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What led to the pervasiveness of hybrids 
between Cx. pipiens and Cx. molestus in 
North America, but not in Europe and Af- 
rica, still remains to be determined. In 
southernmost Europe, we identified two 
populations with a few hybrid individuals, 
as well as populations with pure Cx. pipiens 
signatures and populations with a mix of 
pure Cx. pipiens and pure Cx. molestus 
signatures (Fig. 2). Indeed, previous 
allozyme- based studies indicated the exis- 
tence of populations in Italy with a mix of 
the two forms (26) but a very low rate of 
hybridization (1%), probably because of 
their different mating behaviors (26). The 
rarity of southern European hybrids and our 
failure to find hybrids in northern Europe 
may be due to their low fitness and inability 
to diapause. Importantly, the introduction to the 
United States of separate populations of Cx. pipi- 
ens and Cx. molestus that later hybridized, or of 
hybrids from southern Europe, has led to abun- 
dant and ubiquitous hybrid forms that survive the 
rigors of northern winters. 

It is now clear that models derived from 
the U.S. epidemic of WNV (28) may not be 
applicable to Eurasia, and vice versa (29). 
A major factor in all recent outbreaks (Ro- 
mania 1996, Russia 1999, and United 
States 1999) is the involvement of mosqui- 
toes in the Cx. pipiens complex as the 
primary vectors (8, 30). Unlike European 
Cx. pipiens, U.S. Cx. pipiens appears to bite 
readily both avian hosts and humans (2, 
31). Here we have shown that, across the 
northeastern United States, a large propor- 
tion of individuals are hybrids of human- 
biter and bird-biter forms. In combination 
with susceptible migrating birds and highly 
concentrated human populations in U.S. 
cities and suburbs, the prevalence of such 
bridge vectors that readily transmit the vi- 
rus among and between avian hosts and 
humans could have created the current ep- 
idemic conditions. 

The present study suggests that changes in 
vectorial capacity and the creation of new 
efficient vectors may occur with new intro- 
ductions. In particular, the arrival of hybrid 
American forms in northern Europe has the 
potential to radically change the dynamics of 
WNV in Europe. 
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Complex biological, technological, and sociological networks can be of very 
different sizes and connectivities, making it difficult to compare their struc- 
tures. Here we present an approach to systematically study similarity in the 
local structure of networks, based on the significance profile (SP) of small 
subgraphs in the network compared to randomized networks. We find 
several superfamilies of previously unrelated networks with very similar SPs. 
One superfamily, including transcription networks of microorganisms, rep- 
resents "rate-limited" information-processing networks strongly con- 
strained by the response time of their components. A distinct superfamily 
includes protein signaling, developmental genetic networks, and neuronal 
wiring. Additional superfamilies include power grids, protein-structure net- 
works and geometric networks, World Wide Web links and social networks, 
and word-adjacency networks from different languages. 
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Many networks in nature share global prop- 
erties (1, 2). Their degree sequences (the 
number of edges per node) often follow a 
long-tailed distribution, in which some nodes 
are much more connected than the average 
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(3). In addition, natural networks often show 
the small-world property of short paths be- 
tween nodes and highly clustered connections 
(1, 2, 4). Despite these global similarities, 
networks from different fields can have very 
different local structure (5). It was recently 
found that networks display certain patterns, 
termed "network motifs," at much higher fre- 
quency than expected in randomized net- 
works (6, 7). In biological networks, these 
motifs were suggested to be recurring circuit 
elements that carry out key information- 
processing tasks (6, 8-10). 
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To understand the design principles of com- 
plex networks, it is important to compare the local 
structure of networks from different fields. The 
main difficulty is that these networks can be of 
vastly different sizes [for example, World Wide 
Web (WWW) hyperlink networks with millions 
of nodes and social networks with tens of nodes] 
and degree sequences. Here, we present an ap- 
proach for comparing network local structure, 
based on the significance profile (SP). To calcu- 
late the SP of a network, the network is compared 
to an ensemble of randomized networks with the 
same degree sequence. The comparison to ran- 
domized networks compensates for effects due to 
network size and degree sequence. For each sub- 
graph i, the statistical significance is described by 
the Z score (11): 

