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STOCHASTIC BLOCKMODELS: FIRST STEPS * 

Paul W. HOLLAND 
Educational Testing Seroice ** 

Kathryn Blackmond LASKEY and Samuel LEINHARDT 
Carnegre- Mellon Unrversrtv f 

A stochastic model is proposed for social networks in which the actors in a network are 
partItIoned mto subgroups called blocks. The model provides a stochastrc generalization of the 
blockmodel. Estimation techniques are developed for the special case of a single relation social 
network, with blocks specified D prrorr. An extension of the model allows for tendencies toward 
reciprocation of ties beyond those explained by the partition. The extended model prowdes a one 
degree-of-freedom test of the model. A numerical example from the social network hterature 1s 
used to illustrate the methods. 

1. Introduction 

The use of relational data in social science has increased dramatically 
in the last twenty years. This increase has been driven by both a general 
theoretical interest in the structural features of networks of relations 
and applied concerns focusing on the behavioral implications of various 
structural tendencies and patterns. Methodological tools for the analy- 
sis of these data, however, are not well advanced and, consequently, 
research using relational data tends to be ad hoc, nonreplicable and 
nongeneralizable. This seriously restricts the cumulation of facts about 
networks of relations that is necessary for the development of empiri- 
cally verified substantive theory. 

There are, however, two relatively new approaches to relational data 
analysis which are potentially very useful: blockmodels (White, Boor- 
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Table 1 
Strengths and weaknesses of two major approaches to relational data analysis 

Blockmodels Stochasuc models 

Explicit description of global structure Explicit models for data vanability 
Provide a substantive model of roles and positions Provide a direct model for relational ties 
Multiple relations easily accommodated Parameters summanx structural features 
Simple fitting algorithms Tests of fit are standard 

No explicit model for data variability 
Do not model relational ties 
No parameters or natural numerical summaries 
No formal tests of fit 

No explicit global structure 
Roles and positions not incorporated 
Multiple relations not easily incorporated 
Complex fitting algorithms 

man and Breiger 1976) and stochastic models for digraphs (Holland 
and Leinhardt 1981a). Table 1 outlines what we believe to be the major 
strengths and weaknesses of the two approaches. Because of the obvi- 
ous complementarity in Table 1 a merger of the two approaches 
promises to overcome the limitations of each while creating a statistical 
methodology that is consistent, effective and broadly applicable. 

In this paper we present a merger of the two approaches. It is related 
to the work of Fienberg and Wasserman (198 1). We describe stochastic 
multigraphs and stochastic blockmodels in Section 2. In Section 3 we 
describe an extension of these models which provides formal tests of 
the fit of stochastic blockmodels. Section 4 contains a numerical 
example and the paper concludes with a discussion of the relation of 
stochastic blockmodels to other types of blockmodels. 

2. Stochastic blockmodels 

A stochastic blockmodel is a model for sociometric data obtained 
from a network characterized by block structure. By block structure, we 
mean that the nodes of the network are partitioned into subgroups 
called blocks, and that the distribution of the ties between nodes is 
dependent on the blocks to which the nodes belong. The model is 
intended to formalize the concepts underlying the deterministic 
blockmodel in a framework which allows for variability in the data. 
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A stochastic blockmodel is a special type of probability distribution 
over the space of adjacency arrays. Before defining the stochastic 
blockmodel, we define the more general notion of a stochastic multi- 
graph. Let G be a set of g nodes, and let R(l), . . . , R(m) be m relations 
defined on the pairs of nodes. We write iR( k)j to mean that node i 
stands in relation R(k) to nodej. 

Definition I. The adjacency matrix for the digraph of the single 
relation R(k) is given by: 

x(k) = (x,,(k)), i,j= 1 ,..., g, 

where 

x,,(k) = 
1 if iR(k)j, 

0 otherwise. 

By convention, we put x,,(k) = 0, for all nodes i. 

Definition 2. The adjacency array for the multigraph of the m relations 
R(l), . . , R(m) is given by the “matrix of vectors”: 

where x,, is the vector 

x,, = (x,,(l),. , XJrn)). 

The m-element vector x,, describes the entire pattern of ties from 
node i to node j for all m relations. We may also represent x as the 
“ vector of matrices”, x = (x(l), . . , x(m)), when x(k) is the adjacency 
matrix for R(k). 

Sociometric data are regarded as observations from a probability 
distribution over the space of adjacency arrays. In what follows, we 
adopt the standard convention of denoting random quantities by up- 
percase letters, and particular realizations of the random quantities by 
lowercase letters. If X is a random adjacency array for g nodes and m 

relations, then the probability distribution of X is called a stochastic 

multigraph. We will denote the probability distribution of X by p(x) = 

Pr(X=x). 
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A stochastic blockmodel is a special case of a stochastic multigraph 
which satisfies the following requirements. 

Definition 3. Let p(x) be the probability function for a stochastic 
multigraph, and let (B,, . , B,} be a partition of the nodes into mutu- 
ally exclusive and exhaustive subsets called node-blocks. We say that 
p(x) is a stochastic blockmodel with respect to the partition {B,, . . , B,) 
if and only if 

(1) the random vectors X,, are statistically independent; and 
(2) for any nodes i *j and i’ *jr, if i and i’ are in the same 

node-block and j and j’ are in the same node-block, then the random 
vectors Xii and X,,,, are identically distributed. 

Requirement 2 of Definition 3 implies that nodes in the same 
nodeblock are stochastically equivalent in the following sense. Consider 
a block B, and any nodej in the network. The likelihood of any given 
pattern of ties with nodej is the same for all nodes in the block B,. In 
other words, if i and i’ are two nodes (excluding j) belonging to 
node-block B,, any probability statement about X can be modified by 
interchanging X,, and X,Pj or by interchanging X,, and X,,,, without 
changing its probability. 

