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Networks have become a key approach to understanding
systems of interacting objects, unifying the study of diverse
phenomena including biological organisms and human so-
ciety.1–3 One crucial step when studying the structure and
dynamics of networks is to identify communities;4 groups of
related nodes that correspond to functional subunits such
as protein complexes5–7 or social spheres.8–10 Communi-
ties in networks often overlap9, 10 such that nodes simulta-
neously belong to several groups. Meanwhile, many net-
works are known to possess multi-scale, hierarchical organ-
isation, where communities are recursively grouped into a
hierarchical structure.5, 11–13 However, the fact that many
real networks have communities with pervasive overlap,
where each and every node belongs to more than one group,
has the consequence that a global hierarchy of nodes can-
not capture the relationships between overlapping groups.
Here we reinvent communities as groups of links rather
than nodes and show that this unorthodox approach suc-
cessfully reconciles the antagonistic organising principles
of overlapping communities and hierarchy. In contrast to
the existing literature, which has entirely focused on group-
ing nodes, link communities naturally incorporate overlap
while revealing hierarchical organisation. We find biolog-
ically relevant link communities in protein-protein interac-
tion6, 7, 14 and metabolic networks15 and show that a large so-
cial network10, 16 contains hierarchically organised, commu-
nity structures spanning inner-city to regional scales while
maintaining pervasive overlap. Our results imply that link
communities are fundamental building blocks that reveal
overlap and multi-scale hierarchical organisation in net-
works to be two aspects of the same phenomenon.

Although no common definition has been agreed upon, it
is widely accepted that a community should have more inter-
nal than external connections.17 A popular measure of com-
munity quality, modularity, is defined by comparing the the
number of connections within a community with the expected
number of connections within the community under randomi-

sation of the network.18 However, these standard definitions
of community structure break down when overlap is perva-
sive. In many real networks, nodes typically possess multiple
roles.6, 7, 9, 10, 14, 15 Pervasive overlap in real networks is distinct
from ‘fuzzy’ community overlap with relaxed interfaces,19–21

because overlap can exist for each and every node (Fig. 1a,b).
When overlap is pervasive, counterintuitively, each community
has many more external than internal connections. This overlap
creates another serious problem: a single dendrogram cannot
fully encode the hierarchy, since this dendrogram assumes dis-
joint community structure and prohibits nodes from simultane-
ously belonging to multiple, overlapping groups (Fig. 1a-c).

Although the discovery of hierarchy and community organi-
sation has always been considered a problem of determining the
correct membership(s) of each node, notice that, while nodes
belong to multiple groups (individuals have families, cowork-
ers and friends), links often exist for one dominant reason (two
people are in the same family, work together or have common
interests). Thus, in contrast to nodes, link membership typi-
cally is uniquely defined, even when nodes belong to multiple,
diverse communities. Instead of assuming that a community is
a set of nodes with many links between them, we consider a
community to be a set of links that are densely interconnected.
Each link is defined in a single context, allowing for a unique
hierarchical tree (where each leaf is a link from the original
network) to be constructed (see Methods). The result is a den-
drogram whose branches represent link communities. In this
dendrogram, links occupy unique positions and nodes naturally
occupy multiple positions, due to their links. Agglomerating
links leads to a dendrogram containing clearer and richer infor-
mation than those of traditional methods. Extracting communi-
ties by cutting this dendrogram at various thresholds reveals the
overlapping communities at multiple levels.

By clustering links we can now formulate overlapping com-
munity discovery as a well-posed optimisation problem, em-
bracing overlap at every node without penalising that nodes
participate in multiple communities. For this purpose, we in-
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Figure 1: Overlapping communities lead to dense networks and
prevent the discovery of a single node hierarchy. (a) Locally,
structure in social networks is simple: an individual node sees
the communities it belongs to. (b) Complex global structure
emerges when every node is in the situation displayed in (a). (c)
Pervasive overlap hinders the discovery of hierarchical organi-
sation since nodes exist simultaneously in many leaves through-
out the dendrogram, preventing a single tree from encoding the
full hierarchy. Bottom Panel, an example network with (d) node
communities and (e) link communities. (f) The link similar-
ity matrix (darker matrix elements show more similar pairs of
links) and resulting dendrogram. See SI for additional exam-
ples.

troduce a natural objective function, the partition density D,
based on the link density (see Methods). Computing D at each
level of the link dendrogram allows us to pick the best level to
cut, though structure exists above and below that threshold (Fig.
2); one can also optimise D directly.

