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Scale-free Sonata 

Composed by Michael Edward Edgerton in 2003, 
1 sonata for piano incorporates growth and pref-
erential attachment to mimic the emergence of 
a scale-free network. The image shows the begin-
ning of what Edgerton calls Hub #5. The relation-
ship between the music and networks is explained 
by the composer:

“6 hubs of different length and procedure were 
distributed over the 2nd and 3rd movements. Mu-
sically, the notion of an airport was utilized by 
diverting all traffic into a limited landing space, 
while the density of procedure and duration were 
varied considerably between the 6 differing occur-
rences.“ 
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SECTION 5.1

Hubs represent the most striking difference between a random and 
a scale-free network. On the World Wide Web, they are websites with 
an exceptional number of links, like google.com or facebook.com; in the 
metabolic network they are molecules like ATP or ADP, energy carriers in-
volved in an exceptional number of chemical reactions. The very existence 
of these hubs and the related scale-free topology raises two fundamental 
questions:

• Why do so different systems as the WWW or the cell converge
to a similar scale-free architecture?

• Why does the random network model of Erdős and Rényi fail to
reproduce the hubs and the power laws observed in real
networks?

The first question is particularly puzzling given the fundamental dif-
ferences in the nature, origin, and scope of the systems that display the 
scale-free property:

• The nodes of the cellular network are metabolites or proteins,
while the nodes of the WWW are documents, representing
information without a physical manifestation.

• The links within the cell are chemical reactions and binding interac-
tions, while the links of the WWW are URLs, or small segments of com-
puter code.

• The history of these two systems could not be more different: The
cellular network is shaped by 4 billion years of evolution, while
the WWW is less than three decades old.

•The purpose of the metabolic network is to produce the                                                                             
chemical components the cell needs to stay alive, while the purpose of 
the WWW is information access and delivery. 

INTRODUCTION

THE BARABÁSI-ALBERT MODEL

>

Online Resource 5.1
Scale-free Sonata

Listen to a recording of Michael Edward 
Edgerton's 1 sonata for piano, music in-
spired by scale-free networks.>
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To understand why so different systems converge to a similar architec-
ture we need to first understand the mechanism responsible for the emer-
gence of the scale-free property. This is the main topic of this chapter. 
Given the diversity of the systems that display the scale-free property, the 
explanation must be simple and fundamental. The answers will change the 
way we model networks, forcing us to move from describing a network’s 
topology to modeling the evolution of a complex system.
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GROWTH AND PREFERENTIAL
ATTACHMENT

SECTION 5.2

We start our journey by asking: Why are hubs and power laws absent in 
random networks? The answer emerged in 1999, highlighting two hidden 
assumptions of the Erdős-Rényi model, that are violated in real networks 
[1]. Next we discuss these assumptions separately.

Networks Expand Through the Addition of New Nodes
The random network model assumes that we have a fixed number of 
nodes, N. Yet, in real networks the number of nodes continually grows 
thanks to the addition of new nodes. 

Consider a few examples:

• In 1991 the WWW had a single node, the first webpage build by Tim 
Berners-Lee, the creator of the Web. Today the Web has over a trillion 
(1012) documents, an extraordinary number that was reached through 
the continuous addition of new documents by millions of individuals 
and institutions (Figure 5.1a).

• The collaboration and the citation network continually expands 
through the publication of new research papers (Figure 5.1b).

• The actor network continues to expand through the release of new 
movies (Figure 5.1c).

• The protein interaction network may appear to be static, as we inherit 
our genes (and hence our proteins) from our parents. Yet, it is not: The 
number of genes grew from a few to the over 20,000 genes present in 
a human cell over four billion years.

Consequently, if  we wish to model these networks, we cannot resort to 
a static model. Our modeling approach must instead acknowledge that 
networks are the product of a steady growth process.
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Nodes Prefer to Link to the More Connected Nodes
The random network model assumes that we randomly choose the in-
teraction partners of a node. Yet, most real networks new nodes prefer 
to link to the more connected nodes, a process called preferential attach-
ment (Figure 5.2). 

Consider a few examples:

• We are familiar with only a tiny fraction of the trillion or more docu-
ments available on the WWW. The nodes we know are not entirely ran-
dom: We all heard about Google and Facebook, but we rarely encoun-
ter the billions of less-prominent nodes that populate the Web. As our 
knowledge is biased towards the more popular Web documents, we 
are more likely to link to a high-degree node than to a node with only 
few links.

• No scientist can attempt to read the more than a million scientific pa-
pers published each year. Yet, the more cited is a paper, the more likely 
that we hear about it and eventually read it. As we cite what we read, 
our citations are biased towards the more cited publications, repre-
senting the high-degree nodes of the citation network.

• The more movies an actor has played in, the more familiar is a casting 
director with her skills. Hence, the higher the degree of an actor in the 
actor network, the higher are the chances that she will be considered 
for a new role.

In summary, the random network model differs from real networks in 
two important characteristics:

(A) Growth
Real networks are the result of a growth process that continuously 
increases N. In contrast the random network model assumes that the 
number of nodes, N, is fixed. 

(B) Preferential Attachment
In real networks new nodes tend to link to the more connected nodes. 
In contrast nodes in random networks randomly choose their inter-
action partners. 

There are many other differences between real and random networks, 
some of which will be discussed in the coming chapters. Yet, as we show 
next, these two, growth and preferential attachment, play a particularly im-
portant role in shaping a network’s degree distribution.

Networks are not static, but grow via the 
addition of new nodes:

(a) The evolution of the number of WWW 
hosts, documenting the Web’s rapid 
growth. After http://www.isc.org/solu-
tions/survey/history.

(b) The number of scientific papers published 
in Physical Review since the journal’s 
founding. The increasing number of pa-
pers drives the growth of both the science 
collaboration network as well as of the cita-
tion network shown in the figure. 

(c) Number of movies listed in IMDB.com, 
driving the growth of the actor network.

Figure 5.1

The Growth of Networks

(a)

(b)

(c)

WORLD WIDE WEB

ACTOR NETWORK

CITATION NETWORK
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THE BARABÁSI-ALBERT
MODEL

SECTION 5.2

The recognition that growth and preferential attachment coexist in real 
networks has inspired a minimal model called the Barabási-Albert model, 
which can generate scale-free networks [1]. Also known as the BA model or 
the scale-free model, it is defined as follows:

We start with m0 nodes, the links between which are chosen arbitrarily, 
as long as each node has at least one link. The network develops following 
two steps (Figure 5.3):

(A) Growth
At each timestep we add a new node with m (≤ m0) links that connect 
the new node to m nodes already in the network.

(B)  Preferential attachment
The probability Π(k) that a link of the new node connects to node i 
depends on the degree ki as

Preferential attachment is a probabilistic mechanism: A new node is 
free to connect to any node in the network, whether it is a hub or has a 
single link. Equation (5.1) implies, however, that if a new node has a choice 
between a degree-two and a degree-four node, it is twice as likely that it 
connects to the degree-four node. 

After t timesteps the Barabási-Albert model generates a network with N 
= t + m0 nodes and m0 + mt links.  As Figure 5.4 shows, the obtained network 
has a power-law degree distribution with degree exponent γ=3. A mathe-
matically self-consistent definition of the model is provided in BOX 5.1.

As Figure 5.3 and Online Resource 5.2 indicate, while most nodes in the 
network have only a few links, a few gradually turn into hubs. These hubs 
are the result of a rich-gets-richer phenomenon: Due to preferential attach-

THE BARABÁSI-ALBERT MODEL 8

Figure 5.3 
Evolution of the Barabási-Albert Model

The sequence of images shows nine subse-
quent steps of the Barabási-Albert model. 
Empty circles mark the newly added node to 
the network, which decides where to connect 
its two links (m=2) using preferential attach-
ment (5.1). After [9].

(5.1)k k
k

( ) .i
i

j
j∑

Π =

Online Resource 5.2
Emergence of a Scale-free Network

Watch a video that shows the growth of a 
scale-free network and the emergence of the 
hubs in the Barabási-Albert model. Courtesy 
of Dashun Wang.