We formalize this as 

Definition 4. Let X be a random adjacency array. We say two nodes i 
and i’ are stochastically equivalent if and only if the probability of any 
event about X is unchanged by interchanging nodes i and i’. 

Definition 4 generalizes the algebraic notion of structural equiva- 
lence of nodes (see Lorrain and White 1971) to that of stochastic 
equivalence. Structurally equivalent nodes are stochastically equivalent 
but not vice versa. 

We say that the pair of nodes (i, j) belongs to the pair-block B, x B, 
if and only if i is in the node-block B, and j is in the node-block B,. If 
p(x) is the probability function for a stochastic blockmodel, X, then 
the pair-distribution for pair-block B, x B, is given by 

P,,(Z) = Pr(X,, = z), for any I E B,, j E B,, i *j (1) 

and 

z = b(l),...,z(m)), z(k)=Oor 1. 
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Thus, p,,(t) is the probability that z describes the pattern of relations in 
the observed ties from a node in B, to a node in B,. Note that a 
deterministic blockmodel is a special case of the stochastic blockmodel, 
in which all the p,,( z ) are equal to 0 or 1. 

Definition 3 formalizes the concept of “internal homogeneity” 
(Breiger 1981) within the pair-blocks. According to our interpretation 
of the term, any pair-block B, x B, is internally homogeneous; that is, the 
ties are distributed without any apparent pattern among the pairs of 
individuals in B, x B,. In other words, the rectangular submatrix of X 
consisting of the Xi,(k) for which i E B, and j E B, shows no regular 
pattern. This property of the pair-blocks is implied by Definition 3 
which requires that the distribution of relationships between any pair of 
nodes in a given pair-block is the same as that of any other pair of 
nodes in the same pair-block, and is independent of ties between any 
other pairs of nodes. This is the formal sense in which we use the term 
homogeneity. 

The pair-distributions give the distributions of the entire vector X,,. 
For any k<m, and any two distinct nodes i E B, and j E B,, the 
marginal distribution of X;,(k) is given by: 

p,,,,,(z)=Pr(X,,(k)-z)= c P,,(z(l),...,z(k),...,z(m)) 
z(k)=r 

for z = 0 or 1. (4 

We call the { prsCk,( z)) th e marginal pair-distributions of X(k). 
We now present a theorem which is useful when working with the 

marginal distribution of X(k), or certain other stochastic multigraphs 
obtained from X. 

Theorem f. Suppose X = ( Xj,( k)) is a stochastic blockmodel with 
node partition (B,, . . . , B,). Suppose further that Y= (y,(k)) is a 
multigraph obtained from X by Y, =f( X,,), for i fj, for some func- 
tion f. Then Y is a stochastic blockmodel with the same node partition 

(B,,...,B,). 

Proof If Y, = f( X,j) and the X,j are independent, then so are the Y,. 
Further, if (i,j) and (i’, j’) belong to B, X B,, then X,j and Xi,,, have the 
same distribution. This implies that Y, = f( X,,) and Y,,, =f( X,,,,) are 
also identically distributed. 
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Several corollaries follow immediately from Theorem 1. 

Corollary 1. Suppose X is a stochastic blockmodel with blocks B,, . . . , 
B,. Let (R(k,) ,..., R(k,)) be a subset of (R(1) ,..., R(m)}. Then the 
submatrix X* = (X( k,), . . , X( k,)) consisting of the multigraph of these 
r relations is also a stochastic blockmodel with the same node partition 
B, ,..., B,. 

In particular, the adjacency matrix X(k) for the single relation R(k) 
is a stochastic blockmodel if X is. The next corollary applies to 
aggregating sociometric relations. 

CoroIIary 2. Suppose X is a stochastic blockmodel with blocks B,, . , 
B,. Let the adjacency matrix Y be given by 

1 ifX,,(k)= 1 forsomek, 

0 otherwise. 

Then Y is also a stochastic blockmodel with the node partition 
B B,. ,,“‘, 

Corollary 2 implies, for example, that aggregating a series of mea- 
sures of affect into a single affect relation preserves a stochastic 
blockmodel. 

Estimation: A single relation, a priori blocks 

For the remainder of this section, we consider the special case of a 
single sociometric relation with blocks specified a priori. We discuss this 
case in detail because it arises frequently in substantively interesting 
problems, and maximum likelihood estimation is completely trivial for 
this case. 

In many cases of interest, we have reasonable hypotheses for the 
makeup of the blocks. Many variables (for example, sex and race) are 
natural blocking criteria in many common applications. Sometimes 
data are available only for a single relation. When data exist for 
multiple relations, it is often the case that the adjacency matrices are so 
highly correlated that not much information is lost by aggregation. 
Recall that Theorem 1 implies that aggregating relational data gener- 
ated by a stochastic blockmodel produces another stochastic blockmo- 
del. 
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Let X = X( 1) be the adjacency matrix for the stochastic blockmodel 
with a single relation. Let p,,(z) =JJ,.~(,, (z) denote the pair-distribu- 
tions. In this case each pair-distribution is characterized by a block 
density r,,,, given by 

TU = Prs( I ) (1) = Pr( X,, = 1) for I E B,., j E B,, i *j. (4) 

The block density is the probability of a tie between any two distinct 
nodes in pair-block B, X B,. 

