, or will we continue to see some disconnected nodes and components? 
To answer these questions we compare the structure of a real network for a 
given <k> with the theoretical predictions discussed above. 

The measurements indicate that real networks extravagantly exceed 
the <k> = 1 threshold. Indeed, sociologists estimate that an average per-
son has around 1,000 acquaintances; a typical neuron is the human brain 
has about 7,000 synapses; in our cells each molecule takes part in several 
chemical reactions. 

This conclusion is supported by Table 3.1, that lists the average degree of 
several undirected networks, in each case finding <k> > 1. Hence the aver-
age degree of real networks is well beyond the <k> = 1 threshold, implying 
that they all have a giant component. The same is true for the reference 
networks listed in Table 3.1.

Let us now turn to the second prediction, inspecting if we have single 
component (i.e. if <k> > lnN), or if the network is fragmented into multiple 
components (i.e. if <k> < lnN). For social networks the transition between 
the supercritical and the fully connected regime should be at <k> > ln(7 
×109) ≈ 22.7. That is, if the average individual has more than two dozens 
acquaintances, then a random society must have a single component, leav-

RANDOM NETWORKS

The number of nodes N and links L for the un-
directed networks of our reference network 
list of Table 3.1, shown together with <k> and 
lnN.  A giant component is expected for <k> > 1 
and all nodes should join the giant component 
for <k>  > lnN.  While for all networks <k> > 1, 
for most <k> is under the lnN threshold (see 
also Figure 3.9).

Table 3.1

Are Real Networks Connected?

NETWORK N L InNk

192,244

4,941

23,133

702,388

2,018

609,066

6,594

94,439

29,397,908

2,930

6.34

2.67

83.71

2.90

12.17

8.51

10.05

13.46

7.61

Internet

Power Grid

Science Collaboration

Actor Network

Protein Interactions

8.08
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ing no individual disconnected. With <k> ≈ 1,000 this condition is clearly 
satisfied. Yet, according to Table 3.1 many real networks do not obey the ful-
ly connected criteria. Consequently, according to random network theory 
these networks should be fragmented into several disconnected compo-
nents. This is a disconcerting prediction for the Internet, indicating that 
some routers should be disconnected from the giant component, being un-
able to communicate with other routers. It is equally problematic for the 
power grid, indicating that some consumers should not get power. These 
predictions are clearly at odds with reality. 

In summary, we find that most real networks are in the supercritical 
regime (Figure 3.9). Therefore these networks are expected to have a giant 
component, which is in agreement with the observations. Yet, this giant 
component should coexist with many disconnected components, a predic-
tion that fails for several real networks. Note that these predictions should 
be valid only if real networks are accurately described by the Erdős-Rényi 
model, i.e. if real networks are random. In the coming chapters, as we learn 
more about the structure of real networks, we will understand why real 
networks can stay connected despite failing the k > lnN criteria.

RANDOM NETWORKS REAL NETWORKS ARE SUPERCRITICAL

The four regimes predicted by random net-
work theory, marking with a cross the location 
(<k>) of the undirected networks listed in Table 

3.1. The diagram indicates that most networks 
are in the supercritical regime, hence they are 
expected to be broken into numerous isolated 
components. Only the actor network is in the 
connected regime, meaning that all nodes are 
part of a single giant component. Note that 
while the boundary between the subcritical 
and the supercritical regime is always at <k> = 
1, the boundary between the supercritical and 
the connected regime is at lnN, which varies 
from system to system. 

Figure 3.9

Most Real Networks are Supercritical
FULLY CONNECTEDSUBCRITICAL SUPERCRITICAL

INTERNET

POWER GRID

SCIENCE
COLLABORATION

ACTOR NETWORK

YEAST PROTEIN
INTERACTIONS

1 10 k
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SMALL WORLDS
SECTION 3.8

The small world phenomenon, also known as six degrees of separation, 
has long fascinated the general public. It states that if you choose any two 
individuals anywhere on Earth, you will find a path of at most six acquain-
tances between them (Figure 3.10). The fact that individuals who live in the 
same city are only a few handshakes from each other is by no means sur-
prising. The small world concept states, however, that even individuals 
who are on the opposite side of the globe can be connected to us via a few 
acquaintances. 

In the language of network science the small world phenomenon im-
plies that the distance between two randomly chosen nodes in a network 
is short. This statement raises two questions: What does short (or small) 
mean, i.e. short compared to what? How do we explain the existence of 
these short distances?

Both questions are answered by a simple calculation. Consider a ran-
dom network with average degree <k>.  A node in this network has on av-
erage:

 <k> nodes at distance one (d=1).
 <k>2 nodes at distance two (d=2).
 <k>3 nodes at distance three (d =3).
 ...
 <k>d nodes at distance d.

For example, if  <k> ≈ 1,000, which is the estimated number of acquain-
tences an individual has, we expect 106 individuals at distance two and 
about a billion, i.e. almost the whole earth’s population, at distance three 
from us.

 
To be precise, the expected number of nodes up to distance d from our 

starting node is

      

RANDOM NETWORKS

According to six degrees of separation two 
individuals, anywhere in the world, can be 
connected through a chain of six or fewer ac-
quaintances. This means that while Sarah does 
not know Peter, she knows Ralph, who knows 
Jane and who in turn knows Peter. Hence Sar-
ah is three handshakes, or three degrees from 
Peter. In the language of network science six 
degrees, also called the small world proper-
ty, means that the distance between any two 
nodes in a network is unexpectedly small.