To investigate multi-scale structural complexity in real net-
works, we study link communities in a social network derived
from the anonymised billing records of a mobile phone com-
pany (with a total of 8 million subscribers), representing the
call patterns and locations of each user.10, 16, 22 We generated a
network of reciprocal calls between the users who make at least
one call during a 30-week period within a particular 350 km by
80 km region which contains several large cities (Fig. 2a). We
partition the link dendrogram at the threshold with maximum
partition density (see also Fig. 4a). The three largest commu-
nities, at this optimum, are spatially correlated in the regions
surrounding a major city (Fig. 2b). By partitioning the dendro-

gram above and below the optimum, we uncover larger, region-
spanning groups and smaller, intra-city communities, respec-
tively. Specifically, as we approach the root of the dendrogram,
we see large, spatially extended communities (Fig. 2c). Near
the leaves, however, we find smaller, tightly clustered groups
located inside densely populated regions (Fig. 2c). In Fig. 2e,
we plot the network topology of the largest community from
Fig. 2c, showing the multi-scale complexity of the underlying
social group. Finally, Fig. 2f shows the highly overlapping
structure in the largest sub-community. The dendrogram for
this subgroup explicitly shows significant hierarchical structure
alongside pervasive overlap. Additional validation of the dis-
covered structure is presented in the Supplementary Informa-
tion (SI).

We analyse recently published protein-protein interaction
(PPI) networks of Saccharomyces cerevisiae, compiled into
three genome-scale networks:14 yeast two-hybrid (Y2H), affin-
ity purification followed by mass spectrometry (AP/MS), and
literature curated (LC). We also study the metabolic network
reconstruction of E. coli K-12 MG1655 strain (iAF1260), one
of the most elaborate reconstructions currently available.15 We
contrast link- and node communities (see Methods) on this test
set, which covers networks from sparse (Y2H, 〈k〉 ∼ 3) to
dense (E. coli, 〈k〉 ∼ 17), and from networks that are highly
modular (AP/MS, LC) to networks with no visually apparent
modular structure (E. coli). Figure 3 shows that, based on GO-
terms and pathway annotations, link communities have more
biological relevance, across all types of networks. Several spe-
cific example communities, as well as lists of all discovered
communities with their most enriched annotations, are con-
tained in the SI and Supplementary Table 1,2.

Detailed statistics for the metabolic and phone networks are
presented in Fig. 4a which contains coverage, the ratio of sec-
ond largest to largest community sizes s2/s1, and partition den-
sity D, as a function of the clustering threshold. The commu-
nity size distribution at the optimum D is heavy tailed for both
networks (Fig. 4b). The number of communities per node dis-
tinguishes the two networks (Fig. 4b insets): We can identify
currency metabolites (water, ATP, etc.) by the high number
of communities they participate in. Meanwhile, mobile phone
users are limited to a smaller range of community memberships,
most likely due to social and time constraints.

In summary, we have studied hierarchical organisation in the
presence of pervasive community overlap. To incorporate both
overlap and hierarchy, we developed a general approach based
on hierarchical link communities. In most networks, it is a
realistic assumption that links, rather than nodes, are charac-
terised by a single attribute, such as community assignment.
From this simple initial assumption we have resolved a major
conflict in complex network research: how to combine com-
munity overlap with hierarchical structure. Many current tech-
niques for analysing network structure,12, 13 identify hierarchi-
cal structures well, but are unable to correctly analyse networks
with pervasive community overlap. One community detection
method, clique percolation,9 successfully accounts for strong
overlap, but suffers from problems due to sparsity and is un-
able to describe the large-scale hierarchical structure of real
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Figure 2: Spatial and nested structures are found at many levels in a mobile phone network. (a) Total population density. (b) The three
largest communities at the optimum threshold cluster around a single city. (c) At a lower threshold, the largest communities become
spatially extended, but still show correlation. (d) High thresholds yield smaller, intra-city communities. (e) The largest community in
(c) with largest sub-community highlighted. (f) The highlighted sub-community in (e), along with the link dendrogram and Partition
Density as a function of clustering threshold.

networks. Link communities incorporate both aspects simul-
taneously and stands out when compared to node clustering.
Our link-centric viewpoint addresses the long-standing ques-
tion of formulating overlapping community detection as an op-
timisation problem by introducing a new objective function, the
partition density. Not only are strong overlap and hierarchical
organisation not mutually exclusive, real networks possess both
elements simultaneously.

Methods
Link similarity measure Define the inclusive neighbours

n+(i) as the neighbours of node i, and node i itself. Lim-

iting ourselves to link pairs that share a node, which are
expected to be more similar than disconnected link pairs,
the similarity S between links eik and ejk, sharing node k
can now be given by, e.g., the Jaccard index:

S(eik, ejk) =
|n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

. (1)

The shared node k does not appear in S because it pro-
vides no additional information and introduces bias. The
SI contains a detailed discussion of this measure as well as
generalisations to multipartite and weighted graphs.

