
ALBERT-LÁSZLÓ BARABÁSI

NETWORK SCIENCE
COMMUNITIES

9

ACKNOWLEDGEMENTS MÁRTON PÓSFAI
NICOLE SAMAY
ROBERTA SINATRA

SARAH MORRISON
AMAL HUSSEINI

NORMCORE
ONCE UPON A TIME PEOPLE WERE BORN INTO COMMUNITIES AND HAD TO FIND THEIR INDIVIDUALITY.
TODAY PEOPLE ARE BORN INDIVIDUALS AND HAVE TO FIND THEIR COMMUNITIES.

MASS INDIE RESPONDS TO THIS SITUATION BY CREATING CLIQUES OF PEOPLE IN THE KNOW, WHILE NORMCORE
KNOWS THE REAL FEAT IS HARNESSING THE POTENTIAL FOR CONNECTION TO SPRING UP.
IT'S ABOUT ADAPABILITY, NOT EXCLUSIVITY.

Introduction

Introduction

Basics of Communities

Hierarchical Clustering

Modularity

Overlapping Communities

Characterizing Communities

Testing Communities

Summary

Homework

ADVANCED TOPICS 9.A

Counting Partitions

ADVANCED TOPICS 9.B

Hiearchical Modularity

ADVANCED TOPICS 9.C

Modularity

ADVANCED TOPICS 9.D

Fast Algorithms for Community Detection

ADVANCED TOPICS 9.E

Threshold for clique percolation

Homework

Bibliography

1

2

3

4

5

6

7

8

9

INDEX

This book is licensed under a
Creative Commons: CC BY-NC-SA 2.0.
PDF V26, 05.09.2014

Figure 9.0 (cover image)

Art & Networks: K-Mode: Youth Mode

K-Mode is an art collective that publishes
trend reports with an unusual take on various
concepts. The image shows a page from Youth
Mode: A Report on Freedom, discussing the
subtle shift in the origins and the meaning of
communities, the topic of this chapter [1].

10

11

12

13

14

INTRODUCTIONCOMMUNITIES 3

SECTION 9.1

Belgium appears to be the model bicultural society: 59% of its citizens
are Flemish, speaking Dutch and 40% are Walloons who speak French. As
multiethnic countries break up all over the world, we must ask: How did
this country foster the peaceful coexistence of these two ethnic groups
since 1830? Is Belgium a densely knitted society, where it does not matter
if one is Flemish or Walloon? Or we have two nations within the same bor-
ders, that learned to minimize contact with each other?

The answer was provided by Vincent Blondel and his students in 2007,
who developed an algorithm to identify the country’s community struc-
ture. They started from the mobile call network, placing individuals next
to whom they regularly called on their mobile phone [2]. The algorithm
revealed that Belgium’s social network is broken into two large clusters of
communities and that individuals in one of these clusters rarely talk with
individuals from the other cluster (Figure 9.1). The origin of this separation
became obvious once they assigned to each node the language spoken by
each individual, learning that one cluster consisted almost exclusively of
French speakers and the other collected the Dutch speakers.

In network science we call a community a group of nodes that have a
higher likelihood of connecting to each other than to nodes from other
communities. To gain intuition about community organization, next we
discuss two areas where communities play a particularly important role:

• Social Networks
Social networks are full of easy to spot communities, something that
scholars have noticed decades ago [3,4,5,6,7]. Indeed, the employees
of a company are more likely to interact with their coworkers than
with employees of other companies [3]. Consequently work places ap-
pear as densely interconnected communities within the social net-
work. Communities could also represent circles of friends, or a group
of individuals who pursue the same hobby together, or individuals
living in the same neighborhood.
A social network that has received particular attention in the context

INTRODUCTION

Communities extracted from the call pattern
of the consumers of the largest Belgian mo-
bile phone company. The network has about
two million mobile phone users. The nodes
correspond to communities, the size of each
node being proportional to the number of in-
dividuals in the corresponding community.
The color of each community on a red–green
scale represents the language spoken in the
particular community, red for French and
green for Dutch. Only communities of more
than 100 individuals are shown. The commu-
nity that connects the two main clusters con-
sists of several smaller communities with less
obvious language separation, capturing the
culturally mixed Brussels, the country’s cap-
ital. After [2].

Figure 9.1
Communities in Belgium

COMMUNITIES

INTRODUCTION4COMMUNITIES

of community detection is known as Zachary’s Karate Club (Figure 9.2)
[7], capturing the links between 34 members of a karate club. Given
the club's small size, each club member knew everyone else. To uncov-
er the true relationships between club members, sociologist Wayne
Zachary documented 78 pairwise links between members who regu-
larly interacted outside the club (Figure 9.2a).

The interest in the dataset is driven by a singular event: A conflict be-
tween the club’s president and the instructor split the club into two.
About half of the members followed the instructor and the other half
the president, a breakup that unveiled the ground truth, representing
club's underlying community structure (Figure 9.2a). Today communi-
ty finding algorithms are often tested based on their ability to infer
these two communities from the structure of the network before the
split.

• Biological Networks
Communities play a particularly important role in our understand-
ing of how specific biological functions are encoded in cellular net-
works. Two years before receiving the Nobel Prize in Medicine, Lee
Hartwell argued that biology must move beyond its focus on single
genes. It must explore instead how groups of molecules form func-
tional modules to carry out a specific cellular functions [10]. Ravasz
and collaborators [11] made the first attempt to systematically iden-
tify such modules in metabolic networks. They did so by building an
algorithm to identify groups of molecules that form locally dense
communities (Figure 9.3).

Communities play a particularly important role in understanding
human diseases. Indeed, proteins that are involved in the same dis-
ease tend to interact with each other [12,13]. This finding inspired
the disease module hypothesis [14], stating that each disease can be
linked to a well-defined neighborhood of the cellular network.

The examples discussed above illustrate the diverse motivations that
drive community identification. The existence of communities is rooted
in who connects to whom, hence they cannot be explained based on the de-
gree distribution alone. To extract communities we must therefore inspect
a network’s detailed wiring diagram. These examples inspire the starting
hypothesis of this chapter:

H1: Fundamental Hypothesis

A network’s community structure is uniquely encoded in
its wiring diagram.

According to the fundamental hypothesis there is a ground truth about
a network’s community organization, that can be uncovered by inspecting
Aij.

The purpose of this chapter is to introduce the concepts necessary to

(a) The connections between the 34 members
of Zachary's Karate Club. Links capture in-
teractions between the club members out-
side the club. The circles and the squares
denote the two fractions that emerged af-
ter the club split in two. The colors capture
the best community partition predicted by
an algorithm that optimizes the modulari-
ty coefficient M (SECTION 9.4). The commu-
nity boundaries closely follow the split: The
white and purple communities capture one
fraction and the green-orange communi-
ties the other. After [8].

(b) The citation history of the Zachary karate
club paper [7] mirrors the history of com-
munity detection in network science. In-
deed, there was virtually no interest in
Zachary’s paper until Girvan and Newman
used it as a benchmark for community de-
tection in 2002 [9]. Since then the number
of citations to the paper exploded, reminis-
cent of the citation explosion to Erdős and
Rényi’s work following the discovery of
scale-free networks (Figure 3.15).

The frequent use Zachary’s Karate Club
network as a benchmark in community
detection inspired the Zachary Karate Club
Club, whose tongue-in-cheek statute states:
“The first scientist at any conference on
networks who uses Zachary's karate club
as an example is inducted into the Zachary
Karate Club Club, and awarded a prize.”

Hence the prize is not based on merit, but
on the simple act of participation. Yet, its
recipients are prominent network scien-
tists (http://networkkarate.tumblr.com/).
The figure shows the Zachary Karate Club
trophy, which is always held by the latest
inductee. Photo courtesy of Marián Boguñá.

Figure 9.2
Zachary’s Karate Club

4

20

22

21 9

28

3

27

18

19

23

29
7

17

24

33

16

30 34

26

25

32
8

2
1

12

11

6
5

13

14

31

10
15

90
80
70
60
50
40
30
20
10

1980

CI
TA
TI
ON
S

YEAR
1985 1990 1995 2000 2005 2010 2015

(a)

(b)

INTRODUCTION5COMMUNITIES

understand and identify the community structure of a complex network.
We will ask how to define communities, explore the various community
characteristics and introduce a series of algorithms, relying on different
principles, for community identification.

The E. coli metabolism offers a fertile ground
to investigate the community structure of bi-
ological systems [11].

(a) The biological modules (communities) iden-
tified by the Ravasz algorithm [11] (SECTION
9.3). The color of each node, capturing the
predominant biochemical class to which
it belongs, indicates that different func-
tional classes are segregated in distinct
network neighborhoods. The highlighted
region selects the nodes that belong to the
pyrimidine metabolism, one of the predict-
ed communities.

(b) The topologic overlap matrix of the E. coli
metabolism and the corresponding den-
drogram that allows us to identify the mod-
ules shown in (a). The color of the branches
reflect the predominant biochemical role
of the participating molecules, like car-
bohydrates (blue), nucleotide and nucleic
acid metabolism (red), and lipid metabo-
lism (cyan).

(c) The red right branch of the dendrogram
tree shown in (b), highlighting the region
corresponding to the pyridine module.

(d) The detailed metabolic reactions within the
pyrimidine module. The boxes around the
reactions highlight the communities pre-
dicted by the Ravasz algorithm.

After [11].

Figure 9.3
Communities in Metabolic Networks

(a)

(c)

(d)

(b)

BASICS OF COMMUNITIESCOMMUNITIES 6

SECTION 9.2

What do we really mean by a community? How many communities are
in a network? How many different ways can we partition a network into
communities? In this section we address these frequently emerging ques-
tions in community identification.

DEFINING COMMUNITIES
Our sense of communities rests on a second hypothesis (Figure 9.4):

H2: Connectedness and Density Hypothesis

A community is a locally dense connected subgraph in a network.

In other words, all members of a community must be reached through oth-
er members of the same community (connectedness). At the same time we
expect that nodes that belong to a community have a higher probability
to link to the other members of that community than to nodes that do not
belong to the same community (density). While this hypothesis consider-
ably narrows what would be considered a community, it does not uniquely
define it. Indeed, as we discuss below, several community definitions are
consistent with H2.

Maximum Cliques
One of the first papers on community structure, published in 1949, de-

fined a community as group of individuals whose members all know each
other [5]. In graph theoretic terms this means that a community is a com-
plete subgraph, or a clique. A clique automatically satisfies H2: it is a con-
nected subgraph with maximal link density. Yet, viewing communities as
cliques has several drawbacks:

• While triangles are frequent in networks, larger cliques are rare.

• Requiring a community to be a complete subgraph may be too re-
strictive, missing many other legitimate communities. For example,
none of the communities of Figure 9.2 and 9.3 correspond to complete
subgraphs.

BASICS OF COMMUNITIES

Communities are locally dense connected
subgraphs in a network. This expectation re-
lies on two distinct hypotheses:

Connectedness Hypothesis
Each community corresponds to a connected
subgraph, like the subgraphs formed by the
orange, green or the purple nodes. Conse-
quently, if a network consists of two isolated
components, each community is limited to
only one component. The hypothesis also im-
plies that on the same component a commu-
nity cannot consist of two subgraphs that do
not have a link to each other. Consequently,
the orange and the green nodes form separate
communities.

Density Hypothesis
Nodes in a community are more likely to con-
nect to other members of the same commu-
nity than to nodes in other communities. The
orange, the green and the purple nodes satisfy
this expectation.

Figure 9.4
Connectedness and Density Hypothesis

BASICS OF COMMUNITIES7COMMUNITIES

(a) Cliques
A clique corresponds to a complete sub-
graph. The highest order clique of this net-
work is a square, shown in orange. There are
several three-node cliques on this network.
Can you find them?

(b) Strong Communities
A strong community, defined in (9.1), is a
connected subgraph whose nodes have
more links to other nodes in the same com-
munity that to nodes that belong to other
communities. Such a strong community
is shown in purple. There are additional
strong communities on the graph - can you
find at least two more?

(c) Weak Communities
A weak community defined in (9.2) is a sub-
graph whose nodes’ total internal degree
exceeds their total external degree. The
green nodes represent one of the several
possible weak communities of this network.

Figure 9.5
Defining Communities

(a)

(b)

(c)

Strong and Weak Communities
To relax the rigidity of cliques, consider a connected subgraph C of NC

nodes in a network. The internal degree ki
int of node i is the number of links

that connect i to other nodes in C. The external degree ki
ext is the number of

links that connect i to the rest of the network. If ki
ext=0, each neighbor of

i is within C, hence C is a good community for node i. If ki
int=0, then node i

should be assigned to a different community. These definitions allow us to
distinguish two kinds of communities (Figure 9.5):

• Strong Community
C is a strong community if each node within C has more links within
the community than with the rest of the graph [15,16]. Specifically, a
subgraph C forms a strong community if for each node i ∈ C,

 . (9.1)

• Weak Community
C is a weak community if the total internal degree of a subgraph ex-
ceeds its total external degree [16]. Specifically, a subgraph C forms
a weak community if

 . (9.2)

A weak community relaxes the strong community requirement by al-
lowing some nodes to violate (9.1). In other words, the inequality (9.2) ap-
plies to the community as a whole rather than to each node individually.

Note that each clique is a strong community, and each strong commu-
nity is a weak community. The converse is generally not true (Figure 9.5).

The community definitions discussed above (cliques, strong and weak
communities) refine our notions of communities. At the same time they
indicate that we do have some freedom in defining communities.