The implied distribution of the matrix X is 

p(x)= Pr(X=x)=n n n 9rG,1(1 -7~,~)(‘--.\-“). 
I’.S r=B, /EB\ 

IfI 

(5) 

Let b, be the number of nodes in node-block B,. Then the number of 
pairs in pair-block B, X B, is given by 

r=s 

rfs’ 

Let X++( r, s) be the number of 1s in the b, X b, submatrix of X 
corresponding to pair-block B, x B,. That is, 

x++(rd = c c 4,. (7) 
IEB, /EB> 

j', 

Then (5) can be rewritten as 

p(x) = pr( X = 1) = ~7T:,++(‘.~)( 1 _ 7T,,)(+“(‘.‘)). 
r.5 

(8) 

From Definition 3 it follows that the X,, are independent Bernoulli 
random variables, where the Bernoulli parameter is v~,~ if (i, j) E B, x B,,. 
Therefore, the X++( r, s) are independent binomial (b,,, T,,~) random 
variables, and the marginal distribution of X++(r, s) is given by 

Pr( X++( r, 3) = k) = 
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Because the X++(r, s) are independent binomial random variables, 
maximum likelihood estimation is particularly tractable for a stochastic 
blockmodel. Let X be the observed adjacency matrix arising from the 
stochastic blockmodel (5), where the blocks are given but ?T = (7~,,) is 
unknown. Then the likelihood function for the data is 

Because the X++( Y, S) are independent and there are no constraints on 
the rr,. the maximum likelihood estimate for IZ is obtained by maximiz- 
ing each of the marginal likelihood functions 

with respect to r,,. The maximum occurs at the sample proportions 

i, = x++(r, .4/b,,. (12) 

Thus, the maximum likelihood estimate 7i of the matrix of block 
densities 7~ is given by the matrix of observed block densities. 

Given ?i, we can obtain the maximum likelihood estimate of the 
expected value of any function of X. For instance, the number of 
mutual, or reciprocated, ties in pair-block I?, X B,, denoted by M(r, s), 
is a binomial random variable, since 

I 

c c XiX,, r = s, 
,EB,,EB, 

M(r, s) = ’ <I 

c c -q-q, 

(13) 
r’s, 

,t B, JE B, 

and the summands X,,X,, are independent Bernoulli variables with 
parameter ~,.~n~,.. Therefore, the maximum likelihood estimates of the 
mean and variance of M( r, s) are given by 

(14) 
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A standardized measure of tendency toward reciprocity can be obtained 
from (14) and (15). Let 

M= 1 M(r,s) 
i-5s 

and 

and set 

(16) 

The statistic 6, is a measure of the reciprocation in excess of that 
predicted by the stochastic blockmodel. The asymptotic distribution of 
6, is standard normal when the number of blocks is small and the 
number of nodes is large. 

3. An extension: Pair-level structure 

It is plausible to expect a tendency toward reciprocation of choices in 
some types of social relationships (e.g. friendship), and a tendency away 
from reciprocation in others (e.g. power). Indeed, Moreno (1934) ob- 
served that the number of mutual ties usually exceeded the number 
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expected “by chance.” The number of mutual ties to be expected “by 
chance”, however, depends on the null distribution from which the 
chance expectation is calculated. The null model used by Moreno was 
one in which all adjacency matrices with row sums (number of choices 
made, or out-degrees) equal to the given adjacency matrix were con- 
sidered equally likely. 

The following example demonstrates that an apparent tendency 
toward mutuality can be explained by a blockmodel. Consider the 
hypothetical blockmodel of Fig. 1, which consists of two subgroups. 
with members of each subgroup choosing only members of the other 
subgroup. If, for example, X were the graph of the antagonism relation, 
the blockmodel could be interpreted as describing two mutually anta- 
gonistic cliques. 

Let M be the number of (unordered) pairs {i, j) such that X,, = X,, = 
1. In the example of Figure 1, M = 18. Because members of each group 
choose and are chosen only by members of the other group, all 18 
mutual ties are explained by the blockmodel. However, the null model 
used by Moreno predicts only about 9 mutual ties. (The formula for 
calculating the expected number of mutual ties using Moreno’s null 
distribution is given in Holland and Leinhardt (1981a).) In this exam- 
ple, an apparent tendency toward reciprocity is explained by the 
blockmodel. 

If X is a stochastic blockmodel, then the observed ties are due only 
to the the pair-distributions (p,,) and random noise. There are no 
tendencies toward reciprocation of ties, transitivity, or any other type of 
structure, except those which can be explained by the block member- 
ships. In the remainder of this section we develop a model which allows 
for a correlation between ties from node i to nodej and ties from nodej 
to node i, and simultaneously takes into account the block structure. 
The pair-dependent stochastic blockmodel, which we define below, is a 
generalization of the stochastic blockmodel developed in the last sec- 
tion. It accounts for pair-level structure such as tendencies toward 
reciprocation of ties or toward exchange of one type of tie for another. 
In the single relation case, a specialization of the pair-dependent 
stochastic blockmodel provides a one degree-of-freedom test of the 
stochastic blockmodel for tendencies toward reciprocity. 

The model proposed in this section is based on the 2m-element 
random vectors D,, = (X,,, X,,), which we call dyad uectors. We now 
define the pair-dependent stochastic blockmodel (abbreviated PSB). 



P. W. Holland er al. / Stochaslrc blockmodels 119 

Definition 5. Let p(x) be the probability function for a stochastic 
multigraph, and let (B,, . . . , I?,} be a partition of the nodes of the 
stochastic multigraph into mutually exclusive and exhaustive node- 
blocks. We say that p(x) satisfies a pair-dependent stochastic 
blockmodel with respect to the partition (B,, . . . , BL) if and only if: 
(1) the random vectors D,, are statistically independent, and 
(2) for any nodes i *j and i’ *j’, if (i, j) and (i’, j’) belong to the same 

pair-block, then the random vectors D,, and D,,,, are identically 
distributed. 