Hierarchical clustering Each link is initially assigned to its
own community; then, at each step, the pair of links with
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Figure 3: Link and node communities in biological networks.
(a) The PPI networks of S. cerevisiae (Y2H, AP/MS, and LC)
are displayed along with enrichment of functionally similar
pairs14 and coverage, the fraction of nodes placed into commu-
nities (see Methods). Link clustering consistently finds more
relevant communities than node clustering in all of these net-
works. (b) An example from the compendium PPI network of
S. cerevisiae, showing the communities around protein TRA1,
illustrating the importance of overlap and the rich information
contained within link communities. Node clustering groups the
distinct functional complexes of TRA1 into a single commu-
nity while link clustering correctly identifies complexes. (c)
Similarly, we show the E. coli metabolic network (iAF1260),
which lacks observable global modular structure, in contrast to
the networks used in previous studies,11, 23 along with pathway
enrichment and coverage. In this denser network, with more
pervasive overlap, link clustering outperforms node clustering
at both enrichment and coverage. See SI for details regarding
measures, algorithms, and more examples.

the largest similarity is chosen and their respective com-
munities are merged (single-linkage). Ties are agglomer-
ated simultaneously. This process is repeated until all links
have been agglomerated into a single cluster.

Partition density For a network withM total links andN total

nodes, define P = {P1, . . . , PC} as a partition of its links
into C subsets. The number of links in subset c is mc =
|Pc|. The number of induced nodes, all nodes that those
links touch, is nc =

∣∣∪eij∈Pc
{i, j}

∣∣. Note that
∑
cmc =

M and
∑
c nc ≥ N (assuming no unconnected nodes).

We define the link density Dc of subset c as

Dc =
mc − (nc − 1)

nc(nc−1)
2 − (nc − 1)

. (2)

In other words, this quantity is the number of links in com-
munity c, normalised by the minimum and maximum num-
ber of links possible between those same nodes, assuming
they remain connected. We now define the partition den-
sityD as the average ofDc over all communities, weighted
by the fraction of links present in each:

D =
2
M

∑
c

mc
mc − (nc − 1)

(nc − 2)(nc − 1)
. (3)

Node communities As with link similarity, similarity be-
tween node i and j can be defined as S(i, j) =
|n+(i) ∩ n+(j)| / |n+(i) ∪ n+(j)| . Node communities
(used in Fig. 3) are generated using the same single-
linkage hierarchical clustering; the node dendrogram is cut
at maximum modularity.18 This approach is closely related
to the method used in Ravasz et al.11 This method was cho-
sen to be as similar to link clustering as possible in order
to be a fair control.

Enrichment and coverage To compare sensitivity, we intro-
duce a coverage measure, defined as the fraction of nodes
that belong to at least one community of three or more
nodes, which is the smallest size for a non-trivial grouping
of nodes. To test specificity, we use functional similarity
for proteins, and pathway similarity for metabolites (see SI
for details).
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Figure 4: Statistics for the E. coli metabolic and mobile phone networks. (a) Coverage, the ratio of the number of edges in the
two largest communities, and the partition density D, respectively. The denser metabolic network requires a higher threshold to
separate compared to the mobile phone data. In both networks, peaks in D correspond to s2/s1 nearing 1/2, a possible transition
point.24 (b) The distribution of community sizes and node memberships (insets). Currency metabolites, such as water, belong to
many communities, as expected. See SI for protein-protein interaction networks.
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Supplementary Information
Link Communities Reveal Multi-Scale Complexity in Networks
by Yong-Yeol Ahn, James P. Bagrow, Sune Lehmann

S1 Network Datasets
Here we discuss the biological and social datasets used throughout this work.

S1.1 Biological networks
We analyzed the protein-protein interaction (PPI) network of Saccharomyces cerevisiae and the metabolic network of Eschericia
coli. We use a recently published dataset of PPI networks compiled into three genome-scale networks: yeast two-hybrid (Y2H),
affinity purification followed by mass spectrometry (AP/MS), and literature curated (LC).14 Various statistics for the PPI networks
are shown in Fig. S5. To validate the biological relevance of the communities discovered by Hierarchical link clustering (HLC),
in Sec. S1.1.2 we compile these three network into a compendium of protein interactions; otherwise the three networks are kept
separate.

We also use a metabolic network reconstruction of E. coli K-12 MG1655 strain (iAF1260), one of the most elaborate metabolic
network reconstructions currently available.15 From this reconstruction, we retain only cellular reactions, ignore information regard-
ing the compartments (cytoplasm and periplasm), and project the network into metabolite space (two metabolites are connected if
they share a reaction). For instance, if an enzyme catalyzes the metabolites A and B into C and D, the resulting network would
contain a clique of A, B, C, and D.