Figure 3.10

Six Deegree of Separation
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N(d) must not exceed the total number of nodes, N, in the network. 
Therefore the distances cannot take up arbitrary values. We can identify 
the maximum distance, dmax,   or the network’s diameter by setting 

             
     

Assuming that <k> » 1, we can neglect the (-1) term in the nominator and  
the denominator of (3.15), obtaining

         
    

Therefore the diameter of a random network follows
         

     
      

which represents the mathematical formulation of the small world phe-
nomenon. The key, however is its interpretation:

• As derived, (3.18) predicts the scaling of the network diameter, dmax, with 
the size of the system, N. Yet, for most networks (3.18) offers a better 
approximation to the average distance between two randomly chosen 
nodes, <d>, than to dmax (Table 3.2). This is because dmax is often dominat-
ed by a few extreme paths, while <d> is averaged over all node pairs, a 
process that supresses the fluctuations. Hence typically the small world 
property is defined by 

  
        

describing the dependence of the average distance in a network on N 
and <k>.

• In general lnN « N, hence the dependence of <d> on lnN implies that 
the distances in a random network are orders of magnitude smaller 
than the size of the network. Consequently by small in the "small world 
phenomenon" we mean that the average path length or the diameter 
depends logarithmically on the system size. Hence, “small” means that 
<d> is proportional to lnN, rather than N or some power of N (Figure 3.11).

• The 1/ln <k> term implies that the denser the network, the smaller is 
the distance between the nodes. 

• In real networks there are systematic corrections to (3.19), rooted in the 
fact that the number of nodes at distance d > <d> drops rapidly (AD-

VANCED TOPICS 3.F).

Let us illustrate the implications of (3.19) for social networks. Using N ≈ 
7 ×109 and <k> ≈ 103, we obtain      

RANDOM NETWORKS SMALL WORLD PROPERTY

Much of our intuition about distance is based 
on our experience with regular lattices, which 
do not display the small world property: 

1D: For a one-dimensional lattice (a line of 
length N) the diameter and the average path 
length scale linearly with N: dmax~<d> ~N. 

2D: For a square lattice dmax~<d> ~ N1/2.  

3D: For a cubic lattice dmax~<d> ~ N1/3. 

4D: In general, for a d-dimensional lattice dmax 
~ <d> ~ N1/d.

These polynomial dependences predict a 
much faster increase with N than (3.19), indi-
cating that in lattices the path lengths are sig-
nificantly longer than in a random network. 
For example, if the social network would form 
a square lattice (2D), where each individual 
knows only its neighbors, the average distance 
between two individuals would be roughly (7 
×109)1/2 = 83,666. Even if we correct for the fact 
that a person has about 1,000 acquaintances, 
not four, the average separation will be orders 
of magnitude larger than predicted by (3.19).

(a) The figure shows the predicted N-depen-
dence of <d> for regular and random net-
works on a linear scale. 

(b) The same as in (a), but shown on a log-log 
scale.

.

Figure 3.11

Why are Small Worlds Surprising?

(a)

(b)
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Therefore, all individuals on Earth should be within three to four hand-
shakes of each other [20]. The estimate (3.20) is probably closer to the real 
value than the frequently quoted six degrees (BOX 3.7).

Much of what we know about the small world property in random net-
works, including the result (3.19), is in a little known paper by Manfred Ko-
chen and Ithiel de Sola Pool [20], in which they mathematically formulated 
the problem and discussed in depth its sociological implications. This pa-
per inspired the well known Milgram experiment (BOX 3.6), which in turn 
inspired the six-degrees of separation phrase.

While discovered in the context of social systems, the small world prop-
erty applies beyond social networks (BOX 3.6). To demonstrate this in Table 

3.2 we compare the prediction of (3.19) with the average path length <d> for 
several real networks, finding that despite the diversity of these systems 
and the significant differences between them in terms of N and <k>, (3.19) 
offers a good approximation to the empirically observed <d>.

In summary the small world property has not only ignited the public’s 
imagination (BOX 3.8), but plays an important role in network science as 
well. The small world phenomena can be reasonably well understood in 
the context of the random network model: It is rooted in the fact that the 
number of nodes at distance d from a node increases exponentially with d. 
In the coming chapters we will see that in real networks we encounter sys-
tematic deviations from (3.19), forcing us to replace it with more accurate 
predictions. Yet the intuition offered by the random network model on the 
origin of the small world phenomenon remains valid.

RANDOM NETWORKS SMALL WORLD PROPERTY

The average distance <d> and the maximum distance dmax  for the ten refer-
ence networks. The last column provides <d> predicted by (3.19), indicating that 
it offers a reasonable approximation to the measured <d>. Yet, the agreement 
is not perfect - we will see in the next chapter that for many real networks (3.19) 
needs to be adjusted. For directed networks the average degree and the path 
lengths are measured along the direction of the links.

Table 3.2
Six Degrees of Separation

NETWORK

Internet

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

192,244

N L
lnN

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

609,066

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,707,958

5,802

2,930

6.34

4.60 

2.67

2.51

1.81

8.08

83,71

10.43

5.58

2.90

6.98

11.27

18.99

11.72

5.88

5.35

3,91

11,21

2.98

5.61

26

93

46

39

18

15

14

42

8

14

6.58

8.31

8.66

11.42

18.4

4.81

3,04

5.55

4.04

7.14

k ln kd dmax

d
ln7 10
ln(10 )

3.28.
9

3
〈 〉 ≈ × = (3.20) BOX 3.6

19 DEGREES OF SEPARATION

How many clicks do we need to reach 
a randomly chosen document on the 
Web? The difficulty in addressing 
this question is rooted in the fact 
that we lack a complete map of the 
WWW—we only have access to small 
samples of the full map. We can 
start, however, by measuring the 
WWW’s average path length in sam-
ples of increasing sizes, a procedure 
called finite size scaling. The mea-
surements indicate that the average 
path length of the WWW increases 
with the size of the network as [21]

In 1999 the WWW was estimated to 
have about 800 million documents 
[22], in which case the above equa-
tion predicts <d>≈18.69. In other 
words in 1999 two randomly chosen 
documents were on average 19 clicks 
from each other, a result that be-
came known as 19 degrees of separa-
tion.  Subsequent measurements on 
a sample of 200 million documents 
found <d>≈16 [23], in good agree-
ment with the <d>≈17 prediction. 
Currently the WWW is estimated to 
have about trillion nodes (N~1012), 
in which case the formula predicts 
<d>≈25. Hence <d> is not fixed but as 
the network grows, so does the dis-
tance between two documents. 