The stochastic blockmodel is a special case of the PSB in which the 
dyad vectors D,, are made up of two statistically independent random 
vectors X,, and X,,. 

The pair-distributions for the PSB are defined over the dyad vectors. 
The pair-distribution for pair-block B, X B, is given by: 

pr, ( zI, z,) = Pr(D,, = (z,, z,)), foralliEB,,_jEB,,i*;j (17) 

z, = (z,(l), . . . . q(m)), z,(k)=Oor l,i= 1,2. 

The marginal distribution of D,,(k) = ( X,,(k), X,,(k)) is given by: 

P,,&?,(k)) = P+?,(k) = h 4) = c ~rsk.,, zd 
z,(k)=-, 

for z, = 0 or 1. (18) 

Theorem 2 is an analogue of Theorem 1 for the pair-dependent 
stochastic blockmodel. 

Theorem 2. Suppose X = ( X,,(k)) is a pair-dependent stochastic 
blockmodel with node partition (B,, . . . , B,). Suppose that Y = ( y,(k)) 
is another stochastic multigraph. Suppose further that there exists a 
function f such that ( Y,, Y,,)=f(X,,,X,,), for all i*j. Then Y is a 
pair-dependent stochastic blockmodel with the same node partition 

(B,,...,B,). 

The proof of Theorem 2 is analogous to the proof of Theorem 1. We 
now state several obvious corollaries to Theorem 2. The first two are 
direct analogues to Corollaries 1 and 2. 
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Corollary 3. Suppose X is a random adjacency matrix for the m 
relations R(l), . . . , R(m), and suppose X is a PSB with blocks B,, , B,. 
Let {R(k,),...,R(k,)) be a subset of (R(l),...,R(m)). Then the sub- 
array X* = ( X( k,), , . . , X( k,)) consisting of the multigraph of these r 
relations is also a PSB with the same node partition B,, . . , B,. 

Corollary 4. Suppose X is a random adjacency matrix for the m 
relations R(l), . . . , R(m), and suppose X is generated by a PSB with 
blocks B,, . . . , B,. Let the random adjacency matrix Y be given by 

Y:J = 
1 if X,i(k) = 1 for some k, 

0 otherwise. 
(19) 

Then Y is also a PSB with the node partition B,, . . , B,. 

Therefore, a PSB is preserved by taking subsets of the set of m 
relations and by aggregating relations. Furthermore, breaking a PSB up 
into mutual, asymmetric and null multigraphs also produces a PSB, as 
stated in the next corollary. 

Corollary 5. Suppose X is a random adjacency matrix for a single 
relation and suppose X is a PSB with blocks B,, . . , B,. Let the random 
adjacency matrices Y(“‘), Y(O) and Y(“) be given by 

YCrn)= X,,X,,’ 
‘1 (20) 

I$)= XJl -X,,), (21) 

and 

Y::“‘=(l -X,,)(l -x,,). (22) 

Then Y= ( YCm), Y(‘), Y(‘)) 1s a PSB with the node partition B,,. _, B,. 

3.1. A special case: Stochastic blockmodel with reciprocity 

In this section, we develop a special case of the PSB, which we call 
the stochastic blockmodel with reciprocity, or SBR. Let X be a PSB with 
one relation and denote its probability function by p(x). Using the 
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notation of Holland and Leinhardt (1981a), the pair-distributions 
p,,( z,, zZ) and p,,( z,, z2) are characterized by specifying the four quan- 
tities: 

(23) 

a 
ST =Pr,(O> 1) =JL(L O)? 

and 

such that 

m?,, + ars + as, + nrs = 1. (27) 

For a dyad vector in the pair-block I?, X B,, m,., is the probability of a 
mutual pair, urs and asr are the probabilities of the two types of 
asymmetric pair, and nrs is the probability of a null pair. To avoid 
degenerate cases we assume that m,,, urs, asr and nrs are positive for all 
r and s. The distribution of the matrix X is given by 

The single-relation, pair-dependent, stochastic blockmodel is a special 
case of the general exponential family model for random directed 
graphs with pair-level correlations described in Holland and Leinhardt 
(1981a: 36). Fienberg and Wasserman (1980) also discuss the distribu- 
tion (28) for grouped relational data. 

Equation (28) can be re-expressed in terms of the natural parameters 
of the exponential family model. This re-expression facilitates compari- 
son with work appearing elsewhere (Holland and Leinhardt 198 la; 
Fienberg and Wasserman 1980, 1981). Further, the stochastic 
blockmodel with reciprocity, a special case of (28) with one parameter 
more than the stochastic blockmodel, is most conveniently defined in 
terms of the natural parameters of (28). 
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Define 

for all T,S (29) 

p,, = log mrsnrs 
i r arsasr 

and let M( Y, s) be 

for all r, s, (30) 

the number of mutual dyads in pair-block B, x B, as 
defined in (13). With some algebraic manipulation, (28) can be written 
as follows. 

d+exp( C p,,M(r.s)+CB_X_,lr,.r))K((~,.8,,)). (31) 
r<s T,S 

It can also be shown that the stochastic blockmodel of Section 2 with 
block densities ~7~~ is a special case of (31) with p,, = 0 for all I’, s and 

(32) 

Thus, if p*(x) is the probability distribution of a stochastic blockmo- 
del, then p* satisfies (8), which can be written in the form 

P*(X) = ew{ C&,x++(r, ~1) K({&,)). 
I.3 

(33) 

The parameter p,, measures the tendency of ties between pair-block 
B, and pair-block B, to be reciprocated. Holland and Leinhardt (1981a: 
36) show that when p,., is positive. if X,, = 1 for (i, j) E B, X B, then the 
likelihood of observing X,, = 1 is increased. When p,, = 0, the parameter 
d,, governs the overall density of pair-block B, X B,. 