This set of biological networks covers a wide range of network topologies, from sparse (Y2H, 〈k〉 ∼ 3) to dense (the metabolic
network of E. coli, 〈k〉 ∼ 17), and from networks that are highly modular (AP/MS, LC) to networks with no visually apparent
modular structure (E. coli). These networks are shown in Figs. 3A–C and 3E of the main text.

S1.1.1 Global statistics

To compare each community detection method’s sensitivity, we use a coverage measure, defined as the fraction of nodes that belong
to at least one community with three or more nodes. This size threshold is introduced since clique percolation (CPM) can only find
communities of size three or more, by definition. (HLC and most modularity-based methods assign every node/edge into at least one
community.) In order to test specificity, we use a functional similarity measure for proteins, and a pathway similarity measure for
metabolites:

Proteins We adopt the same measure as the paper that published the datasets.14 The enrichment of functionally similar pairs of
proteins for a community c is defined by Ncs

Nc
/Nas

Na
, where Nc is the number of possible pairs of proteins within the community

boundary regardless of the existence of links between them, Ncs is the number of functionally similar pairs among Nc pairs
based on their Gene Ontology (GO) Biological Process annotations ,26 Na = N(N − 1)/2 is the total number of possible pairs
in the network, and Nas is the number of functionally similar pairs among all Na pairs. Functional similarity is determined by
the total ancestry measure with a p-value cutoff of 10−3.27

Metabolites We use two measures for the metabolic network. The first is defined in the same sense as the PPI’s functional en-
richment measure, as Jc/Ja, where Ja is the average Jaccard overlap of pathways between every pair of metabolites in the
network and Jc is the average Jaccard overlap between every possible pair of metabolites within community c. The Jaccard
overlap between a pair of metabolites a, b is calculated by J(a, b) = |Pa ∩ Pb| / |Pa ∪ Pb|, where Pm is the set of pathways
that contain metabolite m. The second is defined by

∑
iN

max
i /Ni, where Ni represents the number of metabolites that have

at least one pathway annotation in a community i, and Nmax
i is the number of metabolites in the largest subset of community i

which share the same pathway annotation.

S1.1.2 Biological relevance of detected communities

In analyzing each community’s biological relevance, we use two networks: a single compendium of the Y2H, AP/MS, and LC
datasets; and the metabolic network of E. coli. We evaluate the resulting communities using biological annotations. For the PPI
network, we perform GO-term enrichment analysis to identify each community’s biological role(s) or correspondence to existing
protein complexes. For the metabolic network, we use the pathway annotation of each compound to identify the probable role(s) of
each community in the metabolism.
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Figure S5: Several statistics for the protein-protein interaction networks. Compare with Fig. 4 in the main text.

We use GO-TermFinder software28 version 0.82 to find enriched GO terms and estimate the p-values for each GO term. First, we
find all GO terms with p-value less than 0.05, then we pick up only the most significant term for each aspect (biological process,
cellular component, molecular function). These terms and p-values are listed along with the community members in Supplementary
Table 1. This table shows that more than 80% of communities have at least one enriched GO-term with p-value lower than 0.0001
and more than 30% of communities have at least one enriched GO-term with p-value lower than 10−10.

For the metabolic network, we first filter out communities where less than three members possess pathway annotations. Then, we
calculate the enriched pathway annotations shared by the largest number of community members. We compile this information in
Supplementary Table 2.

S1.1.3 Examples of community structure

Fig. S6 shows the community structure around protein YML007W. There are three major communities, all three are related to
the transcription process, identified as the mediator complex, NuA4 HAT complex, and SAGA complex,29–31 respectively. Note the
overlapping membership of protein YHR099W, which is already known as a subunit of both NuA4 complex and SAGA complex.32–34

Figure S7 shows three major communities around the protein YBL041W, which belongs to the core of the proteasome complex.35 We
can directly observe that the proteasome consists of two parts: the core and the regulatory particles, and HLC finds two corresponding
communities plus a community connecting the two. As expected from the structure of the proteasome, the core is less exposed to
other communities, while the regulatory particles have several connected communities. Likewise, Fig. S8 shows the community
structure around Acetyl-CoA, illustrating several roles that Acetyl-CoA plays in the metabolic network.

S1.2 Mobile phone network
This dataset catalogs approximately 8 million users, all calls among these users, and the locations of users when they initiate a phone
call (the tower from which the call originated). Self-reported demographic information such as age and gender is also available for
most users. We generate the network by constraining the location to a 350 km by 80 km region and two nodes in the region are
connected only if they each call the other person at least once during a 30- week period. We assign to each user a single location,
that of the tower they most frequently used. The final network contains approximately 600 thousand nodes and 2.8 million edges.