Zi = (Nreali - <Nrand> )/std(Nrandi) 

where Nreali is the number of times the sub- 

graph appears in the network, and <Nrandi> 
and std(Nrand,) are the mean and standard 
deviation of its appearances in the random- 
ized network ensemble. The SP is the vector 
of Z scores normalized to length 1: 

SPi=Zil(Zi2)1/2 

The normalization emphasizes the relative 
significance of subgraphs, rather than the ab- 
solute significance. This is important for 
comparison of networks of different sizes, 
because motifs (subgraphs that occur much 
more often than expected at random) in large 
networks tend to display higher Z scores than 
motifs in small networks (7). 

We present in Fig. 1 the SP of the 13 
possible directed connected triads (triad sig- 
nificance profile, TSP) for networks from 
different fields (12). The TSP of these net- 
works is almost always insensitive to removal 
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of 30% of the edges or to addition of 50% 
new edges at random, demonstrating that it is 
robust to missing data or random data errors 
(SOM Text). Several superfamilies of net- 
works with similar TSPs emerge from this 
analysis. One superfamily includes sensory 
transcription networks that control gene ex- 
pression in bacteria and yeast in response to 
external stimuli. In these transcription net- 
works, the nodes represent genes or operons 
and the edges represent direct transcriptional 
regulation (6, 13-15). Networks from three 
microorganisms, the bacteria Escherichia 
coli (6) and Bacillus subtilis (14) and the 
yeast Saccharomyces cerevisiae (7, 15), were 
analyzed. The networks have very similar 
TSPs (correlation coefficient c > 0.99). They 
show one strong motif, triad 7, termed "feed- 
forward loop." The feedforward loop has 
been theoretically and experimentally shown 
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Fig. 1. The triad significance profile (TSP) of networks from various 
disciplines. The TSP shows the normalized significance level (Z score) for 
each of the 13 triads. Networks with similar characteristic profiles are 
grouped into superfamilies. The lines connecting the significance values 
serve as guides to the eye. The networks are as follows (where N and E 
are the number of nodes and edges, respectively) (12): (i) Direct tran- 
scription interactions in the bacteria E. coli (6) (TRANSC-E.COLI N = 424, 
E = 519) and B. subtilis (14) (TRANSC-B.SUBTILIS N = 516, E = 577) and 
in the yeast S. cerevisiae [TRANC-YEAST N = 685, E = 1052 (7) and 
TRANSC-YEAST-2 N = 2341, E=3969 (15)]. (ii) Signal-transduction 
interactions in mammalian cells based on the signal transduction knowl- 
edge environment (STKE, http://stke.sciencemag.org/) (SIGNAL-TRANS- 
DUCTION N = 491, E = 989), transcription networks that guide devel- 
opment in fruit fly (from the GeNet literature database, www.csa.ru/lnst/ 
gorb_dep/inbios/genet/genet.htm) (TRANSC-DROSOPHILA N = 110, E = 
307), endomesoderm development in sea urchin (20) (TRANSC-SEA- 

URCHIN N = 45, E = 83), and synaptic connections between neurons in 
C. elegans (NEURONS N = 280, E = 2170). (iii) WWW hyperlinks 
between Web pages in the www.nd.edu site (3) (WWW-1 N = 325729, 
E = 1469678), pages related to literary studies of Shakespeare (21) 
(WWW-2 N = 277114, E = 927400), and pages related to tango, 
specifically the music of Piazzolla (21) (WWW-3 N = 47870, E = 
235441); and social networks, including inmates in prison (SOCIAL-1 N = 
67, E = 182), sociology freshmen (22) (SOCIAL-2 N = 28, E = 110), and 
college students in a course about leadership (SOCIAL-3 N = 32, E = 96). 
(iv) Word-adjacency networks of a text in English (ENGLISH N = 7724, 
E = 46281), French (FRENCH N = 9424, E = 24295), Spanish (SPANISH 
N = 12642, E = 45129), and Japanese (JAPANESE N = 3177, E = 8300) 
and a bipartite model with two groups of nodes of sizes N, = 1000 and 
N2 = 10 with probability of a directed or mutual edge between nodes of 
different groups being p = 0.06 and q = 0.003, respectively, and no edges 
between nodes within the same group (BIPARTITE N = 1010, E = 1261). 
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to perform signal-processing tasks such as 
persistence detection (6, 10), pulse genera- 
tion, and acceleration of transcription re- 
sponses (9). Triad 3, the 3-chain, is an 
anti-motif (a significantly underrepresented 
subgraph) corresponding to the shallow ar- 
chitecture of these networks, which have few 
long cascades (16). These networks are "sen- 
sory networks," which need to respond with- 
in minutes to transient signals such as stresses 
and nutrients. The minimal time required for 
response (for the first proteins to be ex- 
pressed) is indeed on the order of minutes. If 
the information needs to pass additional steps 
(a regulator protein needs to be expressed and 
cross its activation threshold to turn on a 
gene), then the response time is much longer. 
The response time in each cascade step has 
been experimentally and theoretically 
shown to be on the order of the gene- 
product lifetime (8), often tens of minutes. 
Thus, these networks are "rate-limited net- 
works," where the desired response times 
are often as short as the response times of 
the network components. 