The average path length of 25 is much 
larger than the proverbial six degrees 
(BOX 3.7). The difference is easy to 
understand: The WWW has smaller 
average degree and larger size than 
the social network. According to (3.19) 
both of these differences increase the 
Web’s diameter.

ࢮdࢭ � 0.35 + 0.89lnN.



24RANDOM NETWORKS THE EVOLUTION OF A RANDOM NETWORK

BOX 3.7
SIX DEGREES: EXPERIMENTAL CONFIRMATION

Six Degrees? From Milgram to Facebook

The first empirical study of the small world phenomena took 
place in 1967, when Stanley Milgram, building on the work of 
Pool and Kochen [20], designed an experiment to measure the 
distances in social networks [24, 25]. Milgram chose a stock bro-
ker in Boston and a divinity student in Sharon, Massachusetts 
as targets. He then randomly selected residents of Wichita and 
Omaha, sending them a letter containing a short summary of 
the study’s purpose, a photograph, the name, address and infor-
mation about the target person. They were asked to forward the 
letter to a friend, relative or acquantance who is most likely to 
know the target person. 

Within a few days the first letter arrived, passing through only 
two links. Eventually 64 of the 296 letters made it back, some, 
however, requiring close to a dozen intermediates [25]. These 
completed chains allowed Milgram to determine the number of 
individuals required to get the letter to the target (Figure 3.12a). 
He found that the median number of intermediates was 5.2, a 
relatively small number that was remarkably close to Frigyes 
Karinthy’s 1929 insight (BOX 3.8).
 
Milgram lacked an accurate map of the full acquaintance net-
work, hence his experiment could not detect the true distance 
between his study’s participants. Today Facebook has the most 
extensive social network map ever assembled. Using Facebook’s 
social graph of May 2011, consisting of 721 million active users 
and 68 billion symmetric friendship links, researchers found an 
average distance 4.74 between the users (Figure 3.12b). Therefore, 
the study detected only ‘four degrees of separation’ [18], closer 
to the prediction of (3.20) than to Milgram’s six degrees [24, 25]. 
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Figure 3.12

(a) In Milgram's experiment 64 of the 296 
letters made it  to the recipient. The fig-
ure shows the length distribution of the 
completed chains, indicating that some 
letters required only one intermediary, 
while others required as many as ten. The 
mean of the distribution was 5.2, indicat-
ing that on average six ‘handshakes’ were 
required to get a letter to its recipient. The 
playwright John Guare renamed this ‘six 
degrees of separation’ two decades later.  
After [25].

(b) The distance distribution, pd , for all pairs 
of Facebook users worldwide and within 
the US only.Using Facebook’s N and L (3.19) 
predicts the average degree to be approx-
imately 3.90, not far from the reported 
four degrees. After [18].

“I asked a person of intelligence how 
many steps he thought it would take, and 
he said that it would require 100 interme-
diate persons, or more, to move from Ne-
braska to Sharon.”

Stanley Milgram, 1969
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Karinthy, 1929

Ithiel de Sola PoolManfred Kochen

Stanley Milgram

1991

Duncan J. Watts Steven Strogatz

The Facebook Data Team
measures the average
distance between its users, 
finding “4 degrees” (BOX 3.7).

4-DEGREE OF
SEPARATION

6-DEGREE OF
SEPARATION

Frigyes Karinthy (1887-1938)
Hungarian writer, journalist and 

playwright, the first to describe the 
small world property. In his short 

story entitled ‘Láncszemek’ (Chains) 
he links a worker in Ford’s factory

to himself [26, 27].

“The worker knows the manager in 
the shop, who knows Ford; Ford is 
on friendly terms with the general 
director of Hearst Publications, who 
last year became good friends with 
Árpád Pásztor, someone I not only 
know, but to the best of my 
knowledge a good friend of mine.”

Stanley Milgram (1933-1984)
American social psychologist who 
carried out the first experiment
testing the small-world phenomena.
(BOX 3.7).

19 Degrees of the WWW
Measurements on the WWW 
indicate that the separation 
between two randomly chosen 
documents is 19 [21] (Box 3.6).

Manfred Kochen (1928-1989),
Ithiel de Sola Pool (1917-1984)
Scientific interest in small worlds 
started with a paper by political 
scientist Ithiel de Sola Pool and 
mathematician Manfred Kochen. 
Written in 1958 and published in 
1978, their work addressed in 
mathematical detail the small 
world effect, predicting that most 
individuals can be connected via 
two to three acquaintances.
Their paper inspired the experi-
ments of Stanley Milgram.

Duncan J. Watts (1971),
Steven Strogatz (1959)
A new wave of interest in small 
worlds followed the study of Watts 
and Strogatz, finding that the small 
world property applies to natural and 
technological networks as well [29].

John Guare (1938)
The phrase ‘six degrees of 

separation’ was introduced by 
the playwright John Guare, who 

used it as the title of his 
Broadway play [28].

“Everybody on this planet is separated by only six other people. 
Six degrees of separation. Between us and everybody else on this 
planet. The president of the United States. A gondolier in Venice. 
It’s not just the big names. It’s anyone.  A native in a rain forest.  
A Tierra del Fuegan. An Eskimo. I am bound to everyone on this 
planet by a trail of six people. It’s a profound thought.  How 
every person is a new door, opening up into other worlds.”

PUBLISHED 20 YEARS LATERDISCOVERY

BOX 3.8
19 DEGREES OF THE WWW
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CLUSTERING COEFFICIENT
SECTION 3.9

The degree of a node contains no information about the relationship 
between a node's neighbors. Do they all know each other, or are they per-
haps isolated from each other? The answer is provided by the local cluster-
ing coefficient Ci, that measures the density of links in node i’s immediate 
neighborhood: Ci = 0 means that there are no links between i’s neighbors; 
Ci = 1 implies that each of the i’s neighbors link to each other (SECTION 2.10). 