NUMBER OF COMMUNITIES
How many ways can we group the nodes of a network into commu-

nities? To answer this question consider the simplest community find-
ing problem, called graph bisection: We aim to divide a network into two
non-overlapping subgraphs, such that the number of links between the
nodes in the two groups, called the cut size, is minimized (BOX 9.1).

Graph Partitioning
We can solve the graph bisection problem by inspecting all possible di-

visions into two groups and choosing the one with the smallest cut size.
To determine the computational cost of this brute force approach we note
that the number of distinct ways we can partition a network of N nodes
into groups of N1 and N2 nodes is

 . (9.3)

k int
i (C) > kext

i (C)

∑
i∈C

k int
i (C) > ∑

i∈C
kext

i (C)

N!
N1!N2!

BASICS OF COMMUNITIES8COMMUNITIES

BOX 9.1
GRAPH PARTITIONING

Chip designers face a problem of exceptional complexity: They need
to place on a chip 2.5 billion transistors such that their wires do not
intersect. To simplify the problem they first partition the wiring dia-
gram of an integrated circuit (IC) into smaller subgraphs, chosen such
that the number of links between them to be minimal. Then they lay
out different blocks of an IC individually, and reconnect these blocks.
A similar problem is encountered in parallel computing, when a large
computational problem is partitioned into subtasks and assigned to
individual chips. The assignment must minimize the typically slow
communication between the processors.

The problem faced by chip designers or software engineers is called
graph partitioning in computer science [17]. The algorithms developed
for this purpose, like the widely used Kerninghan-Lin algorithm (Fig-

ure 9.6), are the predecessors of the community finding algorithms dis-
cussed in this chapter.

There is an important difference between graph partitioning and
community detection: Graph partitioning divides a network into a
predefined number of smaller subgraphs. In contrast community de-
tection aims to uncover the inherent community structure of a net-
work. Consequently in most community detection algorithms the
number and the size of the communities is not predefined, but needs
to be discovered by inspecting the network’s wiring diagram.

The best known algorithm for graph
partitioning was proposed in 1970
[18]. We illustrate this with graph bi-
section which starts by randomly par-
titioning the network into two groups
of predefined sizes. Next we select a
node pair (i,j), where i and j belong to
different groups, and swap them, re-
cording the resulting change in the cut
size. By testing all (i,j) pairs we identi-
fy the pair that results in the largest
reduction of the cut size, like the pair
highlighted in (a). By swapping them
we arrive to the partition shown in (b).
In some implementations of the algo-
rithm if no pair reduces the cut size,
we swap the pair that increases the cut
size the least.

Figure 9.6
Kerninghan-Lin Algorithm

Using Stirling's formula n!! 2πn(n / e)n we can write (9.3) as

 . (9.4)

To simplify the problem let us set the goal of dividing the network into two
equal sizes N1 = N2 = N/2. In this case (9.4) becomes

 , (9.5)

indicating that the number of bisections increases exponentially with the
size of the network.

To illustrate the implications of (9.5) consider a network with ten nodes

N!
N1!N2!

2 N (N / e)N

2 N1(N1 / e)
N1 2 N2 (N2 / e)

N2

NN+1/2

N1
N1 +1/2N2

N2+1/2

2N+1

N
" e(N+1)ln ln2 – N2

1

(a)

(b)

BASICS OF COMMUNITIES9COMMUNITIES

which we bisect into two subgraphs of size N1 = N2 = 5. According to (9.3)

we need to check 252 bisections to find the one with the smallest cut size.
Let us assume that our computer can inspect these 252 bisections in one
millisecond (10-3 sec). If we next wish to bisect a network with a hundred
nodes into groups with N1 = N2 = 50, according to (9.3) we need to check
approximately 1029 divisions, requiring about 1016 years on the same com-
puter. Therefore our brute-force strategy is bound to fail, being impossible
to inspect all bisections for even a modest size network.

Community Detection
While in graph partitioning the number and the size of communities

is predefined, in community detection both parameters are unknown. We
call a partition a division of a network into an arbitrary number of groups,
such that each node belongs to one and only one group. The number of pos-
sible partitions follows [19-22]

 . (9.6)

As Figure 9.7 indicates, BN grows faster than exponentially with the net-
work size for large N.

Equations (9.5) and (9.6) signal the fundamental challenge of communi-
ty identification: The number of possible ways we can partition a network
into communities grows exponentially or faster with the network size N.
Therefore it is impossible to inspect all partitions of a large network (BOX

9.2).

In summary, our notion of communities rests on the expectation that
each community corresponds to a locally dense connected subgraph.
This hypothesis leaves room for numerous community definitions, from
cliques to weak and strong communities. Once we adopt a definition, we
could identify communities by inspecting all possible partitions of a net-
work, selecting the one that best satisfies our definition. Yet, the number
of partitions grows faster than exponentially with the network size, mak-
ing such brute-force approaches computationally infeasible. We therefore
need algorithms that can identify communities without inspecting all par-
titions. This is the subject of the next sections.

BN = 1
e

∞

∑
j=0

jN

j!

The number of partitions of a network of size
N is provided by the Bell number (9.6). The
figure compares the Bell number to an expo-
nential function, illustrating that the number
of possible partitions grows faster than expo-
nentially. Given that there are over 1040 parti-
tions for a network of size N=50, brute-force
approaches that aim to identify communities
by inspecting all possible partitions are com-
putationally infeasible.

Figure 9.7

Number of Partitions

10 0

10 10

10 20

10 30

0 10 20 30 40 50

BN

N

Bell Number

eN

BASICS OF COMMUNITIES10COMMUNITIES

BOX 9.2
NP COMPLETENESS

How long does it take to execute an algorithm? The answer is not given
in minutes and hours, as the execution time depends on the speed of
the computer on which we run the algorithm. We count instead the
number of computations the algorithm performs. For example an al-
gorithm that aims to find the largest number in a list of N numbers
has to compare each number in the list with the maximum found so
far. Consequently its execution time is proportional to N. In general,
we call an algorithm polynomial if its execution time follows Nx.

An algorithm whose execution time is proportional to N3 is slower on
any computer than an algorithm whose execution time is N. But this
difference dwindles in significance compared to an exponential algo-
rithm, whose execution time increases as 2N. For example, if an algo-
rithm whose execution time is proportional to N takes a second for N
= 100 elements, then an N3 algorithm takes almost three hours on the
same computer. Yet an exponential algorithm (2N) will take 1020 years
to complete.

The problem that an algorithm can solve in polynomial time is called
a class P problem. Several computational problems encountered in
network science have no known polynomial time algorithms, but
the available algorithms require exponential running time. Yet, the
correctness of the solution can be checked quickly, i.e. in polynomi-
al time. Such problems, called NP-complete, include the traveling
salesman problem (Figure 9.8), the graph coloring problem, maximum
clique identification, partitioning a graph into subgraphs of specific
type, and the vertex cover problem (Box 7.4).

The ramifications of NP-completeness has captured the fascination of
the popular media as well. Charlie Epps, the main character of the CBS
TV series Numbers, spends the last three months of his mother's life
trying to solve an NP complete problem, convinced that the solution
will cure her disease. Similarly the motive for a double homicide in
the CBS TV series Elementary is the search for a solution of an NP-com-
plete problem, driven by its enormous value for cryptography.

Traveling Salesman is a 2012 intellectu-
al thriller about four mathematicians
who have solved the P versus NP prob-
lem, and are now struggling with the
implications of their discovery. The P
versus NP problem asks whether every
problem whose solution can be verified
in a polynomial time can also be solved
in a polynomial time. This is one of
the seven Millennium Prize Problems,
hence a $1,000,000 prize waits for the
first correct solution. The Traveling
Salesman refers to a salesman who tries
to find the shortest route to visit several
cities exactly once, at the end returning
to his starting city. While the problem
appears simple, it is in fact NP-com-
plete - we need to try all combination to
find the shortest path.

Figure 9.8
Night at the Movies

HIERARCHICAL CLUSTERINGCOMMUNITIES 11

SECTION 9.3

To uncover the community structure of large real networks we need
algorithms whose running time grows polynomially with N. Hierarchical
clustering, the topic of this section, helps us achieve this goal.

The starting point of hierarchical clustering is a similarity matrix,
whose elements xij indicate the distance of node i from node j. In commu-
nity identification the similarity is extracted from the relative position of
nodes i and j within the network.

Once we have xij, hierarchical clustering iteratively identifies groups of
nodes with high similarity. We can use two different procedures to achieve
this: agglomerative algorithms merge nodes with high similarity into the
same community, while divisive algorithms isolate communities by re-
moving low similarity links that tend to connect communities. Both proce-
dures generate a hierarchical tree, called a dendrogram, that predicts the
possible community partitions. Next we explore the use of agglomerative
and divisive algorithms to identify communities in networks.

AGGLOMERATIVE PROCEDURES: THE RAVASZ ALGORITHM
We illustrate the use of agglomerative hierarchical clustering for com-

munity detection by discussing the Ravasz algorithm, proposed to identify
functional modules in metabolic networks [11]. The algorithm consists of
the following steps:

Step 1: Define the Similarity Matrix
In an agglomerative algorithm similarity should be high for node pairs
that belong to the same community and low for node pairs that belong
to different communities. In a network context nodes that connect to
each other and share neighbors likely belong to the same community,
hence their xij should be large. The topological overlap matrix (Figure 9.9)
[11]

 (9.7)xo
ij = J (i, j)

min(ki, kj)+1‒Θ(Aij)

HIERARCHICAL CLUSTERING

HIERARCHICAL CLUSTERING12COMMUNITIES

captures this expectation. Here Θ(x) is the Heaviside step function,
which is zero for x≤0 and one for x>0; J(i, j) is the number of common
neighbors of node i and j, to which we add one (+1) if there is a direct
link between i and j; min(ki,kj) is the smaller of the degrees ki and kj. Con-
sequently:

• x0
ij=1 if nodes i and j have a link to each other and have the same

neighbors, like A and B in Figure 9.9a.

• x0
ij (i, j) =0 if i and j do not have common neighbors, nor do they link

to each other, like A and E.

• Members of the same dense local network neighborhood have high
topological overlap, like nodes H, I, J, K or E, F, G.

Step 2: Decide Group Similarity
As nodes are merged into small communities, we must measure how
similar two communities are. Three approaches, called single, complete
and average cluster similarity, are frequently used to calculate the com-
munity similarity from the node-similarity matrix xij (Figure 9.10). The
Ravasz algorithm uses the average cluster similarity method, defining
the similarity of two communities as the average of xij over all node
pairs i and j that belong to distinct communities (Figure 9.10d).

Step 3: Apply Hierarchical Clustering
The Ravasz algorithm uses the following procedure to identify the com-
munities:

1. Assign each node to a community of its own and evaluate xij for
all node pairs.

2. Find the community pair or the node pair with the highest simi-
larity and merge them into a single community.

3. Calculate the similarity between the new community and all other
communities.

4. Repeat Steps 2 and 3 until all nodes form a single community.

Step 4: Dendrogram

The agglomerative hierarchical clustering
algorithm proposed by Ravasz was designed
to identify functional modules in metabolic
networks, but it can be applied to arbitrary
networks.

(a) Topological Overlap

A small network illustrating the calcula-
tion of the topological overlap xij

0. For each
node pair i and j we calculate the overlap
(9.7). The obtained xij

0 for each connect-
ed node pair is shown on each link. Note
that xij

0 can be nonzero for nodes that do
not link to each other, but have a common
neighbor. For example, xij

 =1/3 for C and E.

(b) Topological Overlap Matrix
The topological overlap matrix xij

0 for the
network shown in (a). The rows and col-
umns of the matrix were reordered af-
ter applying average linkage clustering,
placing next to each other nodes with the
highest topological overlap. The colors
denote the degree of topological overlap
between each node pair, as calculated in
(a). By cutting the dendrogram with the
orange line, it recovers the three modules
built into the network. The dendogram in-
dicates that the EFG and the HIJK modules
are closer to each other than they are to
the ABC module.

After [11].

Figure 9.9
The Ravasz Algorithm1

1 1

1/3

1/3

1 1
1

1

1
1

1/3

1/3 2/3
2/3

A B

C

D

I
E

G

J

H
K

F

archical tree according to the predominant
biochemical class of the substrates it produc-
es, using the classification of metabolism
based on standard, small molecule biochem-

). As shown in Fig. 4A, and in the
three-dimensional representation in Fig. 4B,
most substrates of a given small molecule
class are distributed on the same branch of
the tree (Fig. 4A) and correspond to relatively
well delimited regions of the metabolic net-
work (Fig. 4B). Therefore, there are strong
correlations between shared biochemical
classification of metabolites and the global
topological organization ofE. coli metabo-
lism (Fig. 4A, bottom) (16).
To correlate the putative modules ob-

tained from our graph theory–based analy-
sis to actual biochemical pathways, we con-
centrated on the pathways involving the

A

B

C

D

K

J

I

H

0.90
0.70
0.50
0.30
0.10

1
1 1

1/3

1/3

1 1
1

1

1
1

1/3

1/3 2/3
2/3

A (1) B(1)

C(3)

D(0)

I(1/3)
E(1/3)

G (1/3)

J(2/3)

H
(1/3)

K(1)
F(1)

GFEHIJKDCBA

F

E

Fig. 3. Uncovering the underlying
modularity of a complex network.
(A) Topological overlap illustrated
on a small hypothetical network. For
each pair of nodes,i and j, we define
the topological overlapOT(i, j)
J (i, j)/[min (k, k)], where J (i, j)

archical tree according to the predominant
biochemical class of the substrates it produc-
es, using the classification of metabolism
based on standard, small molecule biochem-

). As shown in Fig. 4A, and in the
three-dimensional representation in Fig. 4B,
most substrates of a given small molecule
class are distributed on the same branch of
the tree (Fig. 4A) and correspond to relatively
well delimited regions of the metabolic net-
work (Fig. 4B). Therefore, there are strong
correlations between shared biochemical
classification of metabolites and the global
topological organization ofE. coli metabo-
lism (Fig. 4A, bottom) (16).
To correlate the putative modules ob-

tained from our graph theory–based analy-
sis to actual biochemical pathways, we con-
centrated on the pathways involving the

A

B

C

D

K

J

I

H

0.90
0.70
0.50
0.30
0.10

1
1 1

1/3

1/3

1 1
1

1

1
1

1/3

1/3 2/3
2/3

A (1) B(1)

C(3)

D(0)

I(1/3)
E(1/3)

G (1/3)

J(2/3)

H
(1/3)

K(1)
F(1)

GFEHIJKDCBA

F

E

Fig. 3. Uncovering the underlying
modularity of a complex network.
(A) Topological overlap illustrated
on a small hypothetical network. For
each pair of nodes,i and j, we define
the topological overlapOT(i, j)
J (i, j)/[min (k, k)], where J (i, j)

(a) (b)

HIERARCHICAL CLUSTERING13COMMUNITIES

The pairwise mergers of Step 3 will eventually pull all nodes into a sin-
gle community. We can use a dendrogram to extract the underlying
community organization.