>

>



The degree distribution of a network gen-
erated by the Barabási-Albert model. The 
figure shows pk for a single network of size 
N=100,000 and m=3. It shows both the linear-
ly-binned (purple) and the log-binned version 
(green) of pk. The straight line is added to guide 
the eye and has slope γ=3, corresponding to 
the network’s predicted degree exponent.

Figure 5.4

The Degree Distribution

ment new nodes are more likely to connect to the more connected nodes 
than to the smaller nodes. Hence, the larger nodes will acquire links at the 
expense of the smaller nodes, eventually becoming hubs.

In summary, the Barabási-Albert model indicates that two simple 
mechanisms, growth and preferential attachment, are responsible for the 
emergence of scale-free networks. The origin of the power law and the as-
sociated hubs is a rich-gets-richer phenomenon induced by the coexistence 
of these two ingredients. To understand the model’s behavior and to quan-
tify the emergence of the scale-free property, we need to become familiar 
with the model’s mathematical properties, which is the subject of the next 
section.
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a

BOX 5.1
THE MATHEMATICAL DEFINITION OF THE BARABÁSI-ALBERT MODEL

The definition of the Barabási-Albert model leaves many mathe-
matical details open:

• It does not specify the precise initial configuration of the first 
m0 nodes.

• It does not specify whether the m links assigned to a new node 
are added one by one, or simultaneously. This leads to potential 
mathematical conflicts: If the links are truly independent, they 
could connect to the same node i, resulting in multi-links.

Bollobás and collaborators [10] proposed the Linearized Chord Di-
agram (LCD) to resolve these problems, making the model more 
amenable to mathematical approaches.

According to the LCD, for m=1 we build a graph G1
(t)

 as follows 
(Figure 5.5): 

(1) Start with G1
(0), corresponding to an empty graph with no 

nodes. 

(2) Given G1
(t-1) generate G1

(t) by adding the node vt and a single 
link between vt and vi, where vi is chosen with probability

That is, we place a link from the new node vt to node vi with prob-
ability ki/(2t-1), where the new link already contributes to the de-
gree of vt. Consequently node vt can also link to itself with prob-
ability 1/(2t - 1), the second term in (5.2). Note also that the model 
permits self-loops and multi-links. Yet, their number becomes 
negligible in the t→∞ limit. 

For m > 1 we build Gm
(t) by adding m links from the new node vt 

one by one, in each step allowing the outward half of the newly 
added link to contribute to the degrees.

(5.2)

The Linearized Chord Diagram (LCD)

The construction of the LCD, the version 
of the Barabási-Albert model amenable to 
exact mathematical calculations [10]. The 
figure shows the first four steps of the net-
work's evolution for m=1:

G1
(0): We start with an empty network.

G1
(1): The first node can only link to itself, 

forming a self-loop. Self-loops are allowed, 
and so are multi-links for m>1.
G1

(2): Node 2 can either connect to node 1 
with probability 2/3, or to itself with prob-
ability 1/3. According to (5.2), half of the 
links that the new node 2 brings along is 
already counted as present. Consequently 
node 1 has degree k1=2 at node 2 has degree 
k2=1, the normalization constant being 3.
G1

(3): Let us assume that the first of the two 
G1

(t) network possibilities have material-
ized. When node 3 comes along, it again 
has three choices: It can connect to node 2 
with probability 1/5, to node 1 with proba-
bility 3/5 and to itself with probability 1/5.

Figure 5.5

p =

ki
2t 1

if 1 i t 1

1
2t 1

, if i = t

1

1 2 or 1 2

1 2

3

or

1

2

3

or
1 2

3

p= 2
3 p= 1

3

p= 1
5

p= 3
5

p= 1
5

G1
(3)

G1
(0)

G1
(1)

G1
(2)
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DEGREE DYNAMICS
SECTION 5.3

To understand the emergence of the scale-free property, we need to fo-
cus on the time evolution of the Barabási-Albert model. We begin by ex-
ploring the time-dependent degree of a single node [11]. 

In the model an existing node can increase its degree each time a new 
node enters the network. This new node will link to m of the N(t) nodes 
already present in the system. The probability that one of these links con-
nects to node i is given by (5.1). 

Let us approximate the degree ki with a continuous real variable, repre-
senting its expectation value over many realizations of the growth process. 
The rate at which an existing node i acquires links as a result of new nodes 
connecting to it is

The coefficient m describes that each new node arrives with m links. 
Hence, node i has m chances to be chosen. The sum in the denominator of 
(5.3) goes over all nodes in the network except the newly added node, thus

Therefore (5.4) becomes

For large t the (-1) term can be neglected in the denominator, obtaining

By integrating (5.6) and using the fact that ki (ti)=m, meaning that node i 
joins the network at time ti with m links, we obtain

∑
= Π =

=

−
dk
dt m k m k

k
( ) .i

i
i

j

N

j
1

1 (5.3)

(5.4)

(5.5)

(5.6)

k mt m2 .
j

N

j
1

1
∑ = −
=

−

=
−

dk
dt

k
t2 1

i i

dk
k

dt
t

1
2

i

i
=

.

.
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We call β the dynamical exponent and has the value 

Equation (5.7) offers a number of predictions:

• The degree of each node increases following a power-law with the 
same dynamical exponent β =1/2 (Figure 5.6a). Hence all nodes follow 
the same dynamical law.

• The growth in the degrees is sublinear (i.e. β < 1). This is a consequence 
of the growing nature of the Barabási-Albert model: Each new node has 
more nodes to link to than the previous node. Hence, with time the ex-
isting nodes compete for links with an increasing pool of other nodes.

• The earlier node i was added, the higher is its degree ki(t). Hence, hubs 
are large because they arrived earlier, a phenomenon called first-mov-
er advantage in marketing and business.

• The rate at which the node i acquires new links is given by the deriva-
tive of (5.7)

indicating that in each time step older nodes acquire more links (as 
they have smaller ti). Furthermore the rate at which a node acquires 
links decreases with time as t−1/2. Hence, fewer and fewer links go to a 
node. 

In summary, the Barabási-Albert model captures the fact that in real 
networks nodes arrive one after the other, offering a dynamical descrip-
tion of a network’s evolution. This generates a competition for links during 
which the older nodes have an advantage over the younger ones, eventual-
ly turning into hubs.

1
2β =

dk t
dt

m
t t

( )
2

1 .i

i
= (5.8)

DEGREE DYNAMICS

,

BOX 5.2
TIME IN NETWORKS
As we compare the predictions of the 
network models with real data, we 
have to decide how to measure time 
in networks. Real networks evolve 
over rather different time scales: 

World Wide Web
The first webpage was created in 
1991. Given its trillion documents, 
the WWW added a node each milli-
second (103 sec). 

Cell
The cell is the result of 4 billion years 
of evolution. With roughly 20,000 
genes in a human cell, on average 
the cellular network added a node 
every 200,000 years (~1013 sec). 

Given these enormous time-scale 
differences it is impossible to use 
real time to compare the dynamics 
of different networks. Therefore, in 
network theory we use event time, 
advancing our time-step by one each 
time when there is a change in the 
network topology. 

For example, in the Barabási-Albert 
model the addition of each new node 
corresponds to a new time step, 
hence t=N. In other models time 
is also advanced by the arrival of a 
new link or the deletion of a node. 
If needed, we can establish a direct 
mapping between event time and 
the physical time.

k mt m2 .
j

N

j
1

1
∑ = −
=

−

ki (t)= m
t
ti

⎛

⎝
⎜
⎞

⎠
⎟

β

k mt m2 .
j

N

j
1

1
∑ = −
=

−

(5.7)
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(a) The growth of the degrees of nodes added 
at time t =1, 10, 102, 103, 104, 105 (continuous 
lines from left to right) in the Barabási-Albert 
model. Each node increases its degree follow-
ing (5.7). Consequently at any moment the old-
er nodes have higher degrees. The dotted line 
corresponds to the analytical prediction (5.7) 
with β = 1/2.

(b) Degree distribution of the network after 
adding N = 102, 104, and 106 nodes, i.e. at time 
t = 102, 104, and 106 (illustrated by arrows in 
(a)). The larger the network, the more obvious 
is the power-law nature of the degree distri-
bution. Note that we used linear binning for 
pk to better observe the gradual emergence of 
the scale-free state.