In the rate-limited network superfamily, 
long cascades and feedback loops are rare 
(16). Feedbacks are usually closed by 
protein-protein interactions and not by tran- 
scription (17). Purely transcriptional feed- 
back loops may be rare because they are 
unstable and noisy due to their delays (18) or 
because they can be locked into an irrevers- 
ible state (19), both undesirable properties for 
sensory transcription networks. 

We find a distinct superfamily that in- 
cludes three types of biological networks 
(12): signal-transduction interactions in 
mammalian cells based on the Signal Trans- 
duction Knowledge Environment (STKE) 
(12), developmental transcription networks 
that guide development in fruit fly (12) and 
sea-urchin (20), and synaptic wiring between 
neurons in Caenorhabditis elegans (12). 
These networks show triads 7, 9, and 10 with 
positive TSPs, and triads 1, 2, 4, and 5 with 
negative TSPs (Fig. 1). In contrast to the 
sensory transcription networks of microor- 
ganisms, these networks display two-node 
feedbacks that regulate or are regulated by a 
third node (triads 10, 9) and are less biased 
against cascades (triad 3). The common fea- 
ture to this superfamily of information- 
processing networks is that the response time 
of each step in the network is usually much 
shorter than the response time required for 
the biological function of the network. Pro- 
tein signal-transduction networks often need 
to respond within an hour or longer, but each 
interaction can take minutes or less. Cascade 
steps in developmental networks can have 
response times of tens of minutes, but the 
processes they control are much slower, on 
the order of animal (19) cell-division times 
that can take several hours. Neuronal net- 
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Fig. 2. The correlation coefficient matrix of 
networks in Fig. 1. 

works in C. elegans typically need to re- 
spond within a second, but neuron response 
times are shorter than 100 ms. Thus, it 
appears that this superfamily characterizes 
biological information-processing networks 
that are not rate-limited. 

Next, we analyzed three WWW networks 
of hyperlinks between Web pages related to 
university, literature, or music (3, 21). The 
TSPs were quite similar (c = 0.7 to 0.9). 
Triads 9, 10, 12, and 13 had the highest TSP 
values, and 4, 5, and 6 the lowest. The over- 
represented triads have many transitive triplet 
interactions, where if x-y andy->z then x->z 
(table S2). For example, the overrepresented 
triad 13, termed "clique," has six transitive 
interactions, the highest transitivity possible 
in a triad. The less represented triads such as 
6, 8, and 11 are highly intransitive. 

We also analyzed three social networks, 
in which nodes represent people in a group, 
and edges represent positive sentiment direct- 
ed from one group member to another, based 
on questionnaires (12, 22). The TSPs of the 
three social networks were very similar (c = 
0.92 to 0.96). Notably, their TSPs were quite 
close to the TSP of the WWW nets (c = 0.7 
to 0.9). This suggests that WWW networks 
and social networks may be part of a super- 
family. The tendency of social networks to 
display transitive interactions and transitive 
triads is well established (23). The similarity 
of WWW and social networks suggests that 
classical models of social structural organiza- 
tion (24) may also be used to understand 
WWW structure. 