The dendrogram visualizes the order in which the nodes are assigned to
specific communities. For example, the dendrogram of Figure 9.9b tells
us that the algorithm first merged nodes A with B, K with J and E with
F, as each of these pairs have x0

ij=1. Next node C was added to the (A, B)
community, I to (K, J) and G to (E, F).

To identify the communities we must cut the dendrogram. Hierarchical
clustering does not tell us where that cut should be. Using for example
the cut indicated as a dashed line in Figure 9.9b, we recover the three
obvious communities (ABC, EFG, and HIJK).

Applied to the E. coli metabolic network (Figure 9.3a), the Ravasz algo-
rithm identifies the nested community structure of bacterial me-
tabolism. To check the biological relevance of these communities, we
color-coded the branches of the dendrogram according to the known
biochemical classification of each metabolite. As shown in Figure 9.3b,
substrates with similar biochemical role tend to be located on the same
branch of the tree. In other words the known biochemical classification
of these metabolites confirms the biological relevance of the communi-
ties extracted from the network topology.

Computational Complexity
How many computations do we need to run the Ravasz algorithm? The

algorithm has four steps, each with its own computational complexity:

F

D

EB

A

C

G

F

D

EB

A

C

G

F

D

EB

A

C

G

A

C E

G

F

D

B

Single Linkage:

Average Linkage:Complete Linkage:

x12 = 1.59

x12 = 3.97 x12 = 2.84

1 2 1 2

1 21 2

D E F G
A 2.75 2.22 3.46 3.08
B 3.38 2.68 3.97 3.40
C 2.31 1.59 2.88 2.34

x ij = rij =

F

D

EB

A

C

G

F

D

EB

A

C

G

F

D

EB

A

C

G

A

C E

G

F

D

B

Single Linkage:

Average Linkage:Complete Linkage:

x12 = 1.59

x12 = 3.97 x12 = 2.84

1 2 1 2

1 21 2

D E F G
A 2.75 2.22 3.46 3.08
B 3.38 2.68 3.97 3.40
C 2.31 1.59 2.88 2.34

x ij = rij =

(a)

(c)

(b)

(d)

Figure 9.10
Cluster Similarity

In agglomerative clustering we need to deter-
mine the similarity of two communities from
the node similarity matrix xij

 . We illustrate
this procedure for a set of points whose sim-
ilarity xij

 is the physical distance rij
 between

them. In networks xij
 corresponds to some

network-based distance measure, like xij
o de-

fined in (9.7).

(a) Similarity Matrix
Seven nodes forming two distinct com-
munities. The table shows the distance rij

between each node pair, acting as the sim-
ilarity xij

 .

(b) Single Linkage Clustering
The similarity between communities 1
and 2 is the smallest of all xij

 , where i and
j are in different communities. Hence the
similarity is x12=1.59, corresponding to the
distance between nodes C and E.

(c) Complete Linkage Clustering
The similarity between two communities
is the maximum of xij

 , where i and j are in
distinct communities. Hence x12=3.97.

(d) Average Linkage Clustering
The similarity between two communities
is the average of xij

 over all node pairs i and
j that belong to different communities.
This is the procedure implemented in the
Ravasz algorithm, providing x12=2.84.

HIERARCHICAL CLUSTERING14COMMUNITIES

Step 1: The calculation of the similarity matrix x0
ij requires us to com-

pare N2 node pairs, hence the number of computations scale as N2. In
other words its computational complexity is 0(N2).

Step 2: Group similarity requires us to determine in each step the dis-
tance of the new cluster to all other clusters. Doing this N times re-
quires 0(N2) calculations.

Steps 3 & 4: The construction of the dendrogram can be performed in
0(NlogN) steps.

Combining Steps 1-4, we find that the number of required computa-
tions scales as 0(N2) + 0(N2) + 0(NlogN). As the slowest step scales as 0(N2),
the algorithm’s computational complexity is 0(N2). Hence hierarchal clus-
tering is much faster than the brute force approach, which generally scales
as 0(eN).

DIVISIVE PROCEDURES: THE GIRVAN-NEWMAN ALGORITHM
Divisive procedures systematically remove the links connecting nodes

that belong to different communities, eventually breaking a network into
isolated communities. We illustrate their use by introducing an algorithm
proposed by Michelle Girvan and Mark Newman [9,23], consisting of the
following steps:

Step 1: Define Centrality
While in agglomerative algorithms xij selects node pairs that belong to
the same community, in divisive algorithms xij, called centrality, selects
node pairs that are in different communities. Hence we want xij to be
high (or low) if nodes i and j belong to different communities and small
if they are in the same community. Three centrality measures that sat-
isfy this expectation are discussed in Figure 9.11. The fastest of the three
is link betweenness, defining xij as the number of shortest paths that
go through the link (i, j). Links connecting different communities are
expected to have large xij while links within a community have small xij.

Step 2: Hierarchical Clustering
The final steps of a divisive algorithm mirror those we used in agglom-
erative clustering (Figure 9.12):

1. Compute the centrality xij of each link.

2. Remove the link with the largest centrality. In case of a tie, choose
one link randomly.

3. Recalculate the centrality of each link for the altered network.

0.29

0.29 0.57

0.31

0.31

0.17

0.17

0.2

0.2 0.4

0.23

0.23

0.18

0.18

0.29

0.29 0.57

0.31

0.31

0.17

0.17

0.2

0.2 0.4

0.23

0.23

0.18

0.18

Figure 9.11
Centrality Measures

Divisive algorithms require a centrality mea-
sure that is high for nodes that belong to dif-
ferent communities and is low for node pairs
in the same community. Two frequently used
measures can achieve this:

(a) Link Betweenness
Link betweenness captures the role of
each link in information transfer. Hence
xij

 is proportional to the number of short-
est paths between all node pairs that
run along the link (i,j). Consequently,
inter-community links, like the central
link in the figure with xij

 =0.57, have large
betweenness. The calculation of link be-
tweenness scales as 0(LN), or 0(N2) for a
sparse network [23].

(b) Random-Walk Betweenness
A pair of nodes m and n are chosen at
random. A walker starts at m, following
each adjacent link with equal probability
until it reaches n. Random walk between-
ness xij

 is the probability that the link i→j
was crossed by the walker after averaging
over all possible choices for the starting
nodes m and n. The calculation requires
the inversion of an NxN matrix, with 0(N3)
computational complexity and averaging
the flows over all node pairs, with 0(LN2).
Hence the total computational complexity
of random walk betweenness is 0[(L + N)
N2], or 0(N3) for a sparse network.

(a) (b)

HIERARCHICAL CLUSTERING15COMMUNITIES

4. Repeat steps 2 and 3 until all links are removed.

Girvan and Newman applied their algorithm to Zachary’s Karate Club
(Figure 9.2a), finding that the predicted communities matched almost
perfectly the two groups after the break-up. Only node 3 was classified
incorrectly.

Computational Complexity
The rate limiting step of divisive algorithms is the calculation of cen-

trality. Consequently the algorithm’s computational complexity depends
on which centrality measure we use. The most efficient is link between-
ness, with 0(LN) [24,25,26] (Figure 9.11a). Step 3 of the algorithm introduces
an additional factor L in the running time, hence the algorithm scales as
0(L2N), or 0(N3) for a sparse network.

HIERARCHY IN REAL NETWORKS
Hierarchical clustering raises two fundamental questions:

Nested Communities
First, it assumes that small modules are nested into larger ones. These
nested communities are well captured by the dendrogram (Figures 9.9b
and 9.12e). How do we know, however, if such hierarchy is indeed pres-
ent in a network? Could this hierarchy be imposed by our algorithms,
whether or not the underlying network has a nested community struc-
ture?

Communities and the Scale-Free Property
Second, the density hypothesis states that a network can be partitioned
into a collection of subgraphs that are only weakly linked to other sub-
graphs. How can we have isolated communities in a scale-free network,
if the hubs inevitably link multiple communities?

D

J

A

C

B

K

E

HG
I

FHF

E I

B

J
KG

A

D

C

E

K
I

A

H

C

D

F

B

G
J

BA

I
F G

C

E

D

J
KH

A B C D E F J H I J K

0

0.1

0.2

0.3

0.4

0.5

30 2 4 6 8 10

M

n

x

x

x
D

J

A

C

B

K

E

HG
I

FHF

E I

B

J
KG

A

D

C

E

K
I

A

H

C

D

F

B

G
J

BA

I
F G

C

E

D

J
KH

A B C D E F J H I J K

0

0.1

0.2

0.3

0.4

0.5

30 2 4 6 8 10

M

n

x

x

x

D

J

A

C

B

K

E

HG
I

FHF

E I

B

J
KG

A

D

C

E

K
I

A

H

C

D

F

B

G
J

BA

I
F G

C

E

D

J
KH

A B C D E F J H I J K

0

0.1

0.2

0.3

0.4

0.5

30 2 4 6 8 10

M

n

x

x

x
D

J

A

C

B

K

E

HG
I

FHF

E I

B

J
KG

A

D

C

E

K
I

A

H

C

D

F

B

G
J

BA

I
F G

C

E

D

J
KH

A B C D E F J H I J K

0

0.1

0.2

0.3

0.4

0.5

30 2 4 6 8 10

M

n

x

x

x

D

J

A

C

B

K

E

HG
I

FHF

E I

B

J
KG

A

D

C

E

K
I

A

H

C

D

F

B

G
J

BA

I
F G

C

E

D

J
KH

A B C D E F J H I J K

0

0.1

0.2

0.3

0.4

0.5

30 2 4 6 8 10

M

n

x

x

x

D

J

A

C

B

K

E

HG
I

FHF

E I

B

J
KG

A

D

C

E

K
I

A

H

C

D

F

B

G
J

BA

I
F G

C

E

D

J
KH

A B C D E F J H I J K

0

0.1

0.2

0.3

0.4

0.5

30 2 4 6 8 10

M

n

x

x

x

(a) (b) (e)

(f) (c) (d)

Figure 9.12
The Girvan-Newman Algorithm

(a) The divisive hierarchical algorithm of Gir-
van and Newman uses link betweenness
(Figure 9.11a) as centrality. In the figure
the link weights, assigned proportionally
to xij

 , indicate that links connecting dif-
ferent communities have the highest xij.
Indeed, each shortest path between these
communities must run through them.

(b)-(d) The sequence of images illustrates how
the algorithm removes one-by-one the
three highest xij

 links, leaving three iso-
lated communities behind. Note that be-
tweenness needs to be recalculated after
each link removal.

(e) The dendrogram generated by the Gir-
van-Newman algorithm. The cut at level
3, shown as an orange dotted line, repro-
duces the three communities present in
the network.

(f) The modularity function, M, introduced in
SECTION 9.4, helps us select the optimal
cut. Its maxima agrees with our expecta-
tion that the best cut is at level 3, as shown
in (e).

HIERARCHICAL CLUSTERING16COMMUNITIES

The hierarchical network model, whose construction is shown in Figure

9.13, resolves the conflict between communities and the scale-free proper-
ty and offers intuition about the structure of nested hierarchical commu-
nities. The obtained network has several key characteristics:

Scale-free Property
The hierarchical model generates a scale-free network with degree ex-
ponent (Figure 9.14a, ADVANCED TOPICS 9.A)

 .

Size Independent Clustering Coefficient
While for the Erdős-Rényi and the Barabási-Albert models the cluster-
ing coefficient decreases with N (SECTION 5.9), for the hierarchical net-
work we have C=0.743 independent of the network size (Figure 9.14c).
Such N-independent clustering coefficient has been observed in met-
abolic networks [11].

Hierarchical Modularity
The model consists of numerous small communities that form larg-
er communities, which again combine into ever larger communities.
The quantitative signature of this nested hierarchical modularity is
the dependence of a node’s clustering coefficient on the node’s degree
[11,27,28]

 . (9.8)

In other words, the higher a node’s degree, the smaller is its clustering
coefficient.

Equation (9.8) captures the way the communities are organized in a net-
work. Indeed, small degree nodes have high C because they reside in
dense communities. High degree nodes have small C because they con-
nect to different communities. For example, in Figure 9.13c the nodes at
the center of the five-node modules have k=4 and clustering coefficient
C=4. Those at the center of a 25-node module have k=20 and C=3/19.
Those at the center of the 125-node modules have k=84 and C=3/83.
Hence the higher the degree of a node, the smaller is its C.