Figure 5.6

Degree Dynamics
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(b)
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DEGREE DISTRIBUTION
SECTION 5.4

The distinguishing feature of the networks generated by the Barabá-
si-Albert model is their power-law degree distribution (Figure 5.4). In this 
section we calculate the functional form of pk, helping us understand its 
origin. 

A number of analytical tools are available to calculate the degree distri-
bution of the Barabási-Albert network. The simplest is the continuum theo-
ry that we started developing in the previous section [1, 11]. It predicts the 
degree distribution (BOX 5.3),

with

Therefore the degree distribution follows a power law with degree ex-
ponent γ=3, in agreement with the numerical results (Figures 5.4 and 5.7). 
Moreover (5.10) links the degree exponent, γ, a quantity characterizing the 
network topology, to the dynamical exponent β that characterizes a node’s 
temporal evolution, revealing a deep relationship between the network's 
topology and dynamics. 

While the continuum theory predicts the correct degree exponent, it 
fails to accurately predict the pre-factors of (5.9). The correct pre-factors 
can be obtained using a master [12] or rate equation [13] approach or cal-
culated exactly using the LCD model [10] (BOX 5.2). Consequently the exact 
degree distribution of the Barabási-Albert model is (ADVANCED TOPICS 5.A)

Equation (5.11) has several implications:

• For large k (5.11) reduces to pk~ k-3, or γ = 3, in line with (5.9) and (5.10).

• The degree exponent γ is independent of m, a prediction that agrees 

(5.9)

(5.10)

(5.11)

p k m k( ) 2 1/≈ β γ−

1 1 3.γ
β

= + =

p m m
k k k

2 ( 1)
( 1)( 2)k =

+
+ +

(a) We generated networks with N=100,000 
and m0=m=1 (blue), 3 (green), 5 (grey), and 7 
(orange). The fact that the curves are parallel 
to each other indicates that γ is independent 
of m and m0. The slope of the purple line is -3, 
corresponding to the predicted degree expo-
nent γ=3.  Inset: (5.11) predicts pk~2m2, hence 
pk/2m2 should be independent of m. Indeed, 
by plotting pk/2m2 vs. k, the data points shown 
in the main plot collapse into a single curve.

(b) The Barabási-Albert model predicts that 
pk is independent of N. To test this we plot pk 
for N = 50,000 (blue), 100,000 (green), and 
200,000 (grey), with m0=m=3. The obtained pk 
are practically indistinguishable, indicating 
that the degree distribution is stationary, i.e. 
independent of time and system size.

Figure 5.7
Probing the Analytical Predictions
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.

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

k

k

100 101 102 103 104

pk

pk/2m2

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

k100 101 102 103 104

pk



15THE BARABÁSI-ALBERT MODEL DEGREE DISTRIBUTION

with the numerical results (Figure 5.7a).

• The power-law degree distribution observed in real networks de-
scribes systems of rather different age and size. Hence, an approriate 
model should lead to a time-independent degree distribution. Indeed, 
according to (5.11) the degree distribution of the Barabási-Albert mod-
el is independent of both t and N. Hence the model predicts the emer-
gence of a stationary scale-free state. Numerical simulations support 
this prediction, indicating that pk observed for different t (or N) fully 
overlap (Figure 5.7b).

•  Equation (5.11) predicts that the coefficient of the power-law distribu-
tion is proportional to m(m + 1) (or m2 for large m), again confirmed by 
numerical simulations (Figure 5.7a, inset).

In summary, the analytical calculations predict that the Barabási-Al-
bert model generates a scale-free network with degree exponent γ=3. The 
degree exponent is independent of the m and m0 parameters. Further-
more, the degree distribution is stationary (i.e. time invariant), explaining 
why networks with different history, size and age develop a similar degree 
distribution.

BOX 5.3 
CONTINUUM THEORY

To calculate the degree distribu-
tion of the Barabási-Albert mod-
el in the continuum approxi-
mation we first calculate the 
number of nodes with degree 
smaller than k, i.e. ki(t) < k. Using 
(5.7), we write

In the model we add a node at 
equal time step (BOX 5.2). There-
fore the number of nodes with 
degree smaller than k is

Altogether there are N=m0+t 
nodes, which becomes N≈t in the 
large t limit. Therefore the prob-
ability that a randomly chosen 
node has degree k or smaller, 
which is the cumulative degree 
distribution, follows

By taking the derivative of (5.14) 
we obtain the degree distribu-
tion

which is (5.9).

ti < t
m
k

⎛
⎝⎜

⎞
⎠⎟
1/β
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t m
k
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THE ABSENCE OF GROWTH
OR PREFERENTIAL ATTACHMENT

SECTION 5.5

The coexistence of growth and preferential attachment in the Barabá-
si-Albert model raises an important question: Are they both necessary for 
the emergence of the scale-free property? In other words, could we gener-
ate a scale-free network with only one of the two ingredients? To address 
these questions, next we discuss two limiting cases of the model, each con-
taining only one of the two ingredients [1, 11].

MODEL A
To test the role of preferential attachment we keep the  growing charac-
ter of the network (ingredient A) and eliminate preferential attachment 
(ingredient B). Hence, Model A starts with m0 nodes and evolves follow-
ing these steps:

(A) Growth
At each time step we add a new node with m(≤m0) links that connect 
to m nodes added earlier.

(B) Preferential Attachment
The probability that a new node links to a node with degree ki is

That is, Π(ki) is independent of ki, indicating that new nodes choose ran-
domly the nodes they link to. 

The continuum theory predicts that for Model A ki(t) increases logarith-
mically with time

a much slower growth than the power law increase (5.7). Consequently 
the degree distribution follows an exponential (Figure 5.8a)

k m t( ) 1
( 1) .i

0
Π =

+ − (5.16)

(5.17)ki (t) = m ln e m0 + t −1
m0 + ti −1

⎛
⎝⎜

⎞
⎠⎟

,
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An exponential function decays much faster than a power law, hence 
it does not support hubs. Therefore the lack of preferential attachment 
eliminates the network’s scale-free character and the hubs.  Indeed, as 
all nodes acquire links with equal probabilty, we lack a rich-get-richer 
process and no clear winner can emerge.

MODEL B
To test the role of growth next we keep preferential attachment (ingre-
dient B) and eliminate growth (ingredient A). Hence, Model B starts with 
N nodes and evolves following this step:

(B) Preferential Attachment
At each time step a node is selected randomly and connected to node i 
with degree ki already present in the network, where i is chosen with 
probability Π(k). As Π(0)=0 nodes with k=0 are assumed to have k=1, oth-
erwise they can not acquire links.

In Model B the number of nodes remains constant during the net-
work’s evolution, while the number of links increases linearly with 
time. As a result for large t the degree of each node also increases 
linearly with time (Figure 5.7b, inset)

Indeed, in each time step we add a new link, without changing the 
number of nodes. 

At early times, when there are only a few links in the network (i.e. L 
≪ N), each new link connects previously unconnected nodes. In this 
stage the model’s evolution is indistinguishable from the Barabá-
si-Albert model with m=1. Numerical simulations show that in this 
regime the model develops a degree distribution with a power-law 
tail (Figure 5.8b). 

Yet, pk is not stationary. Indeed, after a transient period the node de-
grees converge to the average degree (5.19) and the degree develops a 
peak (Figure 5.8b). For t → N(N-1)/2 the network becomes a complete 
graph in which all nodes have degree kmax=N-1, hence pk= δ(N-1). 

In summary, the absence of preferential attachment leads to a growing 
network with a stationary but exponential degree distribution. In contrast 
the absence of growth leads to the loss of stationarity, forcing the network 
to converge to a complete graph. This  failure of Models A and B to reproduce 
the empirically observed scale-free distribution indicates that growth and 
preferential attachment are simultaneously needed for the emergence of the 
scale-free property.

(5.19)

Numerical simulations probing the role of 
growth and preferential attachment.