Texts can also be represented as networks 
(25). We studied word-adjacency networks in 
which each node represents a word and a 
directed connection occurs when one word 
directly follows the other in the text. The 
TSPs of texts from different languages and of 

0.8 

0.6 

0.4 

0.2 c 

0~ 
,o 

o 0 
a. 
Pn 

0 

-0.2 

-0.4 

-0.6 

-0.8 

the triad significance profiles for the directed 

different sizes were similar (Fig. 1 compares 
texts in English, French, Spanish, and Japa- 
nese). The main feature was the underrepre- 
sentation of triangle-shaped triads 7 to 13. 
This is related to the structure of languages in 
which words belong to categories and a word 
from one category tends to be followed by 
one from a different category (26). For ex- 
ample, among the most connected words are 
prepositions, which are usually followed by 
nouns or articles. Figure 1 also shows the 
TSP for a model bipartite graph (12) in which 
nodes belong to two groups and connections 
are formed between these groups and not 
within the groups. The bipartite model graph 
shows a TSP that resembles that of the word- 
adjacency networks. 

The similarities between networks can 
also be visualized by looking at the corre- 
lation between the TSPs of different net- 
works (Fig. 2). The correlations can be 
used to cluster the networks into distinct 
superfamilies (27). 

The TSPs display certain conservation re- 
lations between subgraph types. For example, 
networks with excess triangle-shaped triads 
tend to have a deficit of V-shaped triads. We 
find that there are several triad conservation 
rules in networks that conserve the degree 
sequences of single and mutual edges (SOM 
Text). As a result, the 13 values of the TSP 
are determined by only seven degrees of 
freedom. One can intuitively interpret these 
conservation laws in terms of reactions that 
convert V-shaped subgraphs into triangles, 
preserving the degrees of all participating 
nodes. Analysis of the reactions occurring in 
each network allows a compact description of 
the difference between networks and their 
randomized counterparts (SOM Text). 

We now consider nondirected networks, 
in which edges have no specified direction- 
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Fig. 3. The subgraph 
ratio profile (SRP) for Subgraph Rat 
various nondirected net- 0.5 - 
works. The networks 
are as follows (12): (i) 0 , 
The electrical power 
grid of the western 
United States (4) -0.5- 
(POWERGRID N = 
4941, E = 6594) and a 
geometric model with 
similar clustering coef- ? 
ficient (GEO-MODEL- 2 
PG N =5000, E = E 
7499). (ii) Networks of L 

~ 0.5- secondary-structure el- 0 
ements adjacency for ^ 
several large proteins .> 
[structure based on the | 05- 
PDB database (www. _ 
rcsb.org/pdb/); the pro- 
teins (and their PDB ID) 
were 1A4J, an immu- 
noglobulin (PROTEIN- 
STRUCTURE-1 N = 95, 
E = 213); 1EAW, a 
serine protease inhibitor 
(PROTEIN-STRUCTURE- 2 3 
2 N = 53, E = 123); 
and 1AOR, an oxi- 
doreductase (PROTEIN- 
STRUCTURE-3 N = 99, s I 
E = 212)] and a geo- subgrap 
metric model with similar clustering coefficient (GEO-MODEL-PS 
N = 53, E = 136). (iii) The Internet at the autonomous system 
level (www.cosin.org) (AUTONOMOUS-SYSTEMS 1 to 6; N = 3015, 
3522, 4517, 5357, 7956, 10515; E = 5156, 6324, 8376, 10328, 

io Profile 
a 

-|- POWER-GRID 
-- GEO-MODEL-PG 

- 0.5 - PROTEIN-STRUCTURE-1 
-a- PROTEIN-STRUCTURE-2 

0 -- PROTEIN-STRUCTURE-3 
- GEO-MODEL-PS 

- -0.5 

- 0.5 
-- BAm=l N=1000 

0 o o 0 -e- BA m=1 N=3000 
--- BAm=10N=1000 

- -0.5 -- BA m=10 N=3000 

4 5 6 

phs 
15943, 21455). (iv) Networks grown according to the preferential 
attachment BA model (3) with m = 1 or m = 10 edges per new 
node (BA m = 1, 10; N = 1000, 3000, 1000, 3000; E = 1000, 3000, 
9901, 29901). 