We are now ready to define the stochastic blockmodel with reciproc- 
ity. This submodel of the single relation pair-dependent stochastic 
blockmodel is obtained by restricting the parameters p,, so that 

P,, = P for all i-, s. (34) 

Definition 6. Let p(x) be the probability function for a single-relation 
pair-dependent stochastic blockmodel with blocks (B,, . . . , B,). We say 
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p(x) is a stochastic blockmodel with reciprocity if there exist parame- 
ters p and {8,,) such that 

(35) 

where M is the total number of mutual pairs in the graph, given by 

M= c M(r,s). (36) 
r g s 

Fienberg and Wasserman (1980) suggest restricting the {e,,} so that 
they satisfy the additive model 

s,, = e + a, + p, for all r, s. (37) 

With the restriction (37), the stochastic blockmodel with reciprocity is a 
special case of the p, distribution proposed by Holland and Leinhardt 
(1981a). Holland and Leinhardt interpret the parameters (0, LY,, b,> as 
follows. The parameter 8 is a measurement of overall choice density, the 
parameter (Y, is a measurement of the “productivity” of nodes in 
node-block r, and p,* is a measurement of the “attractiveness” of nodes 
in node-block s. In our view, this additive decomposition is unaccepta- 
ble for modeling grouped data in many social contexts. Cliquing is one 
social phenomenon which cannot be explained unless an interaction 
term is allowed in Eq. (37). Cliques are characterized by high density 
diagonal pair-blocks and low density off-diagonal pair-blocks. When 
cliques are present, f3,, is larger than would be predicted by an additive 
model. We prefer leaving the (e,,) unconstrained. 

3.2. Estimation: Stochastic blockmodel with reciprocity 

Let p(x) be a stochastic blockmodel with reciprocity. Since p(x) is 
an exponential family probability function, the maximum likelihood 
estimates (MLEs) of the parameters p and { 0,,} are the values for which 
the sufficient statistics of the distribution are equal to their expected 
values. The sufficient statistics of p(x) are the number of mutuals A4 
and the observed number of edges in each pair block X++( r, s). The 
likelihood equations which define the maximum likelihood estimates 
are given by equating the sufficient statistics to their expected values. 
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The expected value of M is given by 

%,,,(M)=fC c c Pr(D,,=(l, 1))=i~b,,?.,. 
T.S ;GB,,EB. r.s 

(38) 

Recall that nz,, is the probability of a mutual tie for any pair in 
pair-block B, X B, and b,, is the number of pairs in pair-block B, x B,. 
The factor i enters because each dyad is counted twice in (38). The 
expected value of X++( I-. s) is given by 

%,dX++(~~ J)) = c 1 Pr( Y, = 1) = b&q.+ a,,). 
icBr JEB, 

(39) 

Note that mrs + a,, is the probability that X,, = 1 for (i,j) E B, X B,. 

Equations (38) and (39) imply that the likelihood equations for the data 
are given by 

x++k s> = brsh, + 4,) r , s = 1,. . . , t. (41) 

The MLEs of mrs, urs, asr and nrs are the values +I,,, Li,,, Li,, and iz,, 
which solve Equations (40) and (41). These equations cannot be solved 
in closed form. Fienberg and Wasserman (1980, 198 1) have shown that 
the maximum likelihood estimates for models of this type can be found 
using standard iterative proportional fitting routines (e.g., BMDP3F) 
for fitting log-linear models. Fienberg and Wasserman’s method de- 
pends on representing the directed graph X as a t X t X 2 X 2 con- 
tingency table Y, where 

Y(r,s, l,O)= c 1 X,,(l -x,,L (44) 
IERr JER\ 
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and 

(45) 
isB, JEB, 

Certain marginal sums of Y correspond to sufficient statistics of the 
stochastic blockmodel with reciprocity. For example, by summing over 
the first two dimensions of the contingency table, one can calculate the 
number of mutual dyads in the observed adjacency matrix. 

2M= y(+, +, l,l)=CY( r,s, lJ)=C 1 c &,X,,. (46) 
i-.s T.S isB, JEB, 

The observed block densities can be calculated in two ways, by sum- 
ming over dimension 3, or by summing over dimension 4. 

X++(r,s)= Y(r,s, 1, +)=CY(r,s, 1.k) 

= c c x;,x,, + c c x,J(l - x,t)’ (47) 
{ELI, ./sB, ICE, /EL?, 

X+,(3, r) = Y( r,s, +, I)=CY(r,s,k, 1) 

=I cx,,xj,+c co-x,,)x,c (48) 

The maximum likelihood estimates ti,,, ci,,, ci,, and ri,, can be found 
by fitting the log-linear model which satisfies (46) (47) and (48). Using 
the notation of Fienberg (1980), Eq. (46) corresponds to fitting the [34] 
margin of Y, that is, fitting the marginal totals corresponding to fixing 
dimensions 3 and 4, and summing over the other dimensions. Similarly, 
Eq. (47) corresponds to fitting the [123] margin. and Eq. (48) corre- 
sponds to fitting the [124] margin. 