Applying HLC, the partition density and coverage, as a function of the threshold, are shown in Fig. S9. This shows that HLC
achieves much better coverage than clique percolation at its preferred value of k = 4 .36

As in biological networks, coverage is not the only important aspect of community detection. In the case of the mobile phone
network, we can also use external information, the age and geographic location of the users, to qualify the accuracy of the discovered
partition. First, we compute the age difference between pairs of nodes across the network and then for pairs within the same
community. In a similar manner, we can look at the spatial “spread” of each community by making the assumption that each node is
located at the cell tower it most frequently uses and computing the standard deviation σ in the distances between nodes in the same
community. When compared to randomized communities we again find strong spatial clustering. See Fig. S10.
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NuA4 histone acetyltransferase complex (GO:0035267, C)
Chromatin modification (GO:0016568, P)  
Histone acetyltransferase activity (GO:0004402, F)

RNA polymerase II transcription mediator activity (GO:0016455, F)
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Figure S6: An example of overlapping community structure in the PPI compendium network. (A) The subnetwork surrounding
protein YML007W (snowball sampled out to three steps). (B) The communities around YML007W. Only GO terms with p-value
smaller than 10−10 are displayed (with colors corresponding to their communities).

3



A

B

proteasome core complex (GO:005839, C)
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Figure S7: Another example of overlapping community structure. (A) The subnetwork surrounding protein YBL041W (snowball
sampled out to three steps). (B) The communities surrounding YBL041W. Only GO terms with p-value smaller than 10−10 are
displayed (with colors corresponding to their communities). These communities correspond to the core and the regulatory particles
of the proteasome complex and a community connecting the two.
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Fatty acid metabolism (ko00071)
Fatty acid elongation in mitochondria (ko00062)

Glyoxylate and dicarboxylate 
metabolism (ko00630)

Propanoate metabolism (ko00640)
Synthesis and degradation of ketone bodies (ko00072)
Butanoate metabolism (ko00650)
Valine, leucine and isoleucine degradation (ko00280)
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Figure S8: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds inside
each community share at least one pathway annotation); all other links, including those that contribute to community structure, are
omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The two communities to
the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.
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Figure S9: (Left) The partition density and coverage as a function of the clustering threshold for the mobile phone network. (Right)
The coverage (defined in Sec. S1.1) at maximum partition density for HLC compared to that of clique percolation. At the optimum
threshold of 0.23, HLC achieves better coverage, more than twice that of clique percolation (the authors in36 use k = 4 exclusively).
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Figure S10: Using demographic information to qualify communities in the mobile phone network. Note that HLC achieves twice
the coverage of CPM. (Left) The age difference for random pairs of nodes chosen from the entire network and chosen from within
discovered communities. An average age for new parents of∼ 27 years is immediately evident from just cell phone records. (Right)
A comparison of the geographic ‘dispersion’ of nodes inside communities. Shown is the standard deviation 〈σ(s)〉 of the geographic
locations (most probable towers) of nodes within the same community, averaged over communities with the same number of nodes
s versus 〈σrand(s)〉, the same quantity but from randomly chosen sets of nodes of size s. The plot confirms that both methods find
significant, spatially correlated structure. CPM finds especially good structures, slightly outperforming HLC, albeit with much less
coverage overall.

These results emphasize the point that CPM does well when detecting tightly knit communities. However, in the case of HLC,
we are able to vary the clustering threshold to obtain fine- grained control, tuning for larger or smaller communities and observing
hierarchical community structure spanning from the level of small communities consisting of only a few nodes, to large groups
signifying much broader societal structures. For instance, Fig. 2 in the main text shows loosely connected large-scale communities
(more than 500 people), which span the scale of cities (and are geographically distinct).

S1.3 Abundance of overlap

The abundance of overlap between communities is evident in social networks as pointed out in .9 Intuitively this finding makes
immediate sense: individuals belong to several distinct communities corresponding to friends, family, etc. The same concept also
applies to biological networks. To underscore this point, Fig. S11 shows the distribution of functions per protein and pathways per
metabolite. Although the number of functional categories and the number of pathways from databases does not directly correspond
to the exact number of protein complexes or to that of metabolic pathways, it clearly shows that the overlap cannot be ignored in
finding modules in biological systems. In the case of proteins, approximately two thirds of all proteins currently belong to more
than one functional category. Although the metabolic network seems to exhibit less overlap than PPI, it is obvious that the currency
metabolites such as water, proton, or ATP participate in a broad spectrum of pathways. According to the KEGG database,37 the
number of pathways assigned to water is only 5. However, HLC puts water into more than 200 communities (Fig. 4 in the main
text), which correctly captures the abundant nature of currency metabolites .38

Finally, the dense network shown in Fig. 1B is meant to be an illustration of the consequences of strong community overlap.
However, it was constructed using an existing social network model,39 which suggested that social networks can be modeled by
probabilistically projecting a bipartite network that consists of people and communities.