To calculate Ci for a node in a random network we need to estimate the 
expected number of links Li between the node’s ki neighbors. In a random 
network the probability that two of i’s neighbors link to each other is p.  As 
there are ki(ki - 1)/2 possible links between the ki neighbors of node i, the 
expected value of Li is 

      
Thus the local clustering coefficient of a random network is 
            
     

Equation (3.21) makes two predictions:

(1)  For fixed <k>, the larger the network, the smaller is a node’s cluster-
ing coefficient. Consequently a node's local clustering coefficient Ci 
is expected to decrease as  1/N. Note that the network's average clus-
tering coefficient, <C> also follows (3.21).

 
(2) The local clustering coefficient of a node is independent of the node’s 

degree.

To test the validity of (3.21) we plot <C>/<k> in function of N for several 
undirected networks (Figure 3.13a). We find that <C>/<k> does not decrease 
as N-1, but it is largely independent of N, in violation of the prediction (3.21)
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and point (1) above. In Figure 3.13b-d we also show the dependency of C on 
the node’s degree ki for three real networks, finding that C(k) systematical-
ly decreases with the degree, again in violation of (3.21) and point (2). 

In summary, we find that the random network model does not capture 
the clustering of real networks. Instead real networks have a much high-
er clustering coefficient than expected for a random network of similar N 
and L. An extension of the random network model proposed by Watts and 
Strogatz [29] addresses the coexistence of high <C> and the small world 
property (BOX 3.9). It fails to explain, however, why high-degree nodes have 
a smaller clustering coefficient than low-degree nodes. Models explaining 
the shape of C(k) are discussed in Chapter 9.

RANDOM NETWORKS CLUSTERING COEFFICIENT

(a) Comparing the average clustering co-
efficient of real networks with the pre-
diction (3.21) for random networks. The 
circles and their colors correspond to 
the networks of Table 3.2. Directed net-
works were made undirected to calcu-
late <C> and <k>. The green line cor-
responds to (3.21), predicting that for 
random networks the average cluster-
ing coefficient decreases as N-1. In con-
trast, for real networks <C> appears to 
be independent of N.

(b)-(d)  The dependence of the local clustering 
coefficient, C(k), on the node’s degree 
for (b) the Internet, (c) science collabo-
ration network and (d) protein interac-
tion network. C(k) is measured by av-
eraging the local clustering coefficient 
of all nodes with the same degree k. 
The green horizontal line corresponds 
to <C>. 

Figure 3.13

Clustering in Real Networks

InternetAll Networks

Protein InteractionsScience Collaboration

(a)

(c)

(b)

(d)
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BOX 3.9
WATTS-STROGATZ MODEL

Duncan Watts and Steven Strogatz proposed an extension of the 
random network model (Figure 3.14)  motivated by two observa-
tions [29]:

(a) Small World Property
In real networks the average distance between two nodes depends 
logarithmically on N (3.18), rather than following a polynomial ex-
pected for regular lattices (Figure 3.11).

(b) High Clustering
The average clustering coefficient of real networks is much high-
er than expected for a random network of similar N and L (Figure 

3.13a).

The Watts-Strogatz model (also called the small-world model) in-
terpolates between a regular lattice, which has high clustering but 
lacks the small-world phenomenon, and a random network, which 
has low clustering, but displays the small-world property (Figure 

3.14a-c). Numerical simulations indicate that for a range of re-
wiring parameters the model's average path length is low but the 
clustering coefficient is high, hence reproducing the coexistence 
of high clustering and small-world phenomena (Figure 3.14d).

Being an extension of the random network model, the Watts-
Strogatz model predicts a Poisson-like bounded degree distribu-
tion. Consequently high degree nodes, like those seen in Figure 

3.6, are absent from it. Furthermore it predicts a k-independent 
C(k), being unable to recover the k-dependence observed in Figures 

3.13b-d. As we show in the next chapters, understanding the co-
existence of the small world property with high clustering must 
start from the network's correct degree distribution. 

INTRODUCTION28

Figure 3.14

DEGREE CORRELATIONS

The Watts-Strogatz Model

(a) We start from a ring of nodes, each 
node being connected to their immedi-
ate and next neighbors. Hence initially 
each node has <C> = 3/4 (p = 0). 

(b) With probability p each link is rewired 
to a randomly chosen node. For small p 
the network maintains high clustering 
but the random long-range links can 
drastically decrease the distances be-
tween the nodes. 

(c) For p = 1 all links have been rewired, so 
the network turns into a random net-
work.

(d) The dependence of the average path 
length d(p) and clustering coefficient 
<C(p)> on the rewiring parameter p. 
Note that d(p) and <C(p)> have been 
normalized by d(0) and <C(0)> obtained 
for a regular lattice (i.e. for p=0 in (a)). 
The rapid drop in d(p) signals the on-
set of the small-world phenomenon. 
During this drop, <C(p)> remains high. 
Hence in the range 0.001<p<0.1 short 
path lengths and high clustering co-
exist in the network. All graphs have 
N=1000 and <k>=10. After [29].
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Since its introduction in 1959 the random network model has domi-
nated mathematical approaches to complex networks. The model suggests 
that the random-looking networks observed in complex systems should be 
described as purely random. With that it equated complexity with random-
ness.  We must therefore ask: 

Do we really believe that real networks are random? 

The answer is clearly no. As the interactions between our proteins are 
governed by the strict laws of biochemistry, for the cell to function its 
chemical architecture cannot be random. Similarly, in a random society 
an American student would be as likely to have among his friends Chinese 
factory workers than one of her classmates. 

In reality we suspect the existence of a deep order behind most com-
plex systems. That order must be reflected in the structure of the network 
that describes their architecture, resulting in systematic deviations from a 
pure random configuration.