3.3. Testing the fit of a stochastic blockmodel 

The MLEs of the parameters of a stochastic blockmodel are obtained 
by applying the constraint p = 0 to the corresponding SBR and calcu- 
lating the maximum likelihood estimates for the parameters of this 
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submodel. A likelihood statistic can be constructed which corresponds 
to testing the hypothesis 

H,, : p = 0.8 unconstrained, (49) 

against the alternative hypothesis 

HA: P, 0 unconstrained. (50) 

Let hit,,, 2,,, 2,, and s,, denote the MLEs of the parameters of the 
SBR, and let ;5-, denote the MLEs of the parameters of the stochastic 
blockmodel. The usual log-likelihood statistic for the test of Ho against 
I!& is given by 

LLR=L,fL,+L,. 

where 

(51) 

1 

L,=CY(r,s, l,l)log +?& , 
r , s i I IS ST 

L,=2CY(r,s, 1,O)log 
I , .T i +Jl”l ??*J 11 

i 

A 

L,=CY(r,s,O,O)log 
f-.s (1 -fiJ;; -?i,,) . 1 

(52) 

(53) 

(54) 

The duplication of entries in Y(r, s, 1, 1) and Y( r, s, 0, 0) means 
that no factor of 2 is needed in Equations (52) and (54). The LLR 
statistic is asymptotically distributed as chi-square with one degree of 
freedom. 

Our use of this test is to ascertain how well the blockmodel fits the 
data. If Ho is accepted, the conclusion is that the blockmodel does 
explain the observed degree of reciprocity in the data. If He is rejected 
we may conclude that there is reciprocity in the data that is not 
explained by the blockmodel. Section 4 illustrates this point. 

4. An empirical example: Sampson’s monastery data 

As an example of the application of stochastic blockmodeling meth- 
ods we present results of an analysis of data which have been widely 
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Fig. 2. Blockmodel for Sampson data: Positive choice data matrices. Taken from White Ed al. 
(1976: 750). Strong ties are coded as 3. weak ties as 1. Blanks indicate no ties. (Source: Sampson 
1969). 

used as an example of the application of blockmodel analysis to 
sociometric data. The data were originally collected by Sampson (1969) 
who spent a 12-month period observing and collecting data on social 
relations between the monks of an American monastery. A major social 
conflict erupted near the end of the study, resulting in the expulsion or 
resignation of many of the monastery’s members. The first reported 
analysis of these data using blockmodeling methods appeared in White, 
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Fig. 3. Blockmodel for Sampson data: Negative choice data matrices. Taken from White et a/ 
(1976: 750). Strong ties are coded as 3. weak ties as I. Blanks indicate no ties. (Source: Sampson 
1969). 

Boorman and Breiger (1976). The data were partially reanalyzed by 
Holland and Leinhardt ( 198 la) using the p1 model. (See also the 
discussion in Breiger ( 198 1) and in Holland and Leinhardt ( 198 1 b)). 

Sampson’s data include responses to four sociometric criteria: affect, 
esteem, influence, and sanction. Roth positive and negative interper- 
sonal choices on each of the four criteria were obtained. The sociomet- 
ric data are shown in Figures 2 and 3 as they were presented in White, 



P. W. Hollund et al. / Stochustw hlocknmdels 129 

I 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
I2 
13 
I4 

110100 
0 M 0 M M 0 
0 M 0 0 0 M 
01 I MO 0 
OMO M 1 0 
OMO 0 0 I 
00 Ml IO 

00 0 0 0 0 0 
00 0 0 0 0 0 

00 0 0 0 0 0 
00 0 0 0 0 0 

00 0 0 0 0 0 
00 0 tlo 0 0 

00 0 0 0 0 0 

I5 010 0 0 0 0 
16 00 0 0 0 0 0 
17 00 0 0 0 0 0 
I8 00 0 0 0 0 0 

X +/ 06 4 2 4 2 2 

12 3 4 5 6 7 8 9 IO II I2 13 I4 

000 0 0 0 0 
0 0 0 0 0 0 0 
I 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 I 0 0 0 
0 0 0 0 0 0 0 

MM 0 0 MO 
M 0 MO 0 0 

M 1 0 0 MO 
I MO 1 0 0 

1 0 1 0 I 0 
MO M 0 0 M 

0 0 1 0 I M 

0 0 0 0 0 1 0 
0 MO 0 0 0 0 

0 0 I 0 0 0 0 
0 0 1 0 0 0 0 

646 2 2 5 1 

15 16 I7 IF 

1 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 MO 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 I 
I M M 

0 M M 
0 M M 

2 3 2 3 

Jf, + 

56 = X 

Figure 4. AdJacency matnx from Sampson (1969) as presented in White, Boorman and Brelger 
(1976). Dashed lines indicate high and low tie-density blocks found by White er ol. M denotes a 
reciprocated tie while I denotes a tie that is not reciprocated. 

Boorman and Breiger (1976). The data are disaggregated into positive 
(Figure 2) and negative (Figure 3) responses on each of the four criteria. 
The sociomatrices are arranged in the blocks which White, Boorman 
and Breiger deduced using the CONCOR algorithm (White et al. 1976; 
Schwartz 1977). 

For the purposes of this example we focused solely on the data 
generated by the monks’ positive responses to the “like” criterion, the 
matrix in the upper left hand corner of Figure 2. We modified these 
data by dropping the strength distinction so that an adjacency matrix 
was created in which a one was entered if there was either a one, two or 
three in the original data matrix; otherwise the entry was zero. The 
resulting data matrix appears in Figure 4 where we have, for purposes 
of clarity in the display, placed an A4 in the i, j entry if the i, j and j, i 
entries were both one. Figure 4 also shows marginal sums. 