S2 Methods

S2.1 Link clustering

S2.1.1 Constructing a dendrogram

The main text has introduced the HLC method to classify links into topologically related groups. Here we provide further motivation
for the suggested pair-wise link similarity measure. For simplicity we limit ourselves to only connected pairs of links (i.e. sharing a
node) since it is unlikely that a pair of disjoint links are more similar to each other than a pair of links that share a node; at the same
time this choice is much more efficient. For a connected pair of links eik and ejk, we call the shared node k a keystone node and i
and j impost nodes.
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Figure S11: (Left) The number of functional categories per
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proteins with 2, 3, . . . functions, respectively. We consider
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alog (FunCat) of the Munich Information center for Pro-
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Figure S12: (A) The similarity measure S(eik, ejk) between edges eik and ejk sharing node k. For this example, |n+(i) ∪ n+(j)| =
12 and |n+(i) ∩ n+(j)| = 4, giving S = 1/3. Two simple cases: (B) an isolated (ka = kb = 1), connected triple (a,c,b) has
S = 1/3, while (C) an isolated triangle has S = 1.

If the only available information is the network topology, the most fundamental characteristic of a node is its neighbors. Since a
link consists of two nodes, it is natural to use the neighbor information of the two nodes when we define a similarity between two
links. However, since the links we are considering already share the keystone node, the neighbors of the keystone node provide no
useful information. Moreover, if the keystone node is a hub, then the similarity is likely to be dominated by the keystone node’s
neighbors. For instance, if the hub’s degree increases the similarity between the links connected to the hub also increases. This bias
due to the keystone node’s degree also prohibits us from applying traditional methods directly to the line graph of the original graph,
which is constructed by mapping the links into nodes. (Since a hub of degree k becomes a fully connected subgraph of size k in the
line graph, the community structure can become radically different.) Thus, we neglect the neighbors of the keystone. We first define
the inclusive neighbors of a node i as:

n+(i) ≡ {x | d(i, x) ≤ 1} (S4)

where d(i, x) is the length of the shortest path between nodes i and x. The set simply contains the node itself and its neighbors.
From this, the similarity S between links can be given by, e.g., the Jaccard index:40

S(eik, ejk) =
|n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

(S5)

An example illustration of this similarity measure is shown in Fig. S12 (See Sec. S3.1 for generalizations of the similarity).
With this similarity, we use single-linkage hierarchical clustering to find hierarchical community structures. We use single-linkage

mainly due to simplicity and efficiency, which enables us to apply HLC to large-scale networks. However, it is also possible to use
other options such as complete-linkage or average-linkage clustering. Each link is initially assigned to its own community; then,
at each time step, the pair of links with the largest similarity are chosen and their respective communities are merged. Ties, which
are common, are agglomerated simultaneously. This process is repeated until all links belong to a single cluster. The history of the
clustering process is then stored in a dendrogram, which contains all the information of the hierarchical community organization.
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The similarity value at which two clusters merge is considered as the strength of the merged community, and is encoded as the height
of the relevant dendrogram branch to provide additional information.

S2.1.2 Partitioning the dendrogram

Hierarchical clustering methods repeatedly merge groups until all elements are members of a single cluster. This eventually forces
highly disparate regions of the network into single clusters. To find meaningful communities rather than just the hierarchical organi-
zation pattern of communities, it is crucial to know where to partition the dendrogram. Modularity has been widely used for similar
purposes in node-hierarchies,18, 41 but is not easily defined for overlapping communities.1 Thus, we introduced a new quantity, the
partition density D, that measures the quality of a link partition. The partition density has a single global maximum along the
dendrogram in almost all cases, because the value is just the average density at the top of the dendrogram (a single giant community
with every link and node) and it is very small at the bottom of the dendrogram (most communities consists of a single link). This
process is illustrated in Fig. S14.

S2.1.3 Link dendrograms and node hierarchy

A link dendrogram can be very different from a node dendrogram, see Fig. S13. As an (admittedly extreme) example, consider the
graph shown in Fig. S15. Here we have constructed a simple network with two levels of hierarchy, consisting of four very dense
communities, loosely connected into pairs which are then more loosely connected. At the lower level of the link dendrogram, we
find six communities, not the expected four. The reason is that HLC has correctly identified the two sets of cross-community links.