The degree to which random networks describe, or fail to describe, real 
systems, must not be decided by epistemological arguments, but by a sys-
tematic quantitative comparison. We can do this, taking advantage of the 
fact that random network theory makes a number of quantitative predic-
tions:

Degree Distribution
A random network has a binomial distribution, well approximated by 
a Poisson distribution in the k « N limit. Yet, as shown in Figure 3.5, the 
Poisson distribution fails to capture the degree distribution of real net-
works. In real systems we have more highly connected nodes than the 
random network model could account for.

Connectedness
Random network theory predicts that for <k> > 1 we should observe a 

SECTION 3.10

SUMMARY: REAL NETWORKS 
ARE NOT RANDOM

RANDOM NETWORKS
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giant component, a condition satisfied by all networks we examined. 
Most networks, however, do not satisfy the <k> > ln N condition, im-
plying that they should be broken into isolated clusters (Table 3.1). Some 
networks are indeed fragmented, most are not.

Average Path Length
Random network theory predicts that the average path length follows 
(3.19), a prediction that offers a reasonable approximation for the ob-
served path lengths. Hence the random network model can account for 
the emergence of small world phenomena.

Clustering Coefficient
In a random network the local clustering coefficient is independent of 
the node’s degree and <C> depends on the system size as 1/N. In con-
trast, measurements indicate that for real networks C(k) decreases with 
the node degrees and is largely independent of the system size (Figure 

3.13).

Taken together, it appears that the small world phenomena is the only 
property reasonably explained by the random network model. All other 
network characteristics, from the degree distribution to the clustering co-
efficient, are significantly different in real networks. The extension of the 
Erdős-Rényi model proposed by Watts and Strogatz successfully predicts 
the coexistence of high C and low <d>, but fails to explain the degree distri-
bution and C(k). In fact, the more we learn about real networks, the more 
we will arrive at the startling conclusion that we do not know of any real 
network that is accurately described by the random network model.

This conclusion begs a legitimate question: If real networks are not ran-
dom, why did we devote a full chapter to the random network model? The 
answer is simple: The model serves as an important reference as we pro-
ceed to explore the properties of real networks. Each time we observe some 
network property we will have to ask if it could have emerged by chance. 
For this we turn to the random network model as a guide: If the property is 
present in the model, it means that randomness can account for it. If the 
property is absent in random networks, it may represent some signature of 
order, requiring a deeper explanation. So, the random network model may 
be the wrong model for most real systems, but it remains quite relevant for 
network science (BOX 3.10).
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BOX 3.11
AT A GLANCE: RANDOM NETWORKS

Definition:  N nodes, where each 
node pair is connected with 
probability p.

Average Degree:  

Average Number of Links:  

Degree Distribution:

Binomial Form:   

Poisson Form:

Giant Component (GC)  (NG):

          〈k〉  < 1:               NG~ lnN 

1 <  〈k〉  < lnN:                   

      〈k〉 > lnN:         NG~(p-pc )N          
 

Average Distance:     

Clustering Coefficient:     
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BOX 3.10
RANDOM NETWORKS AND NETWORK SCIENCE

The lack of agreement between random and real networks raises an 
important question: How could a theory survive so long given its poor 
agreement with reality? The answer is simple: Random network theo-
ry was never meant to serve as a model of real systems. 

Erdős and Rényi write in their first paper [2] that random networks 
“may be interesting not only from a purely mathematical point of 
view. In fact, the evolution of graphs may be considered as a rath-
er simplified model of the evolution of certain communication nets 
(railways, road or electric network systems, etc.) of a country or some 
unit.” Yet, in the string of eight papers authored by them on the sub-
ject [2-9], this is the only mention of the potential practical value of 
their approach. The subsequent development of random graphs was 
driven by the problem's inherent mathematical challenges, rather 
than its applications. 

It is tempting to follow Thomas Kuhn and view network science as a 
paradigm change from random graphs to a theory of real networks 
[30]. In reality, there was no network paradigm before the end of 
1990s. This period is characterized by a lack of systematic attempts 
to compare the properties of real networks with graph theoretical 
models. The work of Erdős and Rényi has gained prominence outside 
mathematics only after the emergence of network science (Figure 3.15). 

Network theory does not lessen the contributions of Erdős and Rényi, 
but celebrates the unintended impact of their work. When we discuss 
the disrepacies between random and real networks, we do so mainly 
for pedagogical reasons: to offer a proper foundation on which we can 
understand the properties of real systems. 

While today we perceive the Erdős-Rényi 
model as the cornerstone of network the-
ory, the model was hardly known outside 
a small subfield of mathematics.  This is 
illustrated by the yearly citations of the 
first two papers by Erdős and Rényi, pub-
lished in 1959 and 1960 [2,3]. For four de-
cades after their publication the papers 
gathered less than 10 citations each year. 
The number of citations exploded after the 
first papers on scale-free networks [21, 31, 
32] have turned Erdős and Rényi’s work 
into the reference model of network the-
ory.

Figure 3.15
Network Science and Random Networks
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SECTION 3.11

HOMEWORK

3.1. Erdős-Rényi Networks

Consider an Erdős-Rényi network with N = 3,000 nodes, connected to 
each other with probability p = 10–3.

(a) What is the expected number of links, 〈L〉?

(b) In which regime is the network?

(c) Calculate the probability pc so that the network is at the critical 
point.

(d) Given the linking probability p = 10–3, calculate the number of 
nodes Ncr so that the network has only one component.

(e) For the network in (d), calculate the average degree 〈kc r〉 and the 
average distance between two randomly chosen nodes 〈d〉.

(f) Calculate the degree distribution pk of this network (approximate 
with a Poisson degree distribution).

3.2. Generating Erdős-Rényi Networks

Relying on the G(N, p) model, generate with a computer three networks 
with N = 500 nodes and average degree (a) 〈k〉 = 0.8, (b) 〈k〉 = 1 and (c) 〈k〉 = 8. 
Visualize these networks.