The hierarchical network model suggests that inspecting C(k) allows
us to decide if a network is hierarchical. For the Erdős-Rényi and the
Barabási-Albert models C(k) is independent of k, indicating that they do
not display hierarchical modularity. To see if hierarchical modularity is
present in real systems, we calculated C(k) for ten reference networks,
finding that (Figure 9.36):

• Only the power grid lacks hierarchical modularity, its C(k) being in-
dependent of k (Figure 9.36a).

• For the remaining nine networks C(k) decreases with k. Hence in

γ =1+ ln5
ln4 = 2.161

C(k) ~ k−1

(a)

(b)

(c)

Figure 9.13
Hierarchical Network

The iterative construction of a deterministic
hierarchical network.

(a) Start from a fully connected module of
five nodes. Note that the diagonal nodes
are also connected, but the links are not
visible.

(b) Create four identical replicas of the start-
ing module and connect the peripheral
nodes of each module to the central node
of the original module. This way we obtain
a network with N=25 nodes.

(c) Create four replicas of the 25-node module
and connect the peripheral nodes again to
the central node of the original module,
obtaining an N=125-node network. This
process is continued indefinitely.

After [27].

HIERARCHICAL CLUSTERING17COMMUNITIES

these networks small nodes are part of small dense communities,
while hubs link disparate communities to each other.

• For the scientific collaboration, metabolic, and citation network
C(k) follows (9.8) in the high-k region. The form of C(k) for the In-
ternet, mobile, email, protein interactions, and the WWW needs to
be derived individually, as for those C(k) does not follow (9.8). More
detailed network models predict C(k)~k-β, where β is between 0 and
2 [27,28].

In summary, in principle hierarchical clustering does not require pre-
liminary knowledge about the number and the size of communities. In
practice it generates a dendrogram that offers a family of community
partitions characterizing the studied network. This dendrogram does not
tell us which partition captures best the underlying community structure.
Indeed, any cut of the hierarchical tree offers a potentially valid partition
(Figure 9.15). This is at odds with our expectation that in each network there
is a ground truth, corresponding to a unique community structure.

10 0 10 1 10 2 10 3 10 4
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

P
(k
)

10 0 10 1 10 2 10 3 10 4k10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

P
(k
)

10 0 10 1 10 2 10 3 10 4 10 5k10 -4

10 -3

10 -2

10 -1

10 0

C(k)

10 2 10 3 10 4 10 5N10 -4

10 -3

10 -2

10 -1

10 0

C(N)
pk

10 0 10 1 10 2 10 3 10 4
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

P
(k
)

10 0 10 1 10 2 10 3 10 4k10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

P
(k
)

10 0 10 1 10 2 10 3 10 4 10 5k10 -4

10 -3

10 -2

10 -1

10 0

C(k)

10 2 10 3 10 4 10 5N10 -4

10 -3

10 -2

10 -1

10 0

C(N)
pk

10 0 10 1 10 2 10 3 10 4
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

P
(k
)

10 0 10 1 10 2 10 3 10 4k10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

P
(k
)

10 0 10 1 10 2 10 3 10 4 10 5k10 -4

10 -3

10 -2

10 -1

10 0

C(k)

10 2 10 3 10 4 10 5N10 -4

10 -3

10 -2

10 -1

10 0

C(N)
pk

Figure 9.15
Ambiguity in Hierarchical Clustering

Hierarchical clustering does not tell us where
to cut a dendrogram. Indeed, depending on
where we make the cut in the dendrogram of
Figure 9.9a, we obtain (b) two, (c) three or (d)
four communities. While for a small network
we can visually decide which cut captures best
the underlying community structure, it is im-
possible to do so in larger networks. In the
next section we discuss modularity, that helps
us select the optimal cut.

Figure 9.14
Scaling in Hierarchical Networks

Three quantities characterize the hierarchical
network shown in Figure 9.13:

(a) Degree Distribution
The scale-free nature of the generated
network is illustrated by the scaling of pk
with slope γ=ln 5/ln 4, shown as a dashed
line. See ADVANCED TOPICS 9.A for the deri-
vation of the degree exponent.

(b) Hierarchical Clustering
C(k) follows (9.8), shown as a dashed line.
The circles show C(k) for a randomly wired
scale-free network, obtained from the
original model by degree-preserving ran-
domization. The lack of scaling indicates
that the hierarchical architecture is lost
under rewiring. Hence C(k) captures a
property that goes beyond the degree dis-
tribution.

(c) Size Independent Clustering Coefficient
The dependence of the clustering coef-
ficient C on the network size N. For the
hierarchical model C is independent of N
(filled symbols), while for the Barabási-Al-
bert model C(N) decreases (empty sym-
bols).

After [27].

E

C

D

H
I

A

G
J

F K

B

K

A

E

C

GF

D

H
J

I

B

K

A

E

C

GF

D

H
J

I

B

A B C D E F J H I J K

(a)

(a)

(b)

(b)

(c)

(c) (d)

HIERARCHICAL CLUSTERING18COMMUNITIES

While there are multiple notions of hierarchy in networks [29,30], in-
specting C(k) helps decide if the underlying network has hierarchical mod-
ularity. We find that C(k) decreases in most real networks, indicating that
most real systems display hierarchical modularity. At the same time C(k) is
independent of k for the Erdős-Rényi or Barabási-Albert models, indicating
that these canonical models lack a hierarchical organization.

MODULARITYCOMMUNITIES 19

SECTION 9.4

In a randomly wired network the connection pattern between the nodes
is expected to be uniform, independent of the network's degree distribu-
tion. Consequently these networks are not expected to display systematic
local density fluctuations that we could interpret as communities. This ex-
pectation inspired the third hypothesis of community organization:

H3: Random Hypothesis

Randomly wired networks lack an inherent community structure.

This hypothesis has some actionable consequences: By comparing the
link density of a community with the link density obtained for the same
group of nodes for a randomly rewired network, we could decide if the
original community corresponds to a dense subgraph, or its connectivity
pattern emerged by chance.

In this section we show that systematic deviations from a random con-
figuration allow us to define a quantity called modularity, that measures
the quality of each partition. Hence modularity allows us to decide if a par-
ticular community partition is better than some other one. Finally, modu-
larity optimization offers a novel approach to community detection.

MODULARITY
Consider a network with N nodes and L links and a partition into nc

communities, each community having Nc nodes connected to each other
by Lc links, where c =1,...,nc. If Lc is larger than the expected number of links
between the Nc nodes given the network’s degree sequence, then the nodes
of the subgraph Cc could indeed be part of a true community, as expected
based on the Density Hypothesis H2 (Figure 9.2). We therefore measure the
difference between the network’s real wiring diagram (Aij) and the expect-
ed number of links between i and j if the network is randomly wired (pij),

 . (9.9)Mc = 1
2L ∑

(i, j)∈Cc

(Aij − pij)

MODULARITY

MODULARITY20COMMUNITIES

Here pij can be determined by randomizing the original network, while
keeping the expected degree of each node unchanged. Using the degree
preserving null model (7.1) we have

 . (9.10)

If Mc is positive, then the subgraph Cc has more links than expected by
chance, hence it represents a potential community. If Mc is zero then the
connectivity between the Nc nodes is random, fully explained by the degree
distribution. Finally, if Mc is negative, then the nodes of Cc do not form a
community.

Using (9.10) we can derive a simpler form for the modularity (9.9) (AD-

VANCED TOPICS 9.B)

 , (9.11)

where Lc is the total number of links within the community Cc and kc is the
total degree of the nodes in this community.

To generalize these ideas to a full network consider the complete par-
tition that breaks the network into nc communities. To see if the local link
density of the subgraphs defined by this partition differs from the expect-
ed density in a randomly wired network, we define the partition’s modu-
larity by summing (9.11) over all nc communities [23]

 . (9.12)

Modularity has several key properties:

• Higher Modularity Implies Better Partition
The higher is M for a partition, the better is the corresponding com-
munity structure. Indeed, in Figure 9.16a the partition with the maxi-
mum modularity (M=0.41) accurately captures the two obvious com-
munities. A partition with a lower modularity clearly deviates from
these communities (Figure 9.16b). Note that the modularity of a parti-
tion cannot exceed one [31,32].

• Zero and Negative Modularity
By taking the whole network as a single community we obtain M=0, as
in this case the two terms in the parenthesis of (9.12) are equal (Figure

9.16c). If each node belongs to a separate community, we have Lc=0
and the sum (9.12) has nc negative terms, hence M is negative (Figure

9.16d).

We can use modularity to decide which of the many partitions predict-
ed by a hierarchical method offers the best community structure, select-
ing the one for which M is maximal. This is illustrated in Figure 9.12f, which
shows M for each cut of the dendrogram, finding a clear maximum when

pij =
kikj

2L

Mc = Lc

L
− (kc

2L)
2

M =
nc

∑
c=1

[Lc

L
− (kc

2L)
2

]

SINGLE COMMUNITY
M = 0

OPTIMAL PARTITION SUBOPTIMAL PARTITION

NEGATIVE MODULARITY

M = 0 .22

M = − 0.12

M = 0 .41

SINGLE COMMUNITY
M = 0

OPTIMAL PARTITION SUBOPTIMAL PARTITION

NEGATIVE MODULARITY

M = 0 .22

M = − 0.12

M = 0 .41

SINGLE COMMUNITY
M = 0

OPTIMAL PARTITION SUBOPTIMAL PARTITION

NEGATIVE MODULARITY

M = 0 .22

M = − 0.12

M = 0 .41

SINGLE COMMUNITY
M = 0

OPTIMAL PARTITION SUBOPTIMAL PARTITION

NEGATIVE MODULARITY

M = 0 .22

M = − 0.12

M = 0 .41

Figure 9.16
Modularity

To better understand the meaning of modu-
larity, we show M defined in (9.12) for several
partitions of a network with two obvious com-
munities.

(a) Optimal Partition
The partition with maximal modularity
M=0.41 closely matches the two distinct
communities.

(b) Suboptimal Partition
A partition with a sub-optimal but posi-
tive modularity, M=0.22, fails to correctly
identify the communities present in the
network.

(c) Single Community
If we assign all nodes to the same commu-
nity we obtain M=0, independent of the
network structure.

(d) Negative Modularity
If we assign each node to a different com-
munity, modularity is negative, obtaining
M=-0.12.

(a)

(b)

(c)

(d)

MODULARITY21COMMUNITIES

the network breaks into three communities.

THE GREEDY ALGORITHM
The expectation that partitions with higher modularity corresponds to

partitions that more accurately capture the underlying community struc-
ture prompts us to formulate our final hypothesis:

H4: Maximal Modularity Hypothesis

For a given network the partition with maximum modularity corre-
sponds to the optimal community structure.

The hypothesis is supported by the inspection of small networks, for which
the maximum M agrees with the expected communities (Figures 9.12 and
9.16).

The maximum modularity hypothesis is the starting point of several
community detection algorithms, each seeking the partition with the larg-
est modularity. In principle we could identify the best partition by check-
ing M for all possible partitions, selecting the one for which M is largest.
Given, however, the exceptionally large number of partitions, this brute-
force approach is computationally not feasible. Next we discuss an algo-
rithm that finds partitions with close to maximal M, while bypassing the
need to inspect all partitions.

Greedy Algorithm
The first modularity maximization algorithm, proposed by Newman
[33], iteratively joins pairs of communities if the move increases the
partition's modularity. The algorithm follows these steps:

1. Assign each node to a community of its own, starting with N com-
munities of single nodes.

2. Inspect each community pair connected by at least one link and
compute the modularity difference ∆M obtained if we merge
them. Identify the community pair for which ∆M is the largest and
merge them. Note that modularity is always calculated for the full
network.

3. Repeat Step 2 until all nodes merge into a single community, re-
cording M for each step.

4. Select the partition for which M is maximal.

To illustrate the predictive power of the greedy algorithm consider the
collaboration network between physicists, consisting of N=56,276 sci-
entists in all branches of physics who posted papers on arxiv.org (Figure

9.17). The greedy algorithm predicts about 600 communities with peak
modularity M = 0.713. Four of these communities are very large, togeth-
er containing 77% of all nodes (Figure 9.17a). In the largest community
93% of the authors publish in condensed matter physics while 87% of
the authors in the second largest community publish in high energy

MODULARITY22COMMUNITIES

physics, indicating that each community contains physicists of similar
professional interests. The accuracy of the greedy algorithm is also il-
lustrated in Figure 9.2a, showing that the community structure with the
highest M for the Zachary Karate Club accurately captures the club’s
subsequent split.

Computational Complexity
Since the calculation of each ∆M can be done in constant time, Step 2 of
the greedy algorithm requires O(L) computations. After deciding which
communities to merge, the update of the matrix can be done in a worst-
case time O(N). Since the algorithm requires N–1 community mergers,
its complexity is O[(L + N)N], or O(N2) on a sparse graph. Optimized im-
plementations reduce the algorithm’s complexity to O(Nlog2N) (ONLINE

RESOURCE 9.1).

LIMITS OF MODULARITY
Given the important role modularity plays in community identifica-

tion, we must be aware of some of its limitations.

Resolution Limit

Modularity maximization forces small communities into larger ones
[34]. Indeed, if we merge communities A and B into a single community,
the network’s modularity changes with (ADVANCED TOPICS 9.B)

 , (9.13)

where lAB is number of links that connect the nodes in community A
with total degree kA to the nodes in community B with total degree kB. If
A and B are distinct communities, they should remain distinct when M
is maximized. As we show next, this is not always the case.