(a) Model A
Degree distribution for Model A, that in-
corporates growth but lacks preferential 
attachment. The symbols correspond to 
m0=m=1 (circles), 3 (squares), 5 diamonds), 
7 (triangles) and N=800,000. The linear-log 
plot indicates that the resulting network 
has an exponential pk, as predicted by (5.18).

Inset: Time evolution of the degree of two 
nodes added at t1=7 and t2=97 for m0=m=3. 
The dashed line follows (5.17).

(b) Model B 
Degree distribution for Model B, that 
lacks growth but incorporates preferen-
tial attachment, shown for N=10,000 and 
t=N (circles), t=5N (squares), and t=40N 
(diamonds). The changing shape of pk in-
dicates that the degree distribution is not 
stationary.

Inset: Time dependent degrees of two 
nodes (N=10,000), indicating that ki(t) 
grows linearly, as predicted by (5.19). Af-
ter [11].

Figure 5.8
Model A and Model B

(a)

(b)

THE ABSENCE OF GROWTH
OR PREFERENTIAL ATTACHMENT
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MEASURING PREFERENTIAL
ATTACHMENT

SECTION 5.6

In the previous section we showed that growth and preferential attach-
ment are jointly responsible for the scale-free property. The presence of 
growth in real systems is obvious: All large networks have reached their 
current size by adding new nodes. But to convince ourselves that preferen-
tial attachment is also present in real networks, we need to detect it experi-
mentally. In this section we show how to detect preferential attachment by 
measuring the Π(k) function in real networks. 

Preferential attachment relies on two distinct hypotheses:

Hypothesis 1
The likelihood to connect to a node depends on that node’s degree k. 
This is in contrast with the random network model, for which Π(k) is 
independent of k.

Hypothesis 2
The functional form of Π(k) is linear in k.

Both hypotheses can be tested by measuring Π(k). We can determine Π(k) 
for systems for which we know the time at which each node joined the net-
work, or we have at least two network maps collected at not too distant 
moments in time [14, 15]. 

Consider a network for which we have two different maps, the first taken 
at time t and the second at time t + ∆t (Figure 5.9a). For nodes that changed 
their degree during the ∆t time frame we measure ∆ki = ki(t+∆t )−ki(t). Ac-
cording to (5.1), the relative change ∆ki/∆t should follow

         

providing the functional form of preferential attachment. For (5.20) to be 
valid we must keep ∆t small, so that the changes in ∆k are modest. But ∆t 
must not be too small so that there are still detectable differences between 
the two networks.

Figure 5.9

Detecting Preferential Attachment

(a) If we have access to two maps of the same 
network taken at time t and t+∆t, compar-
ing them allows us to measure the Π(k) 
function. Specifically, we look at nodes 
that have gained new links thanks to the 
arrival of the two new green nodes at t+∆t. 
The orange lines correspond to links that 
connect previously disconnected nodes, 
called internal links. Their role is discussed 
in CHAPTER 6. 

(b) In the presence of preferential attachment 
∆k/∆t will depend linearly on a node’s de-
gree at time t. 

(c) The scaling of the cumulative preferential 
attachment function π(k) helps us detect 
the presence or absence of preferential at-
tachment (Figure 5.10).
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In practice the obtained ∆ki/∆t curve can be noisy. To reduce this noise 
we measure the cumulative preferential attachment function

In the absence of preferential attachment we have Π(ki)=constant, hence, 
π(k) ∼ k according to (5.21). If linear preferential attachment is present, i.e. 
if Π(ki)=ki, we expect π(k) ∼ k2. 

Figure 5.10 shows the measured π(k) for four real networks. For each sys-
tem we observe a faster than linear increase in π(k), indicating the pres-
ence of preferential attachment. Figure 5.10 also suggests that Π(k) can be 
approximated with

For the Internet and citation networks we have α ≈ 1, indicating that 
Π(k) depends linearly on k, following (5.1). This is in line with Hypotheses 
1 and 2. For the co-authorship and the actor network the best fit provides 
α=0.9±0.1 indicating the presence of a sublinear preferential attachment. 

In summary, (5.20) allows us to detect the presence (or absence) of pref-
erential attachment in real networks. The measurements show that the at-
tachment probability depends on the node degree. We also find that while 
in some systems preferential attachment is linear, in others it can be sub-
linear. The implications of this non-linearity are discussed in the next sec-
tion.

(5.21)

(5.22)

The figure shows the cumulative preferential 
attachment function π(k), defined in (5.21), for 
several real systems: 

(a) Citation network.

(b) Internet.

(c) Scientific collaboration network (neurosci-
ence).

(d) Actor network.

In each panel we have two lines to guide the 
eye: The dashed line corresponds to linear 
preferential attachment (π(k)∼k2) and the 
continuous line indicates the absence of pref-
erential attachment (π(k)∼k). In line with Hy-
pothesis 1 we detect a k-dependence in each 
dataset. Yet, in (c) and (d) π(k) grows slower 
than k2, indicating that for these systems pref-
erential attachment is sublinear, violating 
Hypothesis 2. Note that these measurements 
only consider links added through the arrival 
of new nodes, ignoring the addition of inter-
nal links. After [14].

Figure 5.10
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NON-LINEAR PREFERENTIAL
ATTACHMENT

SECTION 5.7

(5.23)

The observation of sublinear preferential attachment in Figure 5.10 raises 
an important question: What is the impact of this nonlinearity on the net-
work topology? To answer this we replace the linear preferential attach-
ment (5.1) with (5.22) and calculate the degree distribution of the obtained 
nonlinear Barabási-Albert model. 

The behavior for α=0 is clear: In the absence of preferential attachment 
we are back to Model A discussed in SECTION 5.4. Consequently the degree 
distribution follows the exponential (5.17). 

For α = 1 we recover the Barabási-Albert model, obtaining a scale-free 
network with degree distribution (5.14). 

Next we focus on the case α ≠ 0 and α ≠ 1. The calculation of pk for an ar-
bitrary α predicts several scaling regimes [13] (ADVANCED TOPICS 5.B):

7YFPMRIEV�4VIJIVIRXMEP�%XXEGLQIRX���� �́� ���
For any α > 0 new nodes favor the more connected nodes over the less
connected nodes. Yet, for α < 1 the bias is weak, not sufficient to generate
a scale-free degree distribution. Instead, in this regime the degrees
follow the stretched exponential distribution (SECTION 4.10)

        ,

where µ(α) depends only weakly on α. The exponential cutoff in (5.23) 
implies that sublinear preferential attachment limits the size and the 
number of the hubs.

Sublinear preferential attachment also alters the size of the largest de-
gree, kmax. For a scale-free network kmax scales polynomially with time, 
following (4.18). For sublinear preferential attachment we have
        
                , (5.24)
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Figure 5.11
The Growth of the Hubs

The nature of preferential attachment affects 
the degree of the largest node. While in a scale-
free network (α=1) the biggest hub grows as t1/2 
(green curve, (4.18)), for sublinear preferential 
attachment (α<1) this dependence becomes 
logarithmic, following (5.24). For superlinear 
preferential attachment (α>1) the biggest hub 
grows linearly with time, always grabbing a 
finite fraction of all links, following (5.25). The 
symbols are provided by numerical simula-
tions; the dotted lines represent the analytical 
predictions.

kmax ∼ (ln t)
1/(1−α )

pk k exp -2R( )
k (1 )

k1



a logarithmic dependence that predicts a much slower growth of the 
maximum degee than the polynomial. This slower growth is the reason 
why the hubs are smaller for α < 1 (Figure 5.11).

7YTIVPMRIEV�4VIJIVIRXMEP�%XXEGLQIRX��́�"���
For α > 1 the tendency to link to highly connected nodes is enhanced, 
accelerating the rich-gets-richer process. The consequence of this is most 
obvious for α > 2, when the model predicts a winner-takes-all phenom-
enon: almost all nodes connect to a few super-hubs. Hence we observe 
the emergence of a hub-and-spoke network, in which most nodes link 
directly to a few central nodes. The situation for 1 < α < 2 is less extreme, 
but similar. 

This winner-takes-all process alters the size of the largest hub as well, 
finding that (Figure 5.11).

Hence  for α > 1 the largest hub links to a finite fraction of nodes in the 
system.