S2.2 Node clustering
As a control, we compare HLC to a Hierarchical Node Clustering (HNC) method. The HNC method is used in Fig. 3 of the main
text. HNC is closely related to the method introduced in Ravasz et al.11 There are many ways to define a similarity between two
nodes. We tried four different variations of the node similarity. The four versions are following:

• S(i, j) = |n(i) ∩ n(j)|/|n(i) ∪ n(j)|,

• S(i, j) = |n(i) ∩ n(j)|/min(ki, kj),

• S(i, j) = |n+(i) ∩ n+(j)|/|n+(i) ∪ n+(j)|,

• S(i, j) = |n+(i) ∩ n+(j)|/min(ki, kj),

where n(i) means the neighbors, not inclusive neighbors, of the node i. Among those, we use the version in Eq. (S6) since it finds
more relevant communities across most networks we used. In addition, it is the definition most similar to link similarity. Thus, the
node similarity is chosen to be

S(i, j) =
|n+(i) ∩ n+(j)|
|n+(i) ∪ n+(j)|

, (S6)

where, as in the main text, n+(i) are the inclusive neighbors of node i. To determine the node dendrogram, we use the same single
linkage hierarchical clustering as we used for clustering links. This node dendrogram is cut at the point of maximum modularity.18

S2.3 Other methods
In order to evaluate its performance, we have compared HLC to existing, popular community detection methods. We chose two
representative algorithms: the Clique Percolation Method (CPM)9 and a modularity-based agglomerative clustering algorithm.45 We
apply all three frameworks (HLC, CPM and modularity) to the biological networks studied in Fig. 3 of the main text, PPI (Y2H,
AP/MS, LC) and the E. Coli. metabolic network. The results are displayed in Fig. S16.

The modularity method45, 46 by definition identifies the membership of all nodes, but, as a consequence, the resulting communities
are the least relevant in most cases. These results also highlight limitations of CPM’s more rigid community definition. In the
metabolic network, CPM’s coverage is largely due to one giant community containing most nodes, leading to a miniscule enrichment
value. Removing the giant community increases the enrichment value to close to 8, but only 12 small communities (∼ 5% of nodes)
remain. This situation is hardly changed by increasing clique size. For Y2H, however, the problem is sparsity: there are not enough
cliques to find structure. When the network is too dense, the network becomes super-critical in the sense of clique percolation and
leads to giant clique communities. In contrast, when the network is too sparse, the network is sub-critical and there are not enough
connected cliques to find.

1Several modifications of modularity that allow for “fuzzy” communities with relaxed interfaces (or overlapping nodes) to exist19–21, 42, 43 have been suggested.
However, in order to avoid the trivial optimum, where all nodes are part of all communities, each of these methods penalize overlap, and are therefore not suitable for
networks with pervasive overlap. (See Fig. 1b of the main text)
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Node Dendrogram (HRG) Link Dendrogram (HLC)

Figure S13: Comparison of a node dendrogram and link dendrogram in the presence of overlap. The node dendrogram is obtained by
using the HRG method (consensus dendrogram) ,13 and the link dendrogram is obtained from HLC. Nodes are colored to distinguish
each node or clique and dotted lines represent several hierarchies in the dendrogram. In the link dendrogram, two colored circles at
each leaf represent the link between the nodes with the given colors. Note that HRG scatters the red, orange, and gray nodes in the
dendrogram, even though they belong to the same clique. One cannot retrieve the clique community that consists of red, orange, and
gray nodes. In contrast, the link dendrogram captures every clique while at the same time constructing a reasonable hierarchical tree.
Note that the links of the red node are placed in appropriate branches of the dendrogram according to their context. Also note the
internal hierarchical structures found inside each clique. Finally, real networks possess significantly more overlap than this example.

Network Y2H AP/MS LC E. coli (iAF1260)
Modularity Q 0.715801 0.679996 0.836293 0.335831

Table S1: The modularity values for the four biological networks studied in the main text, found using modularity optimization.46
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Figure S14: An example of link clustering for the coappearance network of characters in the novel Les Misérables.44 (Top) the
network with link colors indicating the clustering, with grey indicating single-link clusters. Each node is depicted as a pie-chart
representing its membership distribution. The main characters have more diverse community membership. (Bottom) the full link
dendrogram and partition density. Note the internal blue community in the large blue and red clique containing Valjean. HLC
discovers hierarchical structure even inside of cliques.
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Figure S15: Building link dendrogram intuition. Shown is an example illustrating how hierarchy can be captured at multiple levels
of the link dendrogram. (A) The 128 × 128 adjacency matrix for a network of four densely connected communities (each possible
link exists with probability p1), each connected to another community (p2), and finally the two pairs are weakly connected (p3). For
this example, pi = 1−ε

12i−1 , ε = 0.02. The communities at a high (B) and low (C) threshold, and the full dendrogram (D) are shown.
The chosen values of pi lead to a very “stretched” dendrogram and partition density, as expected. While one expects to identify four
communities at the higher threshold, six are actually found, since the inter-community edges are identified by HLC.

S2.3.1 Modularity optimization

Although the particular modularity algorithm used here is the most popular one, more accurate methods exist, based on simulated
annealing, extremal optimization, and more. (See41 for additional details.) However, the modularity values we found are quite high,
so the lack of accuracy in our comparison is more likely due to neglecting overlap rather than failing to find good partitions. The
particular values found for the four biological networks are shown in Table S1. Note that visibly modular networks such as AP/MS
and LC show high modularity values.