Consider the case when kAkB|2L < 1, in which case (9.13) predicts ∆MAB

> 0 if there is at least one link between the two communities (lAB ≥ 1).
Hence we must merge A and B to maximize modularity. Assuming for
simplicity that kA ~ kB= k, if the total degree of the communities satisfies

ΔMAB = lAB

L
− kAkB

2L2

+ 600 smaller communities

Physics E−print Archive, 56,276 nodes

11,070

87% H.E.P.

9,278

1,009
1,0051,744

98% astro

9,350
86% C.M.

93% C.M.

13,454

power−law distribution of group sizes

615
480

460

mostly condensed matter, 9,350 nodes subgroup, 134 nodes

28 nodes
single research group

Figure 9.17
The Greedy Algorithm

(a) Clustering Physicists
The community structure of the collabo-
ration network of physicists. The greedy
algorithm predicts four large communi-
ties, each composed primarily of phys-
icists of similar interest. To see this on
each cluster we show the percentage of
members who belong to the same subfield
of physics. Specialties are determined by
the subsection(s) of the e-print archive in
which individuals post papers. C.M. indi-
cates condensed matter, H.E.P. high-ener-
gy physics, and astro astrophysics. These
four large communities coexist with 600
smaller communities, resulting in an
overall modularity M=0.713.

(b) Identifying Subcommunities
We can identify subcommunities by
applying the greedy algorithm to each
community, treating them as separate
networks. This procedure splits the con-
densed matter community into many
smaller subcommunities, increasing the
modularity of the partition to M=0.807.

(c) Research Groups
One of these smaller communities is fur-
ther partitioned, revealing individual re-
searchers and the research groups they
belong to.

After [33].

(a) (b) (c)

MODULARITY23COMMUNITIES

 (9.14)

then modularity increases by merging A and B into a single communi-
ty, even if A and B are otherwise distinct communities. This is an arti-
fact of modularity maximization: if kA and kB are under the threshold
(9.14), the expected number of links between them is smaller than one.
Hence even a single link between them will force the two communities
together when we maximize M. This resolution limit has several conse-
quences:

• Modularity maximization cannot detect communities that are
smaller than the resolution limit (9.14). For example, for the WWW
sample with L=1,497,134 (Table 2.1) modularity maximization will
have difficulties resolving communities with total degree kC ≲

1,730.

• Real networks contain numerous small communities [36-38]. Giv-
en the resolution limit (9.14), these small communities are system-
atically forced into larger communities, offering a misleading
characterization of the underlying community structure.

To avoid the resolution limit we can further subdivide the large com-
munities obtained by modularity optimization [33,34,39]. For example,
treating the smaller of the two condensed-matter groups of Figure 9.17a
as a separate network and feeding it again into the greedy algorithm,
we obtain about 100 smaller communities with an increased modulari-
ty M = 0.807 (Figure 9.17b) [33].

Modularity Maxima

All algorithms based on maximal modularity rely on the assumption
that a network with a clear community structure has an optimal par-
tition with a maximal M [40]. In practice we hope that Mmax is an easy
to find maxima and that the communities predicted by all other parti-
tions are distinguishable from those corresponding to Mmax. Yet, as we
show next, this optimal partition is difficult to identify among a large
number of close to optimal partitions.

Consider a network composed of nc subgraphs with comparable link
densities kC ≈ 2L/nc. The best partition should correspond to the one
where each cluster is a separate community (Figure 9.18a), in which case
M=0.867. Yet, if we merge the neighboring cluster pairs into a single
community we obtain a higher modularity M=0.87 (Figure 9.18b). In
general (9.13) and (9.14) predicts that if we merge a pair of clusters, we
change modularity with

 . (9.15)

In other words the drop in modularity is less than ∆M = −2/nc
2. For a

network with nc = 20 communities, this change is at most ∆M = −0.005,
tiny compared to the maximal modularity M≃0.87 (Figure 9.18b). As the

k ≤ 2L

ΔM = lAB

L
− 2

n2c

>

Online Resource 9.1

Modularity-based Algorithms

There are several widely used community
finding algorithms that maximize modular-
ity.

Optimized Greedy Algorithm
The use of data structures for sparse matrices
can decrease the greedy algorithm’s computa-
tional complexity to 0(Nlog2N) [35]. See http://
cs.unm.edu/~aaron/research/fastmodulari-
ty.htm for the code.

Louvain Algorithm
The modularity optimization algorithm
achieves a computational complexity of 0(L)
[2]. Hence it allows us to identify commu-
nities in networks with millions of nodes, as
illustrated in Figure 9.1. The algorithm is de-
scribed in ADVANCED TOPICS 9.C. See https://
sites.google.com/site/findcommunities/ for
the code. >

MODULARITY24COMMUNITIES

7

in the network, so too does the height of the modularity
function. Further, the number of these structures k is
limited mainly by the size of the network, since there
cannot be more modular structures than nodes in the
network. In practical contexts, variations in n are very

Qmax and increasing n (or
) will generally tend to increase Qmax . If the intention

is to compare modularity scores across networks, these
ects must be accounted for in order to ensure a fair

Of course, the precise dependence ofQmax on n and k
depends on the particular network topology and how it

increases. For instance, in Appendix A,
we derive the exact dependence for the ring network and
calculate precisely how many ofits degenerate solutions

. Because of this dependence,
for any empirical network should

not typically be interpreted without a null expectation

M=0.867

M=0.871

M=0.80

M
O

D
U

LA
R

IT
Y,

 M

7

in the network, so too does the height of the modularity
function. Further, the number of these structures k is
limited mainly by the size of the network, since there
cannot be more modular structures than nodes in the
network. In practical contexts, variations in n are very

Qmax and increasing n (or
) will generally tend to increase Qmax . If the intention

is to compare modularity scores across networks, these
ects must be accounted for in order to ensure a fair

Of course, the precise dependence ofQmax on n and k
depends on the particular network topology and how it

increases. For instance, in Appendix A,
we derive the exact dependence for the ring network and
calculate precisely how many ofits degenerate solutions

. Because of this dependence,
for any empirical network should

not typically be interpreted without a null expectation

M=0.867

M=0.871

M=0.80

M
O

D
U

LA
R

IT
Y,

 M

Figure 9.18
Modularity Maxima

A ring network consisting of 24 cliques, each
made of 5 nodes.

(a) The Intuitive Partition
The best partition should correspond to
the configuration where each cluster is a
separate community. This partition has
M=0.867.

(b) The Optimal Partition
If we combine the clusters into pairs, as
illustrated by the node colors, we obtain
M=0.871, higher than M obtained for the
intuitive partition (a).

(c) Random Partition
Partitions with comparable modularity
tend to have rather distinct community
structure. For example, if we assign each
cluster randomly to communities, even
clusters that have no links to each other,
like the five highlighted clusters, may end
up in the same community. The modular-
ity of this random partition is still high,
M=0.80, not too far from the optimal
M=0.87.

(d) Modularity Plateau
The modularity function of the network
(a) reconstructed from 997 partitions.
The vertical axis gives the modularity M,
revealing a high-modularity plateau that
consists of numerous low-modularity par-
titions. We lack, therefore, a clear modu-
larity maxima - instead the modularity
function is highly degenerate. After [40].

(a)

(b)

(c)

(d)

number of groups increases, ∆Mij goes to zero, hence it becomes increas-
ingly difficult to distinguish the optimal partition from the numerous
suboptimal alternatives whose modularity is practically indistinguish-
able from Mmax. In other words, the modularity function is not peaked
around a single optimal partition, but has a high modularity plateau
(Figure 9.18d).

In summary, modularity offers a first principle understanding of a net-
work's community structure. Indeed, (9.16) incorporates in a compact form
a number of essential questions, like what we mean by a community, how
we choose the appropriate null model, and how we measure the goodness
of a particular partition. Consequently modularity optimization plays a

MODULARITY25COMMUNITIES

central role in the community finding literature.

At the same time, modularity has several well-known limitations: First,
it forces together small weakly connected communities. Second, networks
lack a clear modularity maxima, developing instead a modularity plateau
containing many partitions with hard to distinguish modularity. This pla-
teau explains why numerous modularity maximization algorithms can
rapidly identify a high M partition: They identify one of the numerous par-
titions with close to optimal M. Finally, analytical calculations and numer-
ical simulations indicate that even random networks contain high mod-
ularity partitions, at odds with the random hypothesis H3 that motivated
the concept of modularity [41-43].

Modularity optimization is a special case of a larger problem: Finding
communities by optimizing some quality function Q. The greedy algorithm
and the Louvain algorithm described in ADVANCED TOPICS 9.C assume that Q
= M, seeking partitions with maximal modularity. In ADVANCED TOPICS 9.C
we also describe the Infomap algorithm, that finds communities by min-
imizing the map equation L, an entropy-based measure of the partition
quality [44-46].

OVERLAPPING COMMUNITIESCOMMUNITIES 26

SECTION 9.5

A node is rarely confined to a single community. Consider a scientist,
who belongs to the community of scientists that share his professional in-
terests. Yet, he also belongs to a community consisting of family members
and relatives and perhaps another community of individuals sharing his
hobby (Figure 9.19). Each of these communities consists of individuals who
are members of several other communities, resulting in a complicated web
of nested and overlapping communities [36]. Overlapping communities
are not limited to social systems: The same genes are often implicated in
multiple diseases, an indication that disease modules of different disor-
ders overlap [14].

While the existence of a nested community structure has long been ap-
preciated by sociologists [47] and by the engineering community interest-
ed in graph partitioning, the algorithms discussed so far force each node
into a single community. A turning point was the work of Tamás Vicsek
and collaborators [36,48], who proposed an algorithm to identify overlap-
ping communities, bringing the problem to the attention of the network
science community. In this section we discuss two algorithms to detect
overlapping communities, clique percolation and link clustering.

CLIQUE PERCOLATION
The clique percolation algorithm, often called CFinder, views a commu-

nity as the union of overlapping cliques [36]:

• Two k-cliques are considered adjacent if they share k – 1 nodes (Figure

9.20b).

• A k-clique community is the largest connected subgraph obtained by
the union of all adjacent k-cliques (Figure 9.20c).

• k-cliques that can not be reached from a particular k-clique belong to
other k-clique communities (Figure 9.20c,d).

The CFinder algorithm identifies all cliques and then builds an Nclique x
Nclique clique–clique overlap matrix O, where Nclique is the number of cliques
and Oij is the number of nodes shared by cliques i and j (Figure 9.39). A typical

OVERLAPPING COMMUNITIES

COMMUNITIES

Figure 9.19
Overlapping Communities

Schematic representation of the communities
surrounding Tamás Vicsek, who introduced
the concept of overlapping communities. A
zoom into the scientific community illus-
trates the nested and overlapping structure of
the community characterizing his scientific
interests. After [36].

>

Online Resource 9.2

CFinder

The CFinder software, allowing us to identify
overlapping communities, can be downloaded
from www.cfinder.org.

>

OVERLAPPING COMMUNITIES27COMMUNITIES

output of the CFinder algorithm is shown in Figure 9.21, displaying the com-
munity structure of the word bright. In the network two words are linked
to each other if they have a related meaning. We can easily check that the
overlapping communities identified by the algorithm are meaningful: The
word bright simultaneously belongs to a community containing light-re-
lated words, like glow or dark; to a community capturing colors (yellow,
brown); to a community consisting of astronomical terms (sun, ray); and
to a community linked to intelligence (gifted, brilliant). The example also
illustrates the difficulty the earlier algorithms would have in identifying
communities of this network: they would force bright into one of the four
communities and remove from the other three. Hence communities would
be stripped of a key member, leading to outcomes that are difficult to in-
terpret.

Could the communities identified by CFinder emerge by chance? To dis-
tinguish the real k-clique communities from communities that are a pure
consequence of high link density we explore the percolation properties of
k-cliques in a random network [48]. As we discussed in CHAPTER 3, if a ran-
dom network is sufficiently dense, it has numerous cliques of varying or-
der. A large k-clique community emerges in a random network only if the
connection probability p exceeds the threshold (ADVANCED TOPICS 9.D)

 . (9.16)

Under pc(k) we expect only a few isolated k-cliques (Figure 9.22a). Once p ex-
ceeds pc(k), we observe numerous cliques that form k-clique communities
(Figure 9.22b). In other words, each k-clique community has its own thresh-
old:

• For k =2 the k-cliques are links and (9.16) reduces to pc(k)~1/N, which

pc(k) = 1
[(k − 1)N]1/(k−1)

Figure 9.20
The Clique Percolation Algorithm (CFinder)

To identify k=3 clique-communities we roll a
triangle across the network, such that each
subsequent triangle shares one link (two
nodes) with the previous triangle.

(a)-(b) Rolling Cliques
Starting from the triangle shown in green
in (a), (b) illustrates the second step of the
algorithm.

(c) Clique Communities for k=3
The algorithm pauses when the final tri-
angle of the green community is added.
As no more triangles share a link with
the green triangles, the green community
has been completed. Note that there can
be multiple k-clique communities in the
same network. We illustrate this by show-
ing a second community in blue. The fig-
ure highlights the moment when we add
the last triangle of the blue community.
The blue and green communities overlap,
sharing the orange node.

(d) Clique Communities for k=4
k=4 community structure of a small net-
work, consisting of complete four node
subgraphs that share at least three nodes.
Orange nodes belong to multiple commu-
nities.

Images courtesy of Gergely Palla.