In summary, nonlinear preferential attachment changes the degree 
distribution, either limiting the size of the hubs (α < 1), or leading to su-
per-hubs (α > 1, Figure 5.12). Consequently, Π(k) needs to depend strictly lin-
early on the degrees for the resulting network to have a pure power law pk. 
While in many systems we do observe such a linear dependence, in others, 
like the scientific collaboration network and the actor network, preferen-
tial attachment is sublinear. This nonlinear Π(k) is one reason the degree 
distribution of real networks deviates from a pure power-law. Hence for 
systems with sublinear Π(k) the stretched exponential (5.23) should offer a 
better fit to the degree distribution.

(5.25)
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The scaling regimes characterizing the non-
linear Barabási-Albert model. The three top 
panels show pk for different α (N=104). The 
network maps show the corresponding topol-
ogies (N=100). The theoretical results predict 
the existence of four scaling regimes: 

No Preferential Attachment (α=0)
The network has a simple exponential degree 
distribution, following (5.18). Hubs are absent 
and the resulting network is similar to a ran-
dom network. 

Sublinear Regime (0<α<1)
The degree distribution follows the stretched 
exponential (5.23), resulting in fewer and 
smaller hubs than in a scale-free network. As 
α → 1 the cutoff length increases and pk fol-
lows a power law over an increasing range of 
degrees. 

Linear Regime (α=1)
This corresponds to the Barabási-Albert mod-
el, hence the degree distribution follows a 
power law. 

Superlinear Regime (α>1)
The high-degree nodes are disproportionately 
attractive. A winner-takes-all dynamics leads 
to a hub-and-spoke topology. In this configu-
ration the earliest nodes become super hubs 
and all subsequent nodes link to them. The 
degree distribution, shown for α=1.5 indicates 
the coexistence of many small nodes with a 
few super hubs in the vicinity of k=104.

Figure 5.12
Nonlinear Preferential Attachment
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THE ORIGINS OF PREFERENTIAL
ATTACHMENT

SECTION 5.8

Given the key role preferential attachment plays in the evolution of 
real networks, we must ask, where does it come from? The question can be 
broken to two narrower issues:

Why does Π(k) depend on k?
Why is the dependence of Π(k) linear in k?

In the past decade we witnessed the emergence of two philosophically 
different answers to these questions. The first views preferential attach-
ment as the interplay between random events and some structural prop-
erty of a network. These mechanisms do not require global knowledge of 
the network but rely on random events, hence we will call them local or 
random mechanisms. The second assumes that each new node or link bal-
ances conflicting needs, hence they are preceeded by a cost-benefit anal-
ysis. These models assume familiarity with the whole network and rely 
on optimization principles, prompting us to call them global or optimized 
mechanisms. In this section we discuss both approaches.

LOCAL MECHANISMS
The Barabási-Albert model postulates the presence of preferential at-

tachment. Yet, as we show below, we can build models that generate scale-
free networks apparently without preferential attachment. They work by 
generating preferential attachment. Next we discuss two such models and 
derive Π(k) for them, allowing us to understand the origins of preferential 
attachment.

Link Selection Model
The link selection model offers perhaps the simplest example of a local 
mechanism that generates a scale-free network without preferential 
attachment [16]. It is defined as follows (Figure 5.13):

• Growth: At each time step we add a new node to the network.

• Link Selection: We select a link at random and connect the new node to 

Figure 5.13
Link Selection Model

(a)

(b)

(a) The network grows by adding a new node, 
that selects randomly a link from the network 
(shown in purple).  
(b) The new node connects with equal prob-
ability to one of the two nodes at the ends of 
the selected link. In this case the new node 
connected to the node at the right end of the 
selected link.

NEW NODE
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one of the two nodes at the two ends of the selected link. 
The model requires no knowledge about the overall network topology, 
hence it is inherently local and random. Unlike the Barabási-Albert 
model, it lacks a built-in Π(k) function. Yet, next we show that it gener-
ates preferential attachment. 

We start by writing the probability qk that the node at the end of a ran-
domly chosen link has degree k as

Equation (5.26) captures two effects:

• The higher is the degree of a node, the higher is the chance that it is 
located at the end of the chosen link.

• The more degree-k nodes are in the network (i.e., the higher is pk), 
the more likely that a degree k node is at the end of the link.

In (5.26) C can be calculated using the normalization condition Σqk = 1, 
obtaining C=1/⟨k⟩. Hence the probability to find a degree-k node at the end 
of a randomly chosen link is

Equation (5.27) is the probability that a new node connects to a node with 
degree k. The fact that the bias in (5.27) is linear in k indicates that the link 
selection model builds a scale-free network by generating linear preferen-
tial attachment. 

Copying Model
While the link selection model offers the simplest mechanism for prefer-
ential attachment, it is neither the first nor the most popular in the class of 
models that rely on local mechanisms. That distinction goes to the copying 
model (Figure 5.14). The model mimics a simple phenomena: The authors of 
a new webpage tend to borrow links from other webpages on related topics 
[17, 18]. It is defined as follows: 

In each time step a new node is added to the network. To decide where it 
connects we randomly select a node u, corresponding for example to a web 
document whose content is related to the content of the new node. Then we 
follow a two-step procedure (Figure 5.14):

(i) Random Connection: With probability p the new node links to u, 
which means that we link to the randomly selected web document.

(ii) Copying: With probability 1-p we randomly choose an outgoing 
link of node u and link the new node to the link’s target. In other 
words, the new webpage copies a link of node u and connects to its 
target, rather than connecting to node u directly. 

qk =
kpk
〈k〉

The main steps of the copying model. A new 
node connects with probability p to a randomly 
chosen target node u, or with probability 1-p to 
one of the nodes the target u points to. In other 
words, with probabilty 1-p the new node copies a 
link of its target u.

Figure 5.14
Copying Model

THE ORIGINS OF PREFERENTIAL ATTACHMENT

(5.27).

q Ckpk k= . (5.26)

NEW NODE

EXISTING 
NETWORK

CHOOSE TARGET

TARGET

p 1-p

CHOOSE ONE OF THE
OUTGOING LINKS OF TARGET

u u u
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The probability of selecting a particular node in step (i) is 1/N. Step (ii) is 
equivalent with selecting a node linked to a randomly selected link. The 
probability of selecting a degree-k node through this copying step (ii) is 
k/2L for undirected networks. Combining (i) and (ii), the likelihood that a 
new node connects to a degree-k node follows 

which, being linear in k, predicts a linear preferential attachment. 

The popularity of the copying model lies in its relevance to real systems:

• Social Networks: The more acquaintances an individual has, the 
higher is the chance that she will be introduced to new individuals 
by her existing acquaintances. In other words, we "copy" the friends 
of our friends. Consequently without friends, it is difficult to make 
new friends.

• Citation Networks: No scientist can be familiar with all papers pub-
lished on a certain topic. Authors decide what to read and cite by 
"copying" references from the papers they have read. Consequently 
papers with more citations are more likely to be studied and cited 
again.

• Protein Interactions: Gene duplication, responsible for the emer-
gence of new genes in a cell, can be mapped into the copying model, 
explaining the scale-free nature of protein interaction networks [19, 
20].

Taken together, we find that both the link selection model and the copy-
ing model generate a linear preferential attachment through random 
linking.

OPTIMIZATION
A longstanding assumption of economics is that humans make rational 
decisions, balancing cost against benefits. In other words, each individ-
ual aims to maximize its personal advantage. This is the starting point 
of rational choice theory in economics [21] and it is a hypothesis central 
to modern political science, sociology, and philosophy. As we show be-
low, such rational decisions can lead to preferential attachment [22, 23, 
24]. 

Consider the Internet, whose nodes are routers connected via cables. 
Establishing a new Internet connection between two routers requires 
us to lay down a new cable between them. As this is costly, each new link 
is preceded by a careful cost-benefit analysis. Each new router (node) 
will choose its link to balance access to good network performance (i.e. 
proper bandwith) with the cost of laying down a new cable (i.e. physical 
distance). This can be a conflicting desire, as the closest node may not 
offer the best network performance. 