White, Boorman and Breiger (1976) have proposed a block structure 
for Sampson’s data. We use techniques developed in Section 2 to 
evaluate the fit of their model. The relevant computations are simple 
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and straightforward and are specified in Equations (14) (15) and (16). 
We use the maximum likelihood estimates of the block densities, &,, 
and the number of pairs in each block to obtain maximum likelihood 
estimates of the mean and variance of the number of mutuals given the 
blocking. These are used to calculate a statistic, 6, (Equation (16)) 
which, when referred to a table of the standard normal, allows us to test 
the blockmodel’s ability to explain the reciprocity in the data. A 
sufficiently large value of 6, would lead us to reject the proposed 
blockmodel. 

Figure 5 consists of a worksheet of the computations necessary to 
obtain 6, for Sampson’s liking data given the blockmodel proposed in 
White, Boorman and Breiger (1976). The obtained value of 6, is 1.048 
from which we infer that rejection of the blockmodel is not warranted. 

A comparison of this analysis with the one presented in Holland and 
Leinhardt (1981a) points up the ability of the blockmodel to explain an 
apparent tendency toward reciprocation. Holland and Leinhardt 
analyzed these data using the p, distribution. The p, model accounts for 
reciprocation of ties but not for block structure. The reciprocation 
parameters for the pI model and the SBR (both denoted by p) are 
log-odds ratios and can be directly compared. 

When thep, model is fit to the Sampson data, an estimate 6 = 3.14 is 
obtained. ’ The substantive interpretation of this result is that the odds 
of observing X,, = 1 are about 23 times higher 2 when X,, = 1 than when 
X,, = 0. The likelihood ratio statistic for testing p * 0 is 30.41, a value 
much larger than the conventional significance levels of the cm-square 
distribution on 1 degree of freedom. In contrast, a fit of the SBR to 
these data yields the estimate b = 1.01. This corresponds to less than a 
three-fold increase in the odds that X,, = 1 due to X,, = 1. Further, the 
likelihood ratio statistic for testing p * 0 is only 3.13. This value is less 
than the usual significance levels for the chi-square distribution. Thus, 
the observed degree of reciprocation is consistent with the hypothesis 
that a stochastic blockmodel generated the data. 

These results indicate that the blockmodel, in effect, “explains” the 
apparent mutuality of choice in the data. Except for one pair, the 
mutual choices occur within the diagonal blocks where choice density is 

’ The value of p = 3.10 given on page 45 of Holland and Leinhardt (198la) is in error. The value 
given in Table 7 on page 47 is correct. 

2 The parameter p is the log of the increase in odds. The odds increase is given by e3 I4 = 23. 
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expected to be high and so reciprocation is expected. The one mutual 
pair (9, 16) is an important exception to the fit as is the column of zeros 
at j = 1. Further investigation of these exceptions would seem war- 
ranted in light of our results. 

It is important to note that we have chosen this example for its 
pedagogic value. Sampson’s monastery data are by now well known in 
the research literature on social networks. Reader familiarity with these 
data plus the moderate size and clear cut blocking of the data facilitate 
following the analysis. Of course, with other data, one might obtain a 
value of 6, which is significant, leading to rejection of the stochastic 
blockmodel. In such a case the analysis would indicate that there is 
more reciprocation than the stochastic blockmodel can explain. There 
are several explanations for such an outcome. First, the blockmodel 
may contain too few blocks. Second, a block structure may be inap- 
propriate to describe the data. Third, a more complicated generalization 
of the blockmodel, such as the pair-dependent stochastic blockmodels 
discussed in Section 3.2, may be needed. If the third explanation seems 
most appropriate then the equations appearing in Section 3 can be used 
to compute an estimate for the p parameter, yielding a quantitative 
measure of the tendency toward reciprocity above and beyond that 
explained by the blocking. The log-likelihood test described in Section 
3.3 then provides a test of this more complicated model. 

5. Discussion 

There are two important topics that we will comment on briefly in 
this section. They are both concerned with the current uses of nonsto- 
chastic blockmodels. 

5. I. The problem of closure 

In the algebraic theories that are used to give a rationale for 
blockmodeling techniques (i.e., Lorrain and White 1971) an important 
role is played by the semi-group of relations generated by the m 
relations R,,,,. . . , R(,,. It is natural to ask what role this semi-group 
might play in our theory of stochastic blockmodels. Unfortunately, 
there is no simple or direct connection between stochastic blockmodels 
and the semi-group of relations. One symptom of the problems that 
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occur in trying to make this connection is the fact that a stochastic 
blockmodel is not closed under the operation of forming the binary 
product of two adjacency matrices. Theorems 1 and 2 show that 
stochastic blockmodels are closed under various natural operations. The 
binary product of X( 1) and X(2) is defined as 

( X( 1) * x(2)),., = A if,“,;l); 4, (2) = 1 for SOme k, 

This product is used to define indirect relationships between nodes. 
Indirect relationships from node i to node j go through one or more 
intermediaries, . However, it is easy to see that even if X( 1) and X(2) 
have the joint distribution of a stochastic blockmodel (with or without 
reciprocation) the product X( 1) * X(2) can fail to be a stochastic 
blockmodel. It fails because of correlation that is introduced between 
the entries (X(1) * X(2)),, and (X(1) * X(2)),,. for j fj’. A formal 
proof is left to the reader, but a heuristic explanation is given below. 
The condition that elements of X( 1) * X(2) in the same pair-block have 
the same distribution is not violated by the binary product. Thus the 
essential conflict between binary products and stochastic blockmodels 
is focused on the notions of indirect ties and of randomness within 
pair-blocks. The product relation describes indirect ties between indi- 
viduals. A link between i and j occurs in the product relation if there is 
a third individual k such that i is related to k in the first relation and k 
is related to j in the second relation. Both (X( 1) * X(2)),, and 

(X(1) * X(2)),,, are more likely to be 1 when X,,( 1) = 1. Thus, the two 
entries cannot be independent. Since randomness within pair-blocks is 
the vehicle that we have used to formalize the intuitive idea that a 
blockmodel “explains” a set of data we believe that this conflict is a 
basic one that requires further work. 