ality. Because nondirected networks have 
only two types of triads (V and triangle), we 
analyzed the profile of the six types of non- 
directed connected tetrads (four-node sub- 
graphs). Unlike triads, the normalized Z 
scores of tetrads show a significant depen- 
dence on the network size. Therefore, instead 
of an SP based on Z scores, we use the 
abundance of each subgraph i relative to ran- 
dom networks: 

Nreali - <Nrandi> 
i reali + <Nrandi> + e 

where ? ensures that |A| is not misleadingly 
large when the subgraph appears very few 
times in both the real and random networks 
(here e = 4). The subgraph ratio profile (SRP) 
is the vector of Ai normalized to length 1: 

SRPi = Ai/(hi,2)1/2 

A nondirected network representing the elec- 
trical power grid of the western United States 
(4) showed an SRP with overrepresentation 
of tetrads 3 to 6 (Fig. 3). Nondirected net- 
works of protein structure in which nodes are 
secondary-structure elements (cx helices and 
B strands) and two nodes are connected if 
their distance is smaller than 10 A have sim- 
ilar SRPs with overrepresented tetrads 3, 5, 
and 6. We compared these networks to model 
networks in which connections are deter- 

mined on a lattice by geometrical proximity. 
In these geometrically constrained networks, 
the nodes are arrayed on a lattice (a line in 
one dimension, a plane in two dimensions, 
etc). Points that are closer than a distance R 
on the lattice are linked by an edge with 
probabilityp. Points at a distance greater than 
R are unlinked. The resulting subgraph dis- 
tributions of these networks and their corre- 
sponding randomized versions can be analyt- 
ically calculated. We find good agreement 
between the real-world protein structure and 
power-grid SRPs and the corresponding geo- 
metrical models with a similar number of 
nodes, edges, and clustering coefficient (Fig. 3). 

A distinct family of SRPs was found for the 
Interet at the level of nondirected connections 
between autonomous systems (AS, which are 
groups of computers within which networking 
is handled locally, but between which data 
flows over the public Internet). We studied the 
structures of the AS network sampled at different 
time points from 1997 to 2001 (12). The SRP of 
the AS networks was similar despite their differ- 
ent sizes. We find that the SRP of these networks 
is very different from that of the geometrically 
constrained superfamily, with tetrads 2 to 4 un- 
derrepresented and tetrad 5 overrepresented. 

Finally, we studied the preferential attach- 
ment model of Barabasi and Albert (BA) (28), 
which is widely used to study network evolu- 
tion. In the BA model, a nondirected network is 

grown node by node, connecting each new 
node to m existing ones. The probability of 
connecting to an existing node i increases with 
the number of edges it already has. We find that 
the SRP of these networks (Fig. 3) has different 
forms for m = 1, m = 2, and high m (29). This 
is because not all tetrad patterns can be created 
when m = 1 or 2. The present approach can 
thus be used to study model networks (28) and 
allow comparison of their local structure to that 
of real-world systems. 

In the SOM Text, we also show the SRP 
of tetrads for the directed networks consid- 
ered above. We find that generally tetrad 
profiles of related networks are similar. 
However, networks of different types in the 
same triad superfamily sometimes show 
distinct tetrad profiles, suggesting that 
higher order subgraph profiles can help 
refine network classification. 

The present approach demonstrates that 
networks of the same type share not only 
network motifs, but also characteristic SPs 
with very similar proportions of motifs and 
antimotifs significance. In addition, we find 
several superfamilies of networks that have 
similar SPs even though they describe dif- 
ferent systems of vastly different sizes. 
What do the superfamilies mean? One pos- 
sibility is that the similarity in SP is acci- 
dental and that distinct evolutionary histo- 
ries can lead to a similar local structure. 
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Another possibility is that the different sys- 
tems in a superfamily have similar key 
circuit elements because they evolved to 
perform similar tasks. The latter possibility 
leads to intriguing hypotheses that connect 
networks from different disciplines. This 
can allow for a better understanding of a 
given network based on results from other 
networks in the same superfamily. It would 
be interesting to use the present approach to 
map the relation between the function and 
the local structure of real-world networks. 
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