(a) A small network, where the hj term in the 
cost function (5.28) is shown for each node. 
Here hj represents the network-based distance 
of node j from node i=0, designated as the 
"center" of the network, offering the best net-
work performance. Hence h0=0 and h3=2.

(b) A new node (green) will choose the node j 
to which it connects by minimizing Cj of (5.28). 

(c)-(e) If δ is small the new node will connect 
to the central node with hj =0. As we increase 
δ, the balance in (5.28) shifts, forcing the new 
node to connect to more distant nodes. The 
panels (c)-(e) show the choice of the new green 
node makes for different values of δ.

(f) The basin of attraction for each node for 
δ=10. A new node arriving inside a basin will 
always link to the node at the center of the 
basin. The size of each basin depends on the 
degree of the node at its center. Indeed, the 
smaller is hj, the larger can be the distance to 
the new node while still minimizing (5.28). Yet, 
the higher is the degree of node j, the smaller 
is its expected distance to the central node hj.

Figure 5.15

Optimization Model

(a)

(c)

(e)

(b)

(d)

(f)
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For simplicity let us assume that all nodes are located on a continent 
with the shape of a unit square. At each time step we add a new node 
and randomly choose a point within the square as its physical location. 
When deciding where to connect the new node i, we calculate the cost 
function [22]

which compares the cost of connecting to each node j already in the net-
work. Here dij is the Euclidean distance between the new node i and the 
potential target j, and hj is the network-based distance of node j to the 
first node of the network, which we designate as the desireable “center 
“ of the network (Figure 5.15), offering the best network performance. 
Hence hj captures the “resources” offered by node j, measured by its 
distance to the network’s center. 

The calculations indicate the emergence of three distinct network to-
pologies, depending on the value of the parameter δ in (5.28) and N (Fig-
ure 5.15):

7XEV�2IX[SVO��̈́� �����������                       
For δ = 0 the Euclidean distances are irrelevant, hence each node links 
to the central node, turning the network into a star. We have a star con-
figuration each time when the hj term dominates over δdij in (5.28).

6ERHSQ�2IX[SVO�̈́�v N����

For very large δ the contribution provided by the distance term δdij 

overwhelms  hj in (5.28). In this case each new node connects to the node 
closest to it. The resulting network will have a bounded degree distribu-
tion, like a random network (Figure 5.16b).

Scale-free Network 4 f�̈́�f N���

Numerical simulations and analytical calculations indicate that for 
intermediate δ values the network develops a scale-free topology [22]. 
The origin of the power law distribution in this regime is rooted in two 
competing mechanisms:

(i) Optimization: Each node has a basin of attraction, so that nodes 
landing in this basin will always link to it. The size of each basin cor-
relates with hj of node j at its center, which in turn correlates with 
the node’s degree kj (Figure 5.15f).

(ii) Randomness: We choose randomly the location of the new node, 
ending in one of the N basins of attraction. The node with the larg-
est degree has largest basin of attraction, hence gains the most new 
nodes and links. This leads to preferential attachment, as document-
ed in Figure 5.16d.

In summary, we can build models that do not have an explicit Π(k) func-
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C d hmin [ ]i j ij jδ= + (5.28)
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tion built into their definition, yet they generate a scale-free network. As 
we showed in this section, these work by inducing preferential attachment. 
The mechanism responsible for preferential attachment can have two fun-
damentally different origins (Figure 5.17): it can be rooted in random pro-
cesses, like link selection or copying, or in optimization, when new nodes 
balance conflicting criteria as they decide where to connect. Note that each 
of the mechanisms discussed above lead to linear preferential attachment, 
as assumed in the Barabási-Albert model. We are not aware of mechanisms 
capable of generating nonlinear preferential attachment, like those dis-
cussed in SECTION 5.7.

The diversity of the mechanisms discussed in this section suggest that 
linear preferential attachment is present in so many and so different sys-
tems precisely because it can come from both rational choice and random 
actions [25]. Most complex systems are driven by processes that have a bit 
of both. Hence luck or reason, preferential attachment wins either way.
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(a) The three network classes generated by the 
optimization model: star, scale-free, and ex-
ponential networks. The topology of the net-
work in the unmarked area is unknown. 

The vertical boundary of the star configura-
tion is at  δ=(1/2)1/2. This is the inverse of the 
maximum distance between two nodes on a 
square lattice with unit length, over which 
the model is defined. Therefore if δ < (1/2)1/2, 
for any new node δdij<1 and the cost (5.28) of 
connecting to the central node is Ci = δdij+0, 
always lower than connecting to any other 
node at the cost of f(i,j) = δdij+1. Therefore for δ 
< (1/2)1/2 all nodes connect to node 0, resulting 
in a network dominated by a single hub (star-
and-spoke network (c)). 

The oblique boundary of the scale-free regime 
is δ = N1/2. Indeed, if nodes are placed random-
ly on the unit square, then the typical distance 
between neighbors decreases as N−1/2. Hence, 
if dij~N−1/2 then δdij≥hij for most node pairs. 
Typically the path length to the central node hj 
grows slower than N (in small-world networks 
hj~log N, in scale-free networks hj~lnlnN). 
Therefore Ci is dominated by the δdij term and 
the smallest Ci is achieved by minimizing the 
distance-dependent term. Note that strictly 
speaking the transition only occurs in the N → 
∞ limit. In the white regime we lack an analyt-
ical form for the degree distribution.

(b) Degree distribution of networks generated 
in the three phases marked in (a) for N=104.

(c) Typical topologies generated by the optimi-
zation model for selected δ values. Node size is 
proportional to its degree.

(d) We used the method described in SEC-
TION 5.6 to measure the preferential attach-
ment function. Starting from a network with 
N=10,000 nodes we added a new node and 
measured the degree of the node that it con-
nected to. We repeated this procedure 10,000 
times, obtaining Π(k). The plots document the 
presence of linear preferential attachment in 
the scale-free phase, but its absence in the star 
and the exponential phases.

Figure 5.16
Scaling in the Optimization Model

(a)

(b)

(c)

(d)
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The tension between randomness and opti-
mization, two apparently antagonistic ex-
planations for power laws, is by no means 
new: In the 1960s Herbert Simon and Benoit 
Mandelbrot have engaged in a fierce public 
dispute over this very topic. Simon proposed 
that preferential attachment is responsible 
for the power-law nature of word frequencies. 
Mandelbrot fiercely defended an optimiza-
tion-based framework. The debate spanned 
seven papers and two years and is one of the 
most vicious scientific disagreement on re-
cord. 

In  the context of networks today the argu-
ment titled in Simon’s favor: The power laws 
observed in complex networks appear to be 
driven by randomness and preferential at-
tachment. Yet, the optimization-based ideas 
proposed by Mandelbrot play an important 
role in explaining the origins of preferential 
attachment. So at the end they were both 
right.

FIG. 5.17
LUCK OR REASON: AN ANCIENT FIGHT

7

Mandelbrot publishes a
comment on Simon’s paper [27]
writing:

In a 19 page response entitled
Final Note, Mandelbrot 
states [29]: 

In the creatively titled Post
Scriptum to Final Note
Mandlebrot [31] writes 

Simon’s final note ends but does 
not resolve the debate [33]

5

Benoit

1953

1955

Benoit

Dr. Mandelbrot’s principal and mathemati-
cal objections to the model are shown to be 
unfounded

The essence of Simon’s lengthy 
reply a year later is well
summarized in its abstract [28].

Simon’s model is analytically circular...

 1959

 1961
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...Most of Simon’s (1960) reply was irrelevant.

My criticism has not changed since I first 
had the privilege of commenting upon a 
draft of Simon.

This present ‘Reply’ refutes the almost 
entirely new arguments introduced by Dr. 
Mandelbrot in his “Final Note”...

Simon’s subsequent  Reply to 
‘Final Note’ by Mandelbrot
does not concede [30] 
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Dr. Mandelbrot has proposed a new set of 
objections to my 1955 models of Yule 
distributions. Like earlier objections, these 
are invalid. 1961
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In On a Class of Skew Distribution Functions 
Herbert Simon [6] proposes randomness 
as the origin of power laws and dismisses 
Mandelbrot’s claim that power law are 
rooted in optimization. 