5.2. Generating the blocks: A Bayesian problem 

In the development that we have given here the blocks B,, . . . , B, have 
been assumed to be specified a priori. This need not be the case and, in 
fact, the most exciting uses of blockmodel techniques have come from 
the discovery of blocks of nodes from the analysis of relationship data 
(White, Boorman and Breiger 1976). We have concentrated on the case 
of a priori specified blocks because it is a natural first step. One 
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approach to the problem of discovering the blocks a posteriori is to 
formulate it in Bayesian terms. In the remainder of this section we 
outline an approach to this. For simplicity we shall describe it in terms 
of a single adjacency matrix, X = X( 1). 

To begin, we shall assume that we know that there are t node-blocks. 
In an actual analysis, the value of t would be varied to see how it 
changes the results. The block sizes can be controlled in the following 
way. Let 

A= (A,,...,h,) 

be a probability vector, Xi > 0, x.,X, = 1. In the simplest model we let 
the a priori probability that a node is in block j be X,. The block sizes 
are then multinomially distributed with parameters g and X. For 
example, for a 4-block model where we wish to have approximately the 
same number of nodes in each block we let t = 4 and X, = l/4 i = 1, 2, 
3, 4. Such assumptions do not force the node-blocks to be equal but do 
keep their sizes similar. Again, a sensitivity analysis varying X over a 
reasonable range will reveal how much the final results depend on this 
value. 

Let C be a g by t block-membership indicator-matrix, i.e., 

ifirB J 
0 otherwise. 

Then the rows of C are independent and identically distributed given X 
and t with 

P(C,, = llh, t) =A,. 

The next prior assumption concerns the pattern of pair-block density 
parameters that are allowed by the model. We divide the density 
parameters TV, k = 1,. . . , t into two types - low (type-L) and unspeczfied 
(type-U). The prior assumption that we make on the (TV,) assumes that 
the division of pair-blocks into those of type-L and those of type-U is 
completely specified. For example, in a 4-block “dominance” model 
this specification might look like: 
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This is analogous to the image matrix used in BLOCKER (Heil and 
White 1976). We emphasize that this specification is a prior assump- 
tion. Once the specification has been made we then assume that the 
( rk,) for type-L pair-blocks are independent and identically distributed 
from a beta prior of the form 

P&r) = K(l - 7$‘, 

where K is a normalizing constant. This type of prior is concentrated on 
low values of V. The prior parameter, b, controls the degree of this 
concentration. The parameter b plays the role of the tolerance parame- 
ters used in some blockmodel analyses to accommodate the difficulty of 
finding pure zero-blocks. If b is high, the block density parameters for 
L-type pair-blocks is assumed a priori to be very small. 

The prior for the (TV,) for U-type pair-blocks is less obvious. We 
wish to avoid the convenient fiction of “one-blocks” (White, Boorman 
and Breiger 1976) since they never exist in real data. Rather we view the 
prior for a TV, U-type pair block as being “flat” in some sense, i.e., 
unspecified. A simple choice is to assume that it is uniform, i.e., 

P&r) = 1. 

In summary, our Bayesian model for this simple case of a stochastic 
blockmodel is characterized by: 

(a) the number of blocks, t, 
(b) the block size distribution vector, A, 
(c) the pattern of L and U type pair blocks, 
(d) the distributions PL( 7) and Pu( 7r) of the block densities 7rk,. 

Given these quantities, a sociomatrix X can be generated from the 
Bayesian stochastic blockmodel as follows. 
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(a> 

(b) 

Assign nodes independently to the t node-blocks according to the 
distribution given by X. 
Generate the block densities 7rk, from the distribution PL( a) for the 
L-type pair blocks, and from the distribution P,,(n) for the U-type 
pair-blocks. 

Cc) Generate X from the TV, as in an ordinary SB with N prrurr blocks. 

Given a matrix X generated from this Bayesian model, we can use 
Bayes’ theorem to compute a posterior probability distribution for the 
block membership of each node. This has the form 

PK, = 11x1 i= l)..., g,,j= l,..., t. 

This g X t array of values gives the probability that each node belongs 
to each block. If the blockmodel “works” then these probabilities 
should be near zero or one. If the blockmodel does not work then the 
posterior probabilities will be near their a priori values, i.e., X,, through 
h,. If the posterior probabilities are not near 0 or 1 then the blockmodel 
is not informative and one cannot tell which nodes go into which 
blocks. For example, suppose t = 2 and g = 10. The posterior block 
membership probabilities might look like this: 

Node 

I 
2 
3 
4 
5 
6 
7 
8 
9 

IO 

Block 

1 
0.90 
0.85 
0.95 
0.70 
0.50 
0.45 
0.05 
0.10 
0.15 
0.05 

2 

0.10 
0.15 
0.05 
0.30 
0.50 
0.55 
0.95 
0.90 
0.85 
0.95 

The interpretation of the array is that block 1 contains nodes 1. 2, 3, 
and 4 with high probability; block 2 contains nodes 7, 8, 9 and 10, with 
high probability, and the data do not give strong evidence for the block 
membership of either nodes 5 or 6. 

We believe that the Bayesian model outlined above has great poten- 
tial for formalizing the current techniques of blockmodeling and in- 
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tegrating them as components of a consistent. systematic approach to 
the study of relational data. 
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