(a) (b)

(c) (d)

Figure 9.21
Overlapping Communities

Communities containing the word bright in
the South Florida Free Association network,
whose nodes are words, connected by a link
if their meaning is related. The community
structure identified by the CFinder algorithm
accurately describes the multiple meanings
of bright, a word that can be used to refer to
light, color, astronomical terms, or intelli-
gence. After [36].

OVERLAPPING COMMUNITIES28COMMUNITIES

is the condition for the emergence of a giant connected component in
Erdős–Rényi networks.

• For k = 3 the cliques are triangles (Figure 9.22a,b) and (9.16) predicts
pc(k)~1/√2N.

In other words, k-clique communities naturally emerge in sufficiently
dense networks. Consequently, to interpret the overlapping community
structure of a network, we must compare it to the community structure
obtained for the degree-randomized version of the original network.

Computational Complexity
Finding cliques in a network requires algorithms whose running time

grows exponentially with N. Yet, the CFinder community definition is
based on cliques instead of maximal cliques, which can be identified in
polynomial time [49]. If, however, there are large cliques in the network, it
is more efficient to identify all cliques using an algorithm with O(eN) com-
plexity [36]. Despite this high computational complexity, the algorithm
is relatively fast, processing the mobile call network of 4 million mobile
phone users in less then one day [50] (see also Figure 9.28).

LINK CLUSTERING
While nodes often belong to multiple communities, links tend to be

community specific, capturing the precise relationship that defines a
node’s membership in a community. For example, a link between two in-
dividuals may indicate that they are in the same family, or that they work
together, or that they share a hobby, designations that only rarely overlap.
Similarly, in biology each binding interaction of a protein is responsible
for a different function, uniquely defining the role of the protein in the
cell. This specificity of links has inspired the development of community
finding algorithms that cluster links rather than nodes [51,52].

The link clustering algorithm proposed by Ahn, Bagrow and Lehmann
[51] consists of the following steps:

Step 1: Define Link Similarity
The similarity of a link pair is determined by the neighborhood of the
nodes connected by them. Consider for example the links (i,k) and (j,k),
connected to the same node k. Their similarity is defined as (Figure

9.23a-c)

 , (9.17)

where n+(i) is the list of the neighbors of node i, including itself. Hence
S measures the relative number of common neighbors i and j have. Con-
sequently S=1 if i and j have the same neighbors (Figure 9.23c). The less is
the overlap between the neighborhood of the two links, the smaller is S
(Figure 9.23b).

S ((i,k),(j,k))=
|n+(i) ∩ n+(j) |
|n+(i) ∪ n+(j) |

Figure 9.22
The Clique Percolation Algorithm (CFinder)

Random networks built with probabilities
p=0.13 (a) and p=0.22 (b). As both p's are larg-
er than the link percolation threshold (pc=1/
N=0.05 for N=20), in both cases most nodes
belong to a giant component.

(a) Subcritical Communities
The 3-clique (triangle) percolation thresh-
old is pc(3)=0.16 according to (9.16), hence
at p=0.13 we are below it. Therefore, only
two small 3-clique percolation clusters are
observed, which do not connect to each
other.

(b) Supercritical Communities
For p=0.22 we are above pc(3), hence we ob-
serve multiple 3-cliques that form a giant
3-clique percolation cluster (purple). This
network also has a second overlapping
3-clique community, shown in green.

After [48].

(a)

(b)

OVERLAPPING COMMUNITIES29COMMUNITIES

Step 2: Apply Hierarchical Clustering
The similarity matrix S allows us to use hierarchical clustering to iden-
tify link communities (SECTION 9.3). We use a single-linkage procedure,
iteratively merging communities with the largest similarity link pairs
(Figure 9.10).

Taken together, for the network of Figure 9.23e, (9.17) provides the sim-
ilarity matrix shown in (d). The single-linkage hierarchical clustering
leads to the dendrogram shown in (d), whose cuts result in the link com-
munities shown in (e) and the overlapping node communities shown in
(f).

Figure 9.24 illustrates the community structure of the characters of
Victor Hugo’s novel Les Miserables identified using the link clustering
algorithm. Anyone familiar with the novel can convince themselves
that the communities accurately represent the role of each character.
Several characters are placed in multiple communities, reflecting their
overlapping roles in the novel. Links, however, are unique to each com-
munity.

Computational Complexity
The link clustering algorithm involves two time-limiting steps: sim-

ilarity calculation and hierarchical clustering. Calculating the similarity
(9.17) for a link pair with degrees ki and kj requires max(ki,kj) steps. For a
scale-free network with degree exponent γ the calculation of similarity has
complexity O(N2/(γ-1)), determined by the size of the largest node, kmax. Hier-
archical clustering requires O(L2) time steps. Hence the algorithm's total

1
2

4

5

6
7

8

9
3

A B

a b

c

a b

c
C

Figure 1: (A) The similarity measureS eik ejk between edgeseik andejk sharing nodek. For this example,n i n j
12 and n i n j 4, giving S 1 3. Two simple cases: (B) an isolated (ka kb 1), connected triple (a,c,b) has
S 1 3, while (C) an isolated triangle hasS 1.

2
1

3

5

2
1

3

5

a

b

c

Figure 2: An example network with node
communities (a) and link communities (b).
(c) The resulting link similarity matrix and
link dendrogram. Compare with main text
Fig. 1.

index [1]:

S eik ejk
n i n j

n i n j
(2)

An example illustration of this similarity measure is shown in Fig.1 (see Sec.4.1 for generalizations of

k

i j

k

i j

S ((i,k), (j,k)) = 1 S ((i,k), (j,k)) = 13

j
k

i

1
2

4

5

6
7

8

9
33-4

2-4

1-4

2-3

1-2

1-3

4-7

5-6

4-6

4-5

7-9

7-8

8-9

Figure 9.23
Identifying Link Communities

The link clustering algorithm identifies links
with a similar topological role in a network. It
does so by exploring the connectivity patterns
of the nodes at the two ends of each link. In-
spired by the similarity function of the Ravasz
algorithm [4] (Figure 9.19), the algorithm aims
to assign to high similarity S the links that
connect to the same group of nodes.

(a) The similarity S of the (i,k) and (j,k) links
connected to node k detects if the two links
belong to the same group of nodes. Denot-
ing with n+(i) the list of neighbors of node
i, including itself, we obtain |n+(i)∪n+(j)|
=12 and |n+(i)∩n+(j)| =4, resulting in S = 1/3
according to (9.17).

(b) For an isolated (ki = kj = 1) connected triple
we obtain S = 1/3.

(c) For a triangle we have S = 1.

(d) The link similarity matrix for the network
shown in (e) and (f). Darker entries corre-
spond to link pairs with higher similarity
S. The figure also shows the resulting link
dendrogram.

(e) The link community structure predicted by
the cut of the dendrogram shown as an or-
ange dashed line in (d).

(f) The overlapping node communities derived
from the link communities shown in (e).

After [51].

(a)

(d)

(b) (c)

(e)

(f)

OVERLAPPING COMMUNITIES30COMMUNITIES

computational complexity is O(N2/(γ-1))+ O(L2). For sparse graphs the latter
term dominates, leading to O(N2).

The need to detect overlapping communities have inspired numerous
algorithms [53]. For example, the CFinder algorithm has been extended to
the analysis of weighted [54], directed and bipartite graphs [55,56]. Simi-
larly, one can derive quality functions for link clustering [52], like the mod-
ularity function discussed in SECTION 9.4.

In summary, the algorithms discussed in this section acknowledge
the fact that nodes naturally belong to multiple communities. Therefore
by forcing each node into a single community, as we did in the previous
sections, we obtain a misleading characterization of the underlying com-
munity structure. Link communities recognize the fact that each link ac-
curately captures the nature of the relationship between two nodes. As a
bonus link clustering also predicts the overlapping community structure
of a network.

Gavroche

Valjean
Bossuet

Mabeuf

Bahorel

Grantaire

Gervais

Fauchelevent
Gribier

Fameuil

Listolier

Thenardier

Bamatabois

Champmathieu

MmeHucheloup

Montparnasse

Courfeyrac

Enjolras

Gillenormand

Fantine

Tholomyes

MariusJoly

Brujon

Gueulemer
Favourite

Zephine
Eponine

MmeMagloire
Myriel

MmeThenardier

Cosette

LtGillenormand

MlleGillenormand

Feuilly

MlleBaptistine

Blacheville

Claquesous

Combeferre
Javert

Woman1

Dahlia

Child1

Child2

Perpetue

Simplice

Babet

Pontmercy

Chenildieu

Napoleon

Cravatte
Champtercier

Scaufflaire

Boulatruelle

Labarre

Judge

BaronessT
CountessDeLo

Isabeau

Marguerite Brevet

Cochepaille

MmePontmercy

MlleVaubois

Magnon

Woman2

Prouvaire

MmeDeR

Toussaint

Count

MotherPlutarch

MmeBurgon

MotherInnocent

Anzelma

OldMan

Jondrette

Geborand

Figure 9.24
Link Communities

The network of characters in Victor Hugo’s
1862 novel Les Miserables. Two characters are
connected if they interact directly with each
other in the story. The link colors indicate the
clusters, light grey nodes corresponding to
single-link clusters. Nodes that belong to mul-
tiple communities are shown as pie-charts,
illustrating their membership in each com-
munity. Not surprisingly, the main character,
Jean Valjean, has the most diverse communi-
ty membership. After [51].

TESTING COMMUNITIESCOMMUNITIES 31

SECTION 9.6

Community identification algorithms offer a powerful diagnosis tool, al-
lowing us to characterize the local structure of real networks. Yet, to inter-
pret and use the predicted communities, we must understand the accuracy
of our algorithms. Similarly, the need to diagnose large networks prompts
us to address the computational efficiency of our algorithms. In this sec-
tion we focus on the concepts needed to assess the accuracy and the speed
of community finding.

ACCURACY
If the community structure is uniquely encoded in the network’s wiring
diagram, each algorithm should predict precisely the same communities.
Yet, given the different hypotheses the various algorithms embody, the
partitions uncovered by them can differ, prompting the question: Which
community finding algorithm should we use?

To assess the performance of community finding algorithms we need to
measure an algorithm’s accuracy, i.e. its ability to uncover communities
in networks whose community structure is known. We start by discussing
two benchmarks, which are networks with predefined community struc-
ture, that we can use to test the accuracy of a community finding algo-
rithm.

Girvan-Newman (GN) Benchmark
The Girvan-Newman benchmark consists of N=128 nodes partitioned
into nc=4 communities of size Nc=32 [9,57]. Each node is connected with
probability pint to the Nc–1 nodes in its community and with probability
pext to the 3Nc nodes in the other three communities. The control pa-
rameter

 , (9.18)

captures the density differences within and between communities. We

μ = kext

kext + kint

TESTING COMMUNITIES

COMMUNITIES

TESTING COMMUNITIES32COMMUNITIES

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6

In

µ

Ravasz

(a)

(b)

(c)

Figure 9.25
Testing Accuracy with the NG Benchmark

The position of each node in (a) and (c) shows
the planted communities of the Girvan-New-
man (GN) benchmark, illustrating the pres-
ence of four distinct communities, each with
Nc=32 nodes.

(a) The node colors represent the partitions
predicted by the Ravasz algorithm for
mixing parameter µ=0.40 given by (9.18).
As in this case the communities are well
separated, we have an excellent agree-
ment between the planted and the detect-
ed communities.

(b) The normalized mutual information in
function of the mixing parameter µ for the
Ravasz algorithm. For small µ we have In≃1
and nc≃4, indicating that the algorithm
can easily detect well separated commu-
nities, as illustrated in (a). As we increase
µ the link density difference within and
between communities becomes less pro-
nounced. Consequently the communities
are increasingly difficult to identify and
In decreases.

(c) For µ=0.50 the Ravasz algorithm misplaces
a notable fraction of the nodes, as in this
case the communities are not well sepa-
rated, making it harder to identify the cor-
rect community structure.

Note that the Ravasz algorithm generates mul-
tiple partitions, hence for each µ we show the
partition with the largest modularity, M. Next
to (a) and (c) we show the normalized mutual
information associated with the correspond-
ing partition and the number of detected com-
munities nc. The normalized mutual informa-
tion (9.23), developed for non-overlapping
communities, can be extended to overlapping
communities as well [59].

expect community finding algorithms to perform well for small µ (Fig-

ure 9.25a), when the probability of connecting to nodes within the same
community exceeds the probability of connecting to nodes in different
communities. The performance of all algorithms should drop for large
µ (Figure 9.25b), when the link density within the communities becomes
comparable to the link density in the rest of the network.

Lancichinetti-Fortunato-Radicchi (LFR) Benchmark
The GN benchmark generates a random graph in which all nodes have
comparable degree and all communities have identical size. Yet, the de-
gree distribution of most real networks is fat tailed, and so is the com-
munity size distribution (Figure 9.29). Hence an algorithm that performs
well on the GN benchmark may not do well on real networks. To avoid

TESTING COMMUNITIES33COMMUNITIES

this limitation, the LFR benchmark (Figure 9.26) builds networks for
which both the node degrees and the planted community sizes follow
power laws [58].

Having built networks with known community structure, next we need
tools to measure the accuracy of the partition predicted by a particular
community finding algorithm. As we do so, we must keep in mind that the
two benchmarks discussed above correspond to a particular definition of
communities. Consequently algorithms based on clique percolation or link
clustering, that embody a different notion of communities, may not fare
so well on these.

Measuring Accuracy
To compare the predicted communities with those planted in the bench-

mark, consider an arbitrary partition into non-overlapping communities.
In each step we randomly choose a node and record the label of the com-
munity it belongs to. The result is a random string of community labels
that follow a p(C) distribution, representing the probability that a random-
ly selected node belongs to the community C.