In An Informal Theory of the Statistical 
Structure of Languages [26] Benoit 

Mandelbrot proposes optimization as the 
origin of power laws. 

Benoit

Simon’s final reply ends but
does not resolve the debate [32]



THE BARABÁSI-ALBERT MODEL 30

DIAMETER AND CLUSTERING
COEFFICIENT

SECTION 5.9

To complete the characterization of the Barabási-Albert model we dis-
cuss the behavior of the network diameter and the clustering coefficient. 

Diameter
The network diameter, representing the maximum distance in the 
Barabási-Albert network, follows for m > 1 and large N [33, 34]

Therefore the diameter grows slower than ln N, making the distances 
in the Barabási-Albert model smaller than the distances observed in a 
random graph of similar size. The difference is particularly relevant for 
large N. 

Note that while (5.29) is derived for the diameter, the average distance 
〈d〉 scales in a similar fashion. Indeed, as we show in Figure 5.18, for small 
N the ln N term captures the scaling of 〈d〉 with N, but for large N(≥104) 
the impact of the logarithmic correction ln ln N becomes noticeable.

Clustering coefficient
The clustering coefficient of the Barabási-Albert model follows (AD-
VANCED TOPICS 5.C) [35, 36]

The prediction (5.30) is quite different from the 1/N dependence ob-
tained for the random network model (Figure 5.19). The difference comes 
in the (lnN)2 term, that increases the clustering coefficient for large N. 
Consequently the Barabási-Albert network is locally more clustered 
than a random network.

Figure 5.18

Figure 5.19

Average Distance

Clustering Coefficient

The dependence of the average distance on the 
system size in the Barabási-Albert model. The 
continuous line corresponds to the exact re-
sult (5.29), while the dotted line corresponds to 
the prediction (3.19) for a random network. The 
analytical predictions do not provide the exact 
perfactors, hence the lines are not fits, but in-
dicate only the predicted N-dependent trends. 
The results were averaged for ten independent 
runs for m = 2.

The dependence of the average clustering co-
efficient on the system size N  for the Barabá-
si-Albert model. The continuous line corre-
sponds to the analytical prediction (5.30), while 
the dotted line corresponds to the prediction 
for a random network, for which ⟨C⟩∼1/N. The 
results are averaged for ten independent runs 
for m = 2. The dashed and continuous curves 
are not fits, but are drawn to indicate the pre-
dicted N dependent trends. 
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SUMMARY
SECTION 5.10

The most important message of the Barabási-Albert model is that net-
work structure and evolution are inseparable. Indeed, in the Erdős-Rényi, 
Watts-Strogatz, the configuration and the hidden parameter models the 
role of the modeler is to cleverly place the links between a fixed number of 
nodes. Returning to our earlier analogy, the networks generated by these 
models relate to real networks like a photo of a painting relates to the 
painting itself: It may look like the real one, but the process of generating 
a photo is drastically different from the process of painting the original 
painting. The aim of the Barabási-Albert model is to capture the process-
es that assemble a network in the first place. Hence, it aims to paint the 
painting again, coming as close as possible to the original brush strokes. 
Consequently, the modeling philosophy behind the model is simple: to un-
derstand the topology of a complex system, we need to describe how it came 
into being. 

Random networks, the configuration and the hidden parameter models 
will continue to play an important role as we explore how certain network 
characteristics deviate from our expectations. Yet, if we want to explain 
the origin of a particular network property, we will have to use models that 
capture the system’s genesis. 

The Barabási-Albert model raises a fundamental question: Is the com-
bination of growth and preferential attachment the real reason why net-
works are scale-free? We offered a necessary and sufficient argument to 
address this question. First, we showed that growth and preferential at-
tachment are jointly needed to generate scale-free networks, hence if one 
of them is absent, either the scale-free property or stationarity is lost. Sec-
ond, we showed that if they are both present, they do lead to scale-free net-
works. This argument leaves one possibility open, however: Do these two 
mechanisms explain the scale-free nature of all networks? Could there 
be some real networks that are scale-free thanks to some completely dif-
ferent mechanism? The answer is provided in SECTION 5.9, where we did 
encountered the link selection, the copying and the optimization models 
that do not have a preferential attachment function built into them, yet 
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they do lead to a scale-free network. We showed that they do so by generat-
ing a linear Π(k). This finding underscores a more general pattern: To date 
all known models and real systems that are scale-free have been found to 
have preferential attachment. Hence the basic mechanisms of the Barabá-
si-Albert model appear to capture the origin of their scale-free topology.

The Barabási-Albert model is unable to describe many characteristics 
of real systems:

• The model predicts γ=3 while the degree exponent of real networks 
varies between 2 and 5 (Table 4.2).

• Many networks, like the WWW or citation networks, are directed, 
while the model generates undirected networks.

• Many processes observed in networks, from linking to already exist-
ing nodes to the disappearance of links and nodes, are absent from 
the model.

• The model does not allow us to distinguish between nodes based on 
some intrinsic characteristics, like the novelty of a research paper or 
the utility of a webpage. 

• While the Barabási-Albert model is occasionally used as a model of the 
Internet or the cell, in reality it is not designed to capture the details of 
any particular real network. It is a minimal, proof of principle model 
whose main purpose is to capture the basic mechanisms responsible 
for the emergence of the scale-free property. Therefore, if we want to 
understand the evolution of systems like the Internet, the cell or the 
WWW, we need to incorporate the important details that contribute 
to the time evolution of these systems, like the directed nature of the 
WWW, the possibility of internal links and node and link removal. 

As we show in CHAPTER 6, these limitations can be systematically re-
solved. 

BOX 5.5 
AT A GLANCE:
BARABÁSI-ALBERT MODEL

Number of Nodes

N = t

Number of Links

N = mt

Average Degree

⟨k⟩ = 2m

Degree Dynamics

ki(t) = m (t/ti)
β

Dynamical Exponent

β = 1/2

Degree Distribution

pk ∼ k-γ

Degree Exponent

γ = 3

Average Distance

Clustering Coefficient

⟨C⟩ ∼ (lnN)2/N

 lnN
ln lnNd  ~
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SECTION 5.11

HOMEWORK

5.1. Generating Barabási-Albert Networks

With the help of a computer, generate a network with N = 104 nodes 
using the Barabási-Albert model with m = 4. Use as initial condition a fully 
connected network with m = 4 nodes.

(a) Measure the degree distribution at intermediate steps, namely 
when the network has 102, 103 and 104 nodes.

(b) Compare the distributions at these intermediate steps by plot-
ting them together and fitting each to a power-law with degree 
exponent γ. Do the distributions "converge"?

(c) Plot together the cumulative degree distributions at intermedi-
ate steps.

(d) Measure the average clustering coefficient in function of N.

(e) Following Figure 5.6a, measure the degree dynamics of one of the 
initial nodes and of the nodes added to the network at time t = 
100, t = 1,000 and t = 5,000.

5.2. Directed Barabási-Albert Model

Consider a variation of the Barabási-Albert model, where at each time 
step a new node arrives and connects with a directed link to a node chosen 
with probability     

                .              

Here kin
i  indicates the in-degree of node i and A is the same constant for 

all nodes. Each new node has m directed links.

(a) Calculate, using the rate equation approach, the in- and out-de-
gree distribution of the resulting network.

(b) By using the properties of the Gamma and Beta functions, can 
you find a power-law scaling for the in-degree distribution?

(c) For A = 0 the scaling exponent of the in-degree distribution is dif-
ferent from γ = 3, the exponent of the Barabási-Albert model. Why?

∏ = +
∑ +

k k A
k A( ) ( )i
i

j j

in
in

in



34THE BARABÁSI-ALBERT MODEL HOMEWORK

5.3. Copying Model

Use the rate equation approach to show that the directed copying mod-
el leads to a scale-free network with incoming degree exponent γ = −

−
p
p

2
1in .