3.3. Circle Network

Consider a network with N nodes placed on a circle, so that each node 
connects to m neighbors on either side (consequently each node has degree 
2m). Figure 3.14(a) shows an example of such a network with m = 2 and N = 
20. Calculate the average clustering coefficient 〈C〉 of this network and the 
average shortest path 〈d〉. For simplicity assume that N and m are chosen 
such that (n-1)/2m  is an integer. What happens to 〈C〉 if N≫1? And what 
happens to 〈d〉?

3.4. Cayley Tree

A Cayley tree is a symmetric tree, constructed starting from a central 
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node of degree k. Each node at distance d from the central node has de-
gree k, until we reach the nodes at distance P that have degree one and 
are called leaves (see Figure 3.16 for a Cayley tree with k = 3 and P = 5.).

(a) Calculate the number of nodes reachable in t steps from the cen-
tral node.

(b) Calculate the degree distribution of the network.

(c) Calculate the diameter dmax.

(d) Find an expression for the diameter dmax in terms of the total 
number of nodes N.

(e) Does the network display the small-world property?

3.5. Snobbish Network

Consider a network of N red and N blue nodes. The probability that 
there is a link between nodes of identical color is p and the probability that 
there is a link between nodes of different color is q. A network is snobbish 
if p > q, capturing a tendency to connect to nodes of the same color. For q 
= 0 the network has at least two components, containing nodes with the 
same color.

(a) Calculate the average degree of the "blue" subnetwork made of 
only blue nodes, and the average degree in the full network.

(b) Determine the minimal p and q required to have, with high prob-
ability, just one component.

(c) Show that for large N even very snobbish networks (p≫q) display 
the small-world property.

3.6. Snobbish Social Networks

Consider the following variant of the model discussed above: We have a 
network of 2N nodes, consisting of an equal number of red and blue nodes, 
while an f fraction of the 2N nodes are purple. Blue and red nodes do not 
connect to each other (q = 0), while they connect with probability p to nodes 
of the same color. Purple nodes connect with the same probability p to both 
red and blue nodes.

(a) We call the red and blue communities interactive if a typical red 
node is just two steps away from a blue node and vice versa. Eval-
uate the fraction of purple nodes required for the communities 
to be interactive.

(b) Comment on the size of the purple community if the average de-
gree of the blue (or red) nodes is 〈k〉≫1.

(c) What are the implications of this model for the structure of so-
cial (and other) networks?

Figure 3.16
Cayley Tree

A Cayley Tree With k = 3 and P = 5.
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To derive the Poisson form of the degree distribution we start from the 
exact binomial distribution (3.7)

         

that characterizes a random graph. We rewrite the first term on the r.h.s. 
as

where in the last term we used that k « N. The last term of  (3.22) can be 
simplified as

   

and using the series expansion
  

we obtain
 

which is valid if N » k. This  represents the small degree approximation at 
the heart of this derivation. Therefore the last term of (3.22) becomes

        

Combining (3.22), (3.23), and (3.24) we obtain the Poisson form of the de-

SECTION 3.12

ADVANCED TOPICS 3.A
DERIVING THE POISSON 
DISTRIBUTION
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RANDOM NETWORKS DERIVING THE POISSON-DEGREE DISTRIBUTION
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To determine the expected degree of the largest node in a random net-
work, called the network’s upper natural cutoff, we define the degree kmax 
such that in a network of N nodes we have at most one node with degree 
higher than kmax . Mathematically this means that the area behind the Pois-
son distribution pk for k ≥ kmax should be approximately one (Figure 3.17). 
Since the area is given by 1-P(kmax), where P(k) is the cumulative degree dis-
tribution of pk, the network’s largest node satisfies: 

         
   

We write ≈ instead of =, because kmax is an integer, so in general the ex-
act equation does not have a solution. For a Poisson distribution

    

where in the last term we approximate the sum with its largest term. 

For N = 109 and <k> = 1,000, roughly the size and the average degree of 
the globe’s social network, (3.26) and (3.27) predict kmax = 1,185, indicating 
that a random network lacks extremely popular individuals, or hubs.

We can use a similar argument to calculate the expected degree of the 
smallest node, kmin. By requiring that there should be at most one node with 
degree smaller than kmin we can write

                
   

For the Erdős-Rényi network we have 
          

    

SECTION 3.13

ADVANCED TOPICS 3.B
MAXIMUM AND MINIMUM DEGREES

(3.26)

(3.27)

(3.28)

RANDOM NETWORKS

N P k1 ( )  1.max−⎡⎣ ⎤⎦ ≈

P k e
k
k

e
k
k

e
k
k

1 ( ) 1
! ! ( 1)!

,max
k

k

k

k
k

k

k k

k
k

max0 1

1max

max

max

∑ ∑− = − 〈 〉 = 〈 〉 ≈ 〈 〉
+

−〈 〉

=

−〈 〉

= +

∞
−〈 〉

+

NP k( –1) 1.min ≈



37

Solving (3.28) with N = 109 and <k> = 1,000 we obtain  kmin = 816.  
 

RANDOM NETWORKS MAXIMUM AND MINIMUM DEGREES
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The estimated maximum degree of a network, 
kmax, is chosen so that there is at most one node 
whose degree is higher than kmax. This is often 
called the natural upper cutoff of a degree dis-
tribution. To calculate it, we need to set kmax 
such that the area under the degree distribu-
tion pk for k > kmax equals 1/N, hence the total 
number of nodes expected in this region is 
exactly one.  We follow a similar argument to 
determine the expected smallest degree, kmin.

Figure 3.17
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The area under the curve
should be less than 1/N.

.
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In this section we introduce the argument, proposed independently by 
Solomonoff and Rapoport [11], and by Erdős and Rényi [2], for the emer-
gence of giant component at <k>= 1 [33].

Let us denote with u = 1 - NG/N the fraction of nodes that are not in the 
giant component (GC), whose size we take to be NG. If node i is part of the 
GC, it must link to another node j, which must also be part of the GC. Hence 
if i is not part of the GC, that could happen for two reasons: 

• There is no link between i and j (probability for this is 1- p).