S2.3.2 Hierarchy and overlap

Several prominent methods for finding hierarchical organization exist,12, 13 however, none are able to handle overlap since hierar-
chical structure always assumes disjoint community partition. In summary: CPM handles overlap, HRG handles hierarchy, but
Hierarchical Link Clustering handles both. To further compare and contrast the three methods, see Fig. S17.
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Figure S16: Evaluation of community detection methods [Hierarchical Link Clustering, Clique Percolation,9 and modularity45, 46]
using biological networks. Top, the PPI networks of S. cerevisiae (A) Y2H, (B) AP/MS, and (C) LC, respectively. (D) Enrichment
of functionally similar pairs14 and coverage shows that HLC performs as well or better than other methods. (E) The E. coli metabolic
network (iAF1260), which lacks observable global modular structure, in contrast to the networks used in previous studies.11, 23 (F)
Pathway similarity and coverage in the metabolic network. Standard error is shown in the community homogeneity histogram.
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Figure S17: Comparison of methods on a network of UK grassland species interactions ,47 which has evident hierarchical structure
(A), and on a simple example with overlapping communities (B). Colors and boxes indicate community structures while nested boxes
illustrate hierarchical information. Red nodes possess multiple community memberships. The performance of existing methods
depends heavily on the network’s structural characteristics. CPM fails to detect the structure in sparse, hierarchical networks (A).
The HRG model captures the hierarchical structure in (A) but neglects overlap, and forces the middle 5-clique in (B) to be arbitrarily
spread across branches. In the case of hierarchical link clustering, both hierarchy and overlapping structures are correctly classified.
Again, real social networks possess more overlap than in (B).

S3 Generalizations and Extensions

S3.1 Networks with weighted, directed, or signed links

The similarity between links can be easily extended to networks with weighted, directed, or signed links (without self-loops), since
the Jaccard index generalizes to the Tanimoto coefficient.48 Consider a vector ai =

(
Ãi1, . . . , ÃiN

)
with

Ãij =
1
ki

∑
i′∈n(i)

wii′δij + wij (S7)

where wij is the weight on edge eij , n(i) = {j|wij > 0} is the set of all neighbors of node i, ki = |n(i)|, and δij = 1 if i = j and
zero otherwise. The similarity between edges eik and ejk, analogous to Eq. (S5), is now:

S(eik, ejk) =
ai · aj

|ai|2 + |aj |2 − ai · aj
(S8)

S3.2 Multi-partite networks

A multi-partite network is a network in which the nodes can be divided into K disjoint sets and all links must terminate in two
distinct sets. This creates additional constraints on the existence of certain edges which must be accounted for in both the link
similarity and the partition density.

Link similarity: The similarity measures, Eqs. (S5) and (S8), depend only upon connectivity, and therefore automatically account
for multi-partite structure. The one change necessary is incorporating the forbidden connections between the same kind of nodes,
which can be achieved by using the set of neighbors instead of the inclusive neighbor set when calculating the similarity.

Partition density: We must modify the definition of the partition density since a fully connected K-partite clique is much sparser
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than a clique in a unipartite network. In general, the K-partite partition density of a subset c can be written as

D(K)
c =

mc + 1−
∑
k n

(k)
c∑

k

(
n

(k)
c
∑
k′ 6=k n

(k′)
c

)
− 2

[(∑
k n

(k)
c

)
− 1
] , (S9)

where the index k runs over the K node types and the notation n(k)
c refers to nodes of type k. The full partition density is achieved

by summing over individual communities, D(K) = 2M−1
∑
cmcD

(K)
c .

S3.3 Local methods
Since our definition of similarity between links only uses local information, a local version 49–51 of HLC can be trivially obtained.
One can simply choose a starting link, compute its similarity S with all adjacent links, agglomerate the one with the largest S into the
community, compute any new similarities between edges inside the community and bordering it, and repeat. A stopping criteria to
determine when the community has been fully agglomerated is still necessary .50 For instance, one can monitor the partition density
as links are agglomerated, in order to establish a reasonable community boundary. Another, simpler, approach is to fix the similarity
threshold and agglomerate only links with similarity larger than that threshold. To find all the overlapping communities of a node
one can simply begin the above methods with each of that starting node’s links or start from one link, find its community (which
may end up including another starting node link), then pick another unassigned link from the starting node, find that community, and
repeat until all the starting node’s links are contained within communities.

S3.4 Partition density optimization
Since the partition density is a quality function of link community structures in networks, it is possible to find link communities by
direct optimization. Begin by assigning links to communities at random, then use, e.g. simulated annealing. The disjoint nature of
link communities enables us to apply many traditional optimization techniques to find overlapping communities.
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