Consider two partitions of the same network, one being the benchmark
(ground truth) and the other the partition predicted by a community find-
ing algorithm. Each partition has its own p(C1) and p(C2) distribution. The
joint distribution, p(C1, C2), is the probability that a randomly chosen node
belongs to community C1 in the first partition and C2 in the second. The
similarity of the two partitions is captured by the normalized mutual in-
formation [38]

 . (9.19)

The numerator of (9.19) is the mutual information I, measuring the in-
formation shared by the two community assignments: I=0 if C1 and C2 are
independent of each other; I equals the maximal value H({p(C1)}) = H({p(C2)})
when the two partitions are identical and

 (9.20)

In =
∑

C1,C2

p(C1, C2)log2
p(C1, C2)

p(C1)p(C2)

1
2 H({p(C1)}) + 1

2 H({p(C2)})

H({p(C)}) = − ∑
C

p(C)log2 p(C)

(a)

(b)

(c)

(d)

(e)
Figure 9.26
LFR Benchmark

The construction of the Lancichinetti-Fortu-
nato-Radicchi (LFR) benchmark, which gener-
ates networks in which both the node degrees
and community sizes follow a power law. The
benchmark is built as follows [57]:

(a) Start with N isolated nodes.

(b) Assign each node to a community of size
Nc where Nc follows the power law distri-
bution PNc

~Nc
-ζ with community exponent

ζ. Also assign each node i a degree ki select-
ed from the power law distribution pk~k -γ
with degree exponent γ.

(c) Each node i of a community receives an in-
ternal degree (1-µ)ki, shown as links whose
color agrees with the node color. The re-
maining µki degrees, shown as black links,
connect to nodes in other communities.

(d) All stubs of nodes of the same community
are randomly attached to each other, until
no more stubs are ‘‘free’’. In this way we
maintain the sequence of internal degrees
of each node in its community. The re-
maining µki stubs are randomly attached
to nodes from other communities.

(e) A typical network and its community struc-
ture generated by the LFR benchmark with
N=500, γ=2.5, and ζ=2.

TESTING COMMUNITIES34COMMUNITIES

is the Shannon entropy.

If all nodes belong to the same community, then we are certain about
the next label and H=0, as we do not gain new information by inspecting the
community to which the next node belongs to. H is maximal if p(C) is the uni-
form distribution, as in this case we have no idea which community comes
next and each new node provides H bits of new information.

In summary, In=1 if the benchmark and the detected partitions are
identical, and In=0 if they are independent of each other. The utility of In is
illustrated in Figure 9.25b that shows the accuracy of the Ravasz algorithm
for the Girvan-Newman benchmark. In Figure 9.27 we use In to test the per-
formance of each algorithm against the GN and LFR benchmarks. The re-
sults allow us to draw several conclusions:

• We have In≃1 for µ<0.5. Consequently when the link density within
communities is high compared to their surroundings, most algorithms
accurately identify the planted communities. Beyond µ=0.5 the accu-
racy of each algorithm drops.

• The accuracy is benchmarks dependent. For the more realistic LFR
benchmark the Louvain and the Ravasz methods offer the best perfor-
mance and greedy modularity performs poorly.

SPEED
As discussed in SECTION 9.2, the number of possible partitions increases
faster than exponentially with N, becoming astronomically high for most
real networks. While community identification algorithms do not check all
partitions, their computational cost still varies widely, determining their
speed and consequently the size of the network they can handle. Table 9.1
summarizes the computational complexity of the algorithms discussed in
this chapter. Accordingly, the most efficient are the Louvain and the In-
fomap algorithms, both of which scale as 0(NlogN). The least efficient is
CFinder with 0(eN).

These scaling laws do not capture the actual running time, however.
They only show how the running time scales with N. This scaling matters
if we need to find communities in very large networks. To get a sense of
the true speed of these algorithms we measured their running time for the
protein interaction network (N=2,018), the power grid (N=4,941) and the

NG BENCHMARK

LFR BENCHMARK

Girvan-Newman
Greedy Mod. (Opt)

Louvain
Infomap

Ravasz

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8µ

NO
RM

AL
IZ

ED
 M

UT
UA

L
IN

FO
RM

AT
IO

N

Girvan-Newman
Greedy Mod. (Opt)

Louvain
Infomap

Ravasz

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8µ

NO
RM

AL
IZ

ED
 M

UT
UA

L
IN

FO
RM

AT
IO

N

NG BENCHMARK

LFR BENCHMARK

Girvan-Newman
Greedy Mod. (Opt)

Louvain
Infomap

Ravasz

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8µ

NO
RM

AL
IZ

ED
 M

UT
UA

L
IN

FO
RM

AT
IO

N

Girvan-Newman
Greedy Mod. (Opt)

Louvain
Infomap

Ravasz

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8µ

NO
RM

AL
IZ

ED
 M

UT
UA

L
IN

FO
RM

AT
IO

N

(a) (b) Figure 9.27
Testing Against Benchmarks

We tested each community finding algorithm
that predicts non-overlapping communities
against the GN and the LFR benchmarks. The
plots show the normalized mutual informa-
tion In against µ for five algorithms. For the
naming of each algorithm, see TABLE 9.1.

(a) GN Benchmark
The horizontal axis shows the mixing pa-
rameter (9.18), representing the fraction
of links connecting different communi-
ties. The vertical axis is the normalized
mutual information (9.19). Each curve is
averaged over 100 independent realiza-
tions.

(b) LFR Benchmark
Same as in (a) but for the LFR benchmark.
The benchmark parameters are N=1,000,
⟨k⟩=20, γ=2, kmax=50, ζ=1, maximum com-
munity size: 100, minimum community
size: 20. Each curve is averaged over 25 in-
dependent realizations.

TESTING COMMUNITIES35COMMUNITIES

NAME NATURE COMP. REF

Ravasz

Girvan-Newman

Greedy Modularity

Greedy Modularity

Louvain

Infomap

Clique Percolation

Link Clustering

Hierarchical Agglomerative

Hierarchical Divisive

Modularity Optimization

Modularity Optimization

Modularity Optimization

Flow Optimization

Overlapping Communities

Hierarchical Agglomerative;
Overlapping Communities

O(N2)

O(N3)

O(N2)

O(Nlog2N)

O(L)

O(NlogN)

Exp(N)

O(N2)

[11]

[9]

[33]

[35]

[2]

[44]

[48]

[51]

(CFinder)

(Optimized)

Table 9.1
Algorithmic Complexity

The computational complexity of the commu-
nity identification algorithms discussed in
this chapter. While computational complexity
depends on both N and L, for sparse networks
with good approximation we have L~N. We
therefore list computational complexity in
terms of N only.

scientific collaboration network (N=23,133), using the same computer. The
results, shown in Figure 9.28, indicate that:

• The Louvain method requires the shortest running time for all net-
works. CFinder is just as fast for the mid-size networks, and its run-
ning time is comparable to the other algorithms for the larger collab-
oration network.

• The Girvan-Newman algorithm is the slowest on each network, in
line with its predicted high computational complexity (Table 9.1). For
example the algorithm failed to find communities in the scientific

Figure 9.28
The Running Time

To compare the speed of community detection
algorithms we used their python implementa-
tion, either relying on the versions published
by their developers or the available imple-
mentation in the igraph software package.
The Ravasz algorithm was implemented by us,
hence it is not optimized, having a larger run-
ning time than ideally possible. We ran each
algorithm on the same computer. The plots
provide their running time in seconds for
three real networks. For the science collabora-
tion network the Newman-Girvan algorithm
did not finish after seven days, hence we only
provide the lower limit of its running time.
The higher running time observed for the sci-
entific collaboration network is rooted in the
larger size of this network.

10-2

10-1

100

101

102

103

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

10-2

10-1

100

101

102

103

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

10-2

10-1

100

101

102

103

104

105

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

PROTEIN INTERACTIONs (N=2,018)

SCIENTIFIC COLLABORATION (N=4,941)

POWER GRID (N=23,133)

10-2

10-1

100

101

102

103

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

10-2

10-1

100

101

102

103

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

10-2

10-1

100

101

102

103

104

105

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

PROTEIN INTERACTIONs (N=2,018)

SCIENTIFIC COLLABORATION (N=4,941)

POWER GRID (N=23,133)

10-2

10-1

100

101

102

103

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

10-2

10-1

100

101

102

103

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

10-2

10-1

100

101

102

103

104

105

t[s]

Newm
an-Girvan

Greedy Mod. (Opt.)

Louvain

Infom
ap

Ravasz

CFinder

Link

PROTEIN INTERACTIONs (N=2,018)

SCIENTIFIC COLLABORATION (N=4,941)

POWER GRID (N=23,133)

(a) (b) (c)

TESTING COMMUNITIES36COMMUNITIES

collaboration network in seven days.

In summary, benchmarks allow us to compare the accuracy and the
speed of the available algorithms. Given that the development of the fast-
est and the most accurate community detection tool remains an active
arms race, those interested in the subject should consult the literature that
compares algorithms across multiple dimensions [31,58,60,61].

CHARACTERIZING COMMUNITIESCOMMUNITIES 37

SECTION 9.7

CHARACTERIZING
COMMUNITIES

COMMUNITIES

Research in network science is driven by the desire to quantify the
fundamental principles that govern how networks emerge and how they
are organized. These organizing principles impact the structure of com-
munities, as well as our ability to identify them. In this section we discuss
community evolution, the characteristics of community size distribution
and the role of the link weights in community identification, allowing us to
uncover the generic principles of community organization.

COMMUNITY SIZE DISTRIBUTION
According to the fundamental hypothesis (H1) the number and the size

of communities in a network are uniquely determined by the network’s
wiring diagram. We must therefore ask: What is the size distribution of
these communities?

Many studies report fat tailed community size distributions, imply-
ing that numerous small communities coexist with a few very large ones
[16,33,35,36,60]. To explore how widespread this pattern is, in Figure 9.29 we
show pNc

 for three networks, as predicted by various community finding
algorithms. The plots indicate several patterns:

• For the protein interaction and the science collaboration network all
algorithms predict an approximately fat tailed pNc

. Hence in these net-
works numerous tiny communities coexist with a few large commu-
nities.

• For the power grid different algorithms lead to distinct outcomes.
Modularity-based algorithms predict communities with comparable
size Nc ≃ 102. In contrast, the Ravasz algorithm and Infomap predict
numerous communities with size Nc ≃ 10 and a few larger communi-
ties. Finally, clique percolation and link clustering predict an approxi-
mately fat tailed community size distribution.

These differences suggest that the fat tailed community size distribu-
tion is not a byproduct of a particular algorithm. Rather it is an inherent

Figure 9.29
Community Size Distribution

The community size distribution pNc
 predicted

by the community finding algorithms explored
in this chapter. The name convention for the al-
gorithms is shown in Table 9.1. For the protein
interaction (a) and the scientific collaboration
network (b) all algorithms predict an approxi-
mately fat-tailed community size distribution,
hence the predictions are more-or-less consis-
tent with each other. The algorithms offer con-
flicting results for the power grid, shown in (c).

10-4

10-3

10-2

10-1

100

100 101 10 2 103

Girvan-Newman
GreedyModOpt

Louvain
Infomap
Ravasz
CFinder

Link

PROTEIN INTERACTIONS

Nc

Nc
P

10-4

10-5

10-3

10-2

10-1

100

100 101 10 2 10 3 103104

GreedyModOpt
Louvain
Infomap
Ravasz
CFinder

Link

SCIENTIFIC COLLABORATION

Nc

Nc
P

10-4

10-3

10-2

10-1

100

100 101 10 2 103

Girvan-Newman
GreedyModOpt

Louvain
Infomap
Ravasz
CFinder

Link

POWER GRID

Nc

Nc
P

10-4

10-3

10-2

10-1

100

100 101 10 2 103

Girvan-Newman
GreedyModOpt

Louvain
Infomap
Ravasz
CFinder

Link

PROTEIN INTERACTIONS

Nc

Nc
P

10-4

10-5

10-3

10-2

10-1

100

100 101 10 2 10 3 103104

GreedyModOpt
Louvain
Infomap
Ravasz
CFinder

Link

SCIENTIFIC COLLABORATION

Nc

Nc
P

10-4

10-3

10-2

10-1

100

100 101 10 2 103

Girvan-Newman
GreedyModOpt

Louvain
Infomap
Ravasz
CFinder

Link

POWER GRID

Nc

Nc
P

10-4

10-3

10-2

10-1

100

100 101 10 2 103

Girvan-Newman
GreedyModOpt

Louvain
Infomap
Ravasz
CFinder

Link

PROTEIN INTERACTIONS

Nc

Nc
P

10-4

10-5

10-3

10-2

10-1

100

100 101 10 2 10 3 103104

GreedyModOpt
Louvain
Infomap
Ravasz
CFinder

Link

SCIENTIFIC COLLABORATION

Nc

Nc
P

10-4

10-3

10-2

10-1

100

100 101 10 2 103

Girvan-Newman
GreedyModOpt

Louvain
Infomap
Ravasz
CFinder

Link

POWER GRID

Nc

Nc
P

(c)

(b)

(a)

CHARACTERIZING COMMUNITIES38COMMUNITIES

property of some networks, like the protein and the scientific collabora-
tion network. The different outcomes for the power grid suggests that this
network lacks a unique and detectable community structure.

COMMUNITIES AND LINK WEIGHTS
Link weights are deeply correlated with the community structure. Yet,

as we discuss next, the nature of these correlations is system dependent.