• There is a link between i and j, but j is not part of the GC (probability 
for this is pu).

Therefore the total probability that i is not part of the GC via node j is 
1 - p + pu. The probability that i is not linked to the GC via any other node is 
therefore (1 - p + pu)N - 1, as there are N - 1 nodes that could serve as potential 
links to the GC for node i.  As u is the fraction of nodes that do not belong to 
the GC, for any p and N the solution of the equation 

         
     

provides the size of the giant component via NG = N(1 - u). Using p = <k> / 
(N - 1) and taking the logarithm of both sides, for <k> « N we obtain

     

where we used the series expansion for ln(1+x).

Taking an exponential of both sides leads to u = exp[- <k>(1 - u)]. If we 
denote with S the fraction of nodes in the giant component, S = NG / N, then 
S = 1 - u and (3.31) results in
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This equation provides the size of the giant component S in function of 
<k> (Figure 3.18). While (3.32) looks simple, it does not have a closed solu-
tion. We can solve it graphically by plotting  the right hand side of (3.32) as 
a function of S for various values of <k>. To have a nonzero solution, the 
obtained curve must intersect with the dotted diagonal, representing the 
left hand side of (3.32). For small <k> the two curves intersect each other 
only at S = 0, indicating that for small <k> the size of the giant component 
is zero. Only when <k> exceeds a threshold value, does a non-zero solution 
emerge.

To determine the value of <k> at which we start having a nonzero solu-
tion we take a derivative of (3.32), as the phase transition point is when the 
r.h.s. of (3.32) has the same derivative as the l.h.s. of (3.32), i.e. when

Setting S = 0, we obtain that the phase transition point is at <k> = 1 (see 
also ADVANCED TOPICS 3.F).

RANDOM NETWORKS GIANT COMPONENT

(3.32)

(3.33)

S e = 1 .k S− −〈 〉

d
dS

e1 1,k S( )− =−〈 〉

k e 1.k S〈 〉 =−〈 〉

(a) The three purple curves correspond to y = 
1-exp[ -<k> S ] for <k>=0.5, 1, 1.5. The green 
dashed diagonal corresponds y = S, and 
the intersection of the dashed and purple 
curves provides the solution to (3.32). For 
<k>=0.5 there is only one intersection at  S 
= 0, indicating the absence of a giant com-
ponent. The <k>=1.5 curve has a solution 
at S = 0.583 (green vertical line). The <k>=1 
curve is precisely at the critical point, repre-
senting the separation between the regime 
where a nonzero solution for S exists and 
the regime where there is only the solution 
at S = 0. 

(b) The size of the giant component in function 
of <k> as predicted by  (3.32). After [33].

Figure 3.18
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In Figure 3.7 we explored the size of the giant component, leaving an im-
portant question open: How many components do we expect for a given 
<k>? What is their size distribution? The aim of this section is to discuss 
these topics. 

Component Size Distribution
For a random network the probability that a randomly chosen node be-
longs to a component of size s (which is different from the giant com-
ponent G) is [33]
          

     

Replacing <k>s-1 with exp[(s-1) ln<k>]  and using the Stirling-formula 
                                         
                                 for large s we obtain
               

   

Therefore the component size distribution has two contributions: a 
slowly decreasing power law term s-3/2 and a rapidly decreasing expo-
nential term e-(<k>-1)s+(s-1)ln<k>. Given that the exponential term dominates 
for large s, (3.35) predicts that large components are prohibited. At the 
critical point, <k> = 1, all terms in the exponential cancel, hence ps fol-
lows the power law
         
   

As a power law decreases relatively slowly, at the critical point we ex-
pect to observe clusters of widely different sizes, a property consistent 
with the behavior of a system during a phase transition (ADVANCED TOP-

ICS 3.F). These predictions are supported by the numerical simulations 
shown in Figure 3.19.
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(3.34)

(3.35)

(3.36)
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Component size distribution ps in a random 
network, excluding the giant component. 

(a)-(c) ps for different <k> values and N, indi-
cating that ps converges for large N to the 
prediction (3.34).  

(d) ps for N = 104, shown for different <k>. 
While for <k> < 1 and <k> > 1 the ps distri-
bution has an exponential form, right at 
the critical point <k> = 1 the distribution 
follows the power law (3.36). The continuous 
green lines correspond to (3.35). The first nu-
merical study of the component size distri-
bution in random networks was carried out 
in 1998 [34], preceding the exploding inter-
est in complex networks.

Figure 3.19
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Average Component Size
The calculations also indicate that the average component size (once 
again, excluding the giant component) follows [33]

      
    

For <k> < 1 we lack a giant component (NG = 0), hence (3.37) becomes 
                                    
  

which diverges when the average degree approaches the critical point 
<k> = 1.  Therefore as we approach the critical point, the size of the clus-
ters increases, signaling the emergence of the giant component at <k> 
= 1. Numerical simulations support these predictions for large N (Figure 

3.20).

To determine the average component size for <k> > 1 using (3.37), we 
need to first calculate the size of the giant component. This can be done 
in a self-consistent manner, obtaining that the average cluster size de-
creases for  <k> > 1, as most clusters are gradually absorbed by the giant 
component.

Note that (3.37) predicts the size of the component to which a randomly 
chosen node belongs. This is a biased measure, as the chance of belong-
ing to a larger cluster is higher than the chance of belonging to a small-
er one. The bias is linear in the cluster size s. If we correct for this bias, 
we obtain the average size of the small components that we would get 
if we were to inspect each cluster one by one and then measure their 
average size [33]

            
 

Figure 3.20 offers numerical support for (3.39).
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(3.38)
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(a) The average size <s> of a component to 
which a randomly chosen node belongs to 
as predicted by (3.39) (purple). The green 
curve shows the overall average size <s’> 
of a component as predicted by (3.37). (After 
[33]).