5.4. Growth Without Preferential Attachment

Derive the degree distribution (5.18) of Model A, when a network grows 
by new nodes connecting randomly to m previously existing nodes. With 
the help of a computer, generate a network of 104 nodes using Model A. 
Measure the degree distribution and check that it is consistent with the 
prediction (5.18).
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ADVANCED TOPICS 5.A
DERIVING THE DEGREE 
DISTRIBUTION

SECTION 5.12

A number of analytical techniques are available to calculate the exact 
form of the degree exponent (5.11). Next we derive it using the rate equa-
tion approach [12, 13]. The method is sufficiently general to help explore 
the properties of a wide range of growing networks. Consequently, the cal-
culations described here are of direct relevance for many systems, from 
models pertaining to the WWW [16, 17, 18] to describing the evolution of 
the protein interaction network via gene duplication [19, 20]. 

Let us denote with N(k,t) the number of nodes with degree k at time t. 
The degree distribution pk(t) relates to this quantity via pk(t) = N(k,t)/N(t). 
Since at each time-step we add a new node to the network, we have N = t. 
That is, at any moment the total number of nodes equals the number of 
timesteps (BOX 5.2). 

We write preferential attachment as

where the 2m term captures the fact that in an undirected network each 
link contributes to the degree of two nodes. Our goal is to calculate the 
changes in the number of nodes with degree k after a new node is added 
to the network. For this we inspect the two events that alter N(k,t) and pk(t) 
following the arrival of a new node:

(i)  A new node can link to a degree-k node, turning it into a degree (k+1)
node, hence decreasing N(k,t).

(ii) A new node can link to a degree (k-1) node, turning it into a degree k 
node, hence increasing N(k,t).

The number of links that are expected to connect to degree k nodes after 
the arrival of a new node is

In (5.32) the first term on the l.h.s. captures the probability that the new 

                  (5.31)

(5.32)

k k
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k
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node will link to a degree-k node (preferential attachment); the second 
term provides the total number of nodes with degree k, as the more nodes 
are in this category, the higher the chance that a new node will attach to 
one of them; the third term is the degree of the incoming node, as the high-
er is m, the higher is the chance that the new node will link to a degree-k 
node. We next apply (5.32) to cases (i) and (ii) above:

(i’)  The number of degree k nodes that acquire a new link and turn into 
(k+1) degree nodes is

(ii’) The number of degree (k-1) nodes that acquire a new link, increasing 
their degree to k is

Combining (5.33) and (5.34) we obtain the expected number of degree-k
nodes after the addition of a new node

This equation applies to all nodes with degree k>m. As we lack nodes 
with degree k=0,1, ... , m-1 in the network (each new node arrives with de-
gree m) we need a separate equation for degree-m modes. Following the 
same arguments we used to derive (5.35), we obtain

Equations (5.35) and (5.36) are the starting point of the recursive process 
that provides pk. Let us use the fact that we are looking for a stationary 
degree distribution, an expectation supported by numerical simulations 
(Figure 5.6). This means that in the N = t → ∞ limit, pk(∞)= pk. Using this we 
can write the l.h.s. of (5.35) and (5.36) as 

Therefore the rate equations (5.35) and (5.36) take the form:

Note that (5.37) can be rewritten as

via a k→k+1 variable change. 

We use a recursive approach to obtain the degree distribution. That is, we 
write the degree distribution for the smallest degree, k=m, using (5.38) and 

ADVANCED TOPICS 5.A: DERIVING
THE DEGREE DISTRIBUTION
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then use (5.39) to calculate pk for the higher degrees:

At this point we notice a simple recursive pattern: By replacing in the 
denomerator m+3 with k we obtain the probability to observe a node with 
degree k

which represents the exact form of the degree distribution of the Barabá-
si-Albert model. 

Note that:

• For large k (5.41) becomes pk~ k-3, in agreement with the numerical re-
sult.

• The prefactor of (5.11) or (5.41) is different from the prefactor of (5.9).

• This form was derived independently in [12] and [13], and the exact 
mathematical proof of its validity is provided in [10]. 

Finally, the rate equation formalism offers an elegant continuum equa-
tion satisfied by the degree distribution [16]. Starting from the equation

we can write

obtaining

One can check that the solution of (5.45) is
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ADVANCED TOPICS 5.B
NONLINEAR PREFERENTIAL
ATTACHMENT

SECTION 5.13

In this section we derive the degree distribution of the nonlinear 
Barabási-Albert model, governed by the preferential attachment (5.22). We 
follow Ref. [13], but we adjust the calculation to cover m > 1. 

Strictly speaking a stationary degree distribution only exists if α ≤ 1 in 
(5.22). For α > 1 a few nodes attract a finite fraction of links, as explained in 
SECTION 5.7, and we do not have a time-independent pk. Therefore we limit 
ourself to the α ≤ 1 case. 

We start with the nonlinear Barabási-Albert model, in which at each 
time step a new node is added with m new links. We connect each new link 
to an existing node with probability

where ki is the degree of node i, 0 < α ≤ 1 and

is the normalization factor and t=N(t) represents the number of nodes. 
Note that                                           and
is the average degree. Since 0 < α ≤ 1,

Therefore in the long time limit

                                                      constant

whose precise value will be calculated later. For simplicity, we adopt
the notation                                

Following the rate equation approach introduced in ADVANCED TOPICS 

(5.47)
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5.A, we write the rate equation for the network’s degree distribution as

The first term on the r.h.s. describes the rate at which nodes with degree 
(k-1) gain new links; the second term describes the loss of degree-k nodes 
when they gain new links, turning into (k+1) degree nodes; the last term 
represents the newly added nodes with degree m. 

Asymptotically, in the t→∞ limit, we can write pk=pk(t + 1)=pk(t). Substi-
tuting k=m in (5.51) we obtain:

For k > m

Solving (5.53) recursively we obtain

To determine the large k behavior of  pk we take the logarithm of (5.57):

Using the series expansion                                               we obtain

We approximate the sum over j with the integral

which in the special case of nα =1 becomes
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Hence we obtain

Consequently the degree distribution has the form

where

The vanishing terms in the exponential do not influence the k → ∞ asymp-
totic behavior, being relevant only if 1−nα ≥ 1. Consequently pk depends on 
α as:

That is, for 1/2 < α < 1 the degree distribution follows a stretched exponen-
tial. As we lower α, new corrections start contributing each time α becomes 
smaller than 1/n, where n is an integer. 

For α→1 the degree distribution scales as k−3, as expected for the Barabá-
si-Albert model. Indeed for α = 1 we have µ=2, and

Therefore pk ~ k−1exp(−2lnk) = k−3.

Finally we calculate                             . For this we write the sum (5.58)

We obtain µ(α) by solving (5.68) numerically.
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ADVANCED TOPICS 5.C
THE CLUSTERING COEFFICIENT

SECTION 5.14

In this section we derive the average clustering coefficient, (5.30), for 
the Barabási-Albert model. The derivation follows an argument proposed 
by Klemm and Eguiluz [35], supported by the exact calculation of Bollobás 
[36]. 

We aim to calculate the number of triangles expected in the model, 
which can be linked to the clustering coefficient (SECTION 2.10). We denote 
the probability to have a link between node i and j with P(i,j). Therefore, 
the probability that three nodes i, j, l form a triangle is P(i,j)P(i,l)P(j,l). The 
expected number of triangles in which node l with degree kl participates 
is thus given by the sum of the probabilities that node l participates in tri-
angles with arbitrary chosen nodes i and j in the network. We can use the 
continuous degree approximation to write

To proceed we need to calculate P(i,j), which requires us to consider how 
the Barabási-Albert model evolves. Let us denote the time when node j ar-
rived with tj =j, which we can do as in each time step we added only one new 
node (event time, BOX 5.2). Hence the probability that at its arrival node j 
links to node i with degree ki is given by preferential attachment

Using (5.7), we can write

where we used the fact that the arrival time of node j is tj =j and the arrival 
time of node i is ti = i. Hence (5.70) now becomes 
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Using this result we calculate the number of triangles in (5.69), writing

The clustering coefficient can be written as                                  , hence we obtain

To simplify (5.74), we note that according to (5.7) we have

which is the degree of node l at time t = N. Hence, for large kl we have

allowing us to write the clustering coefficient of the Barabási-Albert model 
as

which is independent of l, therefore we obtain the result (5.30).
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