(b) The average cluster size in a random net-
work. We choose a node and determined the 
size of the cluster it belongs to. This measure 
is biased, as each component of size s will be 
counted s times. The larger N becomes, the 
more closely the numerical data follows the 
prediction (3.37). As predicted, <s> diverges 
at the <k>=1 critical point, supporting the 
existence of a phase transition (ADVANCED 

TOPICS 3.F).

(c) The average cluster size in a random net-
work, where we corrected for the bias in (b) 
by selecting each component only once.The 
larger N becomes, the more closely the nu-
merical data follows the prediction (3.39). 

Figure 3.20
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To determine the value of <k> at which most nodes became part of the 
giant component, we calculate the probability that a randomly selected 
node does not have a link to the giant component, which is                              , 
as in this regime NG ≃ N. The expected number of such isolated nodes is

     

where we used                        , an approximation valid for large n. If we   

make p sufficiently large, we arrive to the point where only one node is dis-
connected from the giant component.  At this point IN = 1, hence according 
to (3.40) p needs to satisfy                 . Consequently, the value of p at which 
we are about to enter the fully connected regime is

         
     

which leads to (3.14) in terms of <k>.
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The emergence of the giant component at <k>=1 in the random network 
model is reminiscent of a phase transition, a much studied phenomenon in 
physics and chemistry [35]. Consider two examples:

i.  Water-Ice Transition (Figure 3.21a): At high temperatures the H2O mol-
ecules engage in a diffusive motion, forming small groups and then 
breaking apart to group up with other water molecules. If cooled, at 
0˚C the molecules suddenly stop this diffusive dance, forming an or-
dered rigid ice crystal. 

ii. Magnetism (Figure 3.21b): In ferromagnetic metals like iron at high 
temperatures the spins point in randomly chosen directions. Under 
some critical temperature Tc all atoms orient their spins in the same 
direction and the metal turns into a magnet.

The freezing of a liquid and the emergence of magnetization are exam-
ples of phase transitions, representing transitions from disorder to order. 
Indeed, relative to the perfect order of the crystalline ice, liquid water is 
rather disordered. Similarly, the randomly oriented spins in a ferromag-
net take up the highly ordered common orientation under Tc. 

Many properties of a system undergoing a phase transition are univer-
sal. This means that the same quantitative patterns are observed in a wide 
range of systems, from magma freezing into rock to a ceramic material 
turning into a superconductor. Furthermore, near the phase transition 
point, called the critical point, many quantities of interest follow pow-
er-laws.  

The phenomena observed near the critical point <k> = 1 in a random 
network in many ways is similar to a phase transition:

•  The similarity between Figure 3.7a and the magnetization diagram of 
Figure 3.21b is not accidental: they both show a transition from disor-
der to order. In random networks this corresponds to the emergence 
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of a giant component when <k> exceeds <k> = 1. 

•  As we approach the freezing point, ice crystals of widely different 
sizes are observed, and so are domains of atoms with spins pointing 
in the same direction. The size distribution of the ice crystals or mag-
netic domains follows a power law. Similarly, while for <k> < 1 and 
<k> > 1 the cluster sizes follow an exponential distribution, right at 
the phase transition point ps follows the power law (3.36), indicating 
the coexistence of components of widely different sizes.

•     At the critical point the average size of the ice crystals or of the mag-
netic domains diverges, assuring that the whole system turns into a 
single frozen ice crystal or that all spins point in the same direction. 
Similarly in a random network the average cluster size <s> diverges 
as we approach <k> = 1 (Figure 3.20).

RANDOM NETWORKS PHASE TRANSITIONS

The hydrogen bonds that hold the water mol-
ecules together (dotted lines) are weak, con-
stantly breaking up and re-forming, main-
taining partially ordered local structures (left 
panel). The temperature-pressure phase dia-
gram indicates (center panel) that by lowering 
the temperature, the water undergoes a phase 
transition, moving from a liquid (purple) to a 
frozen solid (green) phase. In the solid phase 
each water molecule binds rigidly to four 
other molecules, forming an ice lattice (right 
panel). After http://www.lbl.gov/Science-Arti-
cles/Archive/sabl/2005/February/ water-sol-
id.html.

In ferromagnetic materials the magnetic 
moments of the individual atoms (spins) can 
point in two different directions.  At high 
temperatures they choose randomly their di-
rection (right panel). In this disordered state 
the system’s total magnetization (m =  ∆M/N, 
where ∆M is the number of up spins minus the 
number of down spins) is zero. The phase dia-
gram (middle panel) indicates that by lower-
ing the temperature T, the system undergoes a 
phase transition at T= Tc, when a nonzero mag-
netization emerges. Lowering T further allows 
m to converge to one. In this ordered phase all 
spins point in the same direction (left panel).

Figure 3.21
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Equation (3.18) offers only an approximation to the network diameter, 
valid for very large N and small d. Indeed, as soon as <k>d approaches the 
system size N the <k>d  scaling must break down, as we do not have enough 
nodes to continue the <k>d expansion. Such finite size effects result in cor-
rections to (3.18). For a random network with average degree <k>, the net-
work diameter is better approximated by [36]

     

where  the Lambert W-function W(z) is the principal inverse of                                          
f(z) = z exp(z). The first term on the r.h.s is (3.18), while the second is the 
correction that depends on the average degree. The correction increases 
the diameter, accounting for the fact that when we approach the network’s 
diameter the number of nodes must grow slower than <k> . The magnitude 
of the correction becomes more obvious if we consider the various limits 
of (3.42). 

In the <k> → 1 limit we can calculate the Lambert W-function, finding 
for the diameter [36]

    
Hence in the moment when the giant component emerges the network 

diameter is three times our prediction (3.18). This is due to the fact that at 
the critical point <k> = 1 the network has a tree-like structure, consisting 
of long chains with hardly any loops, a configuration that increases dmax. 

In the <k> → ∞ limit, corresponding to a very dense network, (3.42) be-
comes

  
  
Hence if <k> increases, the second and the third terms vanish and the 

solution (3.42) converges to the result (3.18).
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