Social Networks
The more time two individuals spend together, the more likely that they
share friends, which increases the chance that they belong to the same
community. Consequently communities in social networks tend to be
nucleated around strong ties. Links connecting different communities
are weaker in comparison. This pattern, known as the weak tie hypoth-
esis [62], is illustrated in Figure 9.30a for the mobile call network [63]. We
observe that strong ties are indeed predominantly within the numer-
ous small communities, and links connecting communities are visibly
weaker.

Transport Systems
The purpose of many technological and biological networks is to trans-
port materials or information. In this case the link weights are expect-
ed to correlate with betweenness centrality [64,65,66], a proxy of the
local traffic carried by a network. As links connecting different com-
munities must transport considerable amount of traffic, in transport
networks strong ties are between communities. In contrast links within
communities are weaker in comparison (Figure 9.30b).

The coupling between link weights and community structure suggests
that incorporating the link weights could enhance the accuracy of commu-
nity finding algorithms. Yet, the different nature of the coupling in social
and technological systems serves as a cautionary note: Algorithms that
aim to place in the same community nodes connected by strong ties may
be only effective in social systems. They may offer potentially misleading
results in technological and biological systems, where strong ties connect
different communities.

COMMUNITY EVOLUTION
Changes in a network’s wiring diagram can have multiple consequenc-

es for communities: they can lead to the birth of new communities, the
growth or the contraction of the existing communities, communities can
merge with each other or split into several smaller communities, and fi-
nally communities can die (Figure 9.31) [50]. Studies focusing on social and
communication networks offer several insights into the changes commu-
nities experience [50,67-73]:

Growth

B

C

A

B

1

100
10

Figure 9.30
Communities and Link Weights

The mobile call network helps us illustrate
the relationship between link weights and
communities. Links represent mutual calls
between the users. We show only nodes that
are at distance six or less from the individual
highlighted as a black circle in (a).

(a) Real Weights
The link colors capture the aggregate call
duration in minutes (see color bar). In
line with the weak tie hypothesis we find
strong ties mainly within communities
and weak ties between communities [62].

(b) Betweenness Centrality
If the link weights are driven by the need
to transport information or materials, as
it is often the case in technological and
biological systems, the weights are well
approximated by betweenness centrality
(Figure 9.11). We colored the links based on
each link’s betweenness centrality. As the
figure indicates, links connecting commu-
nities have high betweenness (red), where-
as the links within communities have low
betweenness (green).

After [63].

(a)

(b)

CHARACTERIZING COMMUNITIES39COMMUNITIES

The probability that a node joins a community grows with the number
of links the node has to members of that community [73].

Contraction
Nodes with only a few links to members of their community are more
likely to leave the community than nodes with multiple links to com-
munity members [73]. In weighted networks the probability that a node
leaves a community increases with the sum of its link weights to nodes
outside the community.

Splitting or Death
The probability that a community disintegrates increases with the ag-
gregate link weights to nodes outside the community.

Age
There is positive correlation between the age of a community and its
size, indicating that older communities tend to be larger [50].

Community Stability
The membership of large communities changes faster with time than
the membership of smaller communities. Indeed, in social networks
large communities often correspond to institutions, companies or
schools, that renew themselves by accepting new members, hiring new
employees or enrolling new students. For small communities stability
requires stable membership [50].

These results were obtained in the context of social systems. Our under-
standing of the patterns that cover community evolution in technological
or biological systems remains limited.

In summary, several recurring patterns characterize the organization
and the evolution of communities. The community size distribution is typi-
cally fat tailed, indicating the coexistence of many small communities with
a few large ones. We also find system-dependent correlations between the
community structure and link weights, so that in social systems the strong
ties are mainly within communities, while in transport systems they are
between communities. Finally, we gained an increasing understanding of
the dynamical patterns that govern community evolution.

GROWTH

t t+1

MERGING SPLITTING

BIRTH DEATH

CONTRACTION

t t+1

t t+1t t+1

t t+1

t t+1

GROWTH

t t+1

MERGING SPLITTING

BIRTH DEATH

CONTRACTION

t t+1

t t+1t t+1

t t+1

t t+1

GROWTH

t t+1

MERGING SPLITTING

BIRTH DEATH

CONTRACTION

t t+1

t t+1t t+1

t t+1

t t+1

GROWTH

t t+1

MERGING SPLITTING

BIRTH DEATH

CONTRACTION

t t+1

t t+1t t+1

t t+1

t t+1

GROWTH

t t+1

MERGING SPLITTING

BIRTH DEATH

CONTRACTION

t t+1

t t+1t t+1

t t+1

t t+1
GROWTH

t t+1

MERGING SPLITTING

BIRTH DEATH

CONTRACTION

t t+1

t t+1t t+1

t t+1

t t+1

Figure 9.31
Evolving Communities

When networks evolve in time, so does the un-
derlying community structure. All changes in
community structure are the result of six ele-
mentary events in the life of a community, il-
lustrated in the figure: a community can grow
or contract; communities can merge or may
split; new communities are born while others
may disappear. After [50].

SUMMARYCOMMUNITIES 40

SECTION 9.8

The ubiquity of communities across different networks has turned
community identification into a dynamically developing chapter of net-
work science. Many of the developed algorithms are now available as soft-
ware packages, allowing their immediate use for network diagnosis. Yet,
the efficient use of these algorithms and the interpretation of their pre-
dictions requires us to be aware of the assumptions built into them. In this
chapter we provided the intellectual and the quantitative foundations of
community detection, helping us understand the origin and the assump-
tions behind the most frequently used algorithms.

Despite the successes of community identification, the field is faced
with numerous open questions:

Do We Really Have Communities?
Throughout this chapter we avoided a fundamental question: How do
we know that there are indeed communities in a particular network? In
other words, could we decide that a network has communities without
first identifying the communities themselves? The lack of an answer to
this question represents perhaps the most glaring gap of the commu-
nity finding literature. Community finding algorithms are designed to
identify communities, whether they are there or not.

Hypotheses or Theorems?
Community identification relies on four hypotheses, summarized in
BOX 9.3. We call them hypotheses because we can not prove their cor-
rectness. Further advances might be able to turn the Fundamental, the
Random and the Maximal Modularity Hypotheses into theorems. Or we
may learn about their limitations, as we did in the case of the Maximal
Modularity Hypothesis (SECTION 9.6).

Must all Nodes Belong to Communities?
Community detection algorithm force all nodes into communities. This
is likely an overkill for most real networks: some nodes belong to a sin-
gle community, others to multiple communities, and likely many nodes

SUMMARY

COMMUNITIES

BOX 9.3
AT A GLANCE: COMMUNITIES

Community identification rests on
several hypotheses, pertaining to
the nature of communities:

Fundamental Hypothesis
Communities are uniquely encod-
ed in a network’s wiring diagram.
They represent a grand truth that
remains to be discovered using ap-
propriate algorithms.

Connectedness and Density Hy-
pothesis
A community corresponds to a lo-
cally dense connected subgraph.

Random Hypothesis
Randomly wired networks do not
have communities.

Maximal Modularity Hypothesis
The partition with the maximum
modularity offers the best commu-
nity structure, where modularity is
given by

M " lc
L

kc
2L

2

c"1

nc

.

SUMMARY41COMMUNITIES

t 0:00

MIDNIGHT

NOON

do not belong to any community. Most algorithms used in community
identification do not make this distinction, forcing instead all nodes
into some community.

Dense vs. Sparse Communities
Most networks explored in this book are sparse. Yet, with improvements
in data collection, many real network maps will likely gain numerous
links. In dense networks we often see numerous highly overlapping
communities, forcing us to reevaluate the validity of the various hy-
potheses, and the appropriateness of the community detection algo-
rithms discussed in this chapter. For example, in highly overlapping
communities nodes may have higher external than internal degrees,
limiting the validity of the density hypothesis.

Do Communities Matter?
We resort to an example to answer this question. Figure 9.32a shows a
local neighborhood of the mobile call network, highlighting four com-
munities identified by the link clustering algorithm (SECTION 9.5). The
figure also shows the call frequency at noon (b) and at midnight (c),
documenting different calling habits at different parts of the day. We
find that the members of the top right community, shown as brown
nodes in (a), are active at midnight (b), but they stop calling each other
at noon (c). In contrast the light and the dark blue communities are ac-
tive at noon, but are sleepy at midnight. This indicates that communi-
ties, identified only from the network’s wiring diagram, have coherent
community-specific activity patterns.

Figure 9.32 suggests that once present, communities have a profound
impact on network behavior. Numerous measurements support this con-
clusion: Information travels fast within a community but has difficulty
reaching other communities [63]; communities influence the link weights
[62]; the presence of communities can lead to degree correlations [74].

Communities are equally remarkable for their potential applications.
For example, strengthening the links between clients that belong to the
same community on the WWW can improve the performance of Web-
based services [75]. In marketing, community finding can be used to iden-
tify customers with similar interests or purchasing habits, helping design
efficient product recommendation systems [76]. Communities are often
used to create data structures that can handle queries in a timely fashion
[77,78]. Finally, community finding algorithms run behind many social
networks sites, like Facebook, Twitter, or LinkedIn, helping these services
discover potential friends, posts of interests and target advertising.

While community finding has deep roots in social and computer sci-
ence, it is a relatively young chapter of network science (BOX 9.4). As such,
our understanding of community organization continues to develop rap-
idly, offering increasingly accurate tools to diagnose the local structure of
large networks.

(a)

(b)

(c)

Figure 9.32
Communities and Call Patterns

The direct impact of communities on the ac-
tivity of their members is illustrated by the
mobile call network, offering us simultane-
ous information on community structure and
user activity.

(a) Community Structure

Four communities of the mobile phone
network, each community being colored
differently. These communities represent
local neighborhoods in the call patterns of
over one million consumers, as predicted
by the link clustering algorithm (SECTION
9.5). The rest of the mobile phone network
is not shown.

(b) Midnight Activity
The calling patterns of the users in the
four communities shown in (a). The link
colors reflect the frequency of calls in the
hourlong interval around midnight. Red
links signal numerous calls around mid-
night; white or missing links imply that
the users talked little or did not call each
other in this time frame.

(c) Noon Activity
The same as in (b) but at noon.

Image courtesy of Sune Lehmann.

SUMMARY42COMMUNITIES

B
O

X
9.

4
CO

M
M

U
N

IT
Y

FI
N

D
IN

G
: A

 B
R

IE
F

H
IS

TO
R

Y

20
05

20
10

pr
op

os
e

th
e

hi
er

ac
hi

ca
l d

iv
is

iv
e

al
go

ri
th

m
, i

gn
iti

ng
 a

n
ex

pl
os

iv
e

in
te

re
st

in

 c
om

m
un

ity
 id

en
tif

ic
at

io
n

[9
].

Th
ey

 a
ls

o
in

tr
od

uc
e

m
od

ul
ar

ity
 in

 2
00

4
[2

3]
.

Br
ia

n
W

ils
on

 K
er

m
in

gh
am

an

d
Sh

en
 L

in
 d

ev
el

op
 a

gr

ap
h

pa
rt

iti
on

in
g

al
go

ri
th

m
 [1

8]
, w

id
el

y
us

ed
 in

 c
hi

p
de

si
gn

(B

O
X

9.
1)

Ge
or

ge
 H

om
an

s
re

co
rd

ed
 th

e
co

m
m

un
ic

at
io

n
of

 b
an

k
te

lle
rs

(t

op
),

id
en

tif
yi

ng
 th

ei
r

co
m

m
un

iti
es

 (b
ot

to
m

) [
3]

.

Th
e

so
ci

ol
og

is
t S

tu
ar

t R
ice

us

es
 v

ot
in

g
pa

tt
er

ns
 to

id

en
tif

y
co

m
m

un
iti

es
 in

po

lit
ic

al
 b

od
ie

s
[4

].

Du
nc

an
 R

 L
uc

e
an

d
Al

be
rt

D
Pe

rr
y d

ef
in

e
co

m
m

un
iti

es
 a

s
cl

iq
ue

s
[5

].

Ro
be

rt
W

ei
ss

 a
nd

Eu

ge
ne

 J
ac

ob
so

n
id

en
tif

y
co

m
m

un
iti

es
 b

y
re

m
ov

in
g

in
di

vi
du

al
s

lin

ke
d

to
 m

ul
tip

le

gr
ou

ps
 [6

].

W
ay

ne
 W

. Z
ac

ha
ry

m
ap

s
ou

t t
he

 k
ar

at
e

cl
ub

, t
ha

t a
 q

ua
rt

er
 o

f a

ce
nt

ur
y

la
te

r
be

co
m

es
 a

te

st
 b

ed
 fo

r
co

m
m

un
ity

id

en
tif

ic
at

io
n

[7
].

M
ar

k
Gr

an
ov

et
te

r
ex

pl
or

es
 th

e
in

te
rp

la
y

be
tw

ee
n

co
m

m
un

iti
es

 a
nd

w

ea
k

tie
s

[6
2]

.

pr
op

os
es

 a
 h

ie
ra

rc
hi

ca
l a

gg
lo

m
er

-
at

iv
e

al
go

ri
th

m
, u

nl
ea

sh
in

g
an

ex

pl
os

io
n

of
 r

es
ea

rc
h

w
ith

in

sy
st

em
s

bi
ol

og
y

 [1
1]

.

Ta
m

ás
 V

ics
ek

in

tr
od

uc
es

 th
e

CF
in

de
r

al
go

ri
th

m
 to

id

en
tif

y
ov

er
la

pp
in

g
co

m
m

un
iti

es
 [3

6]
.

Ga
ry

 F
la

ke
, S

te
ve

 L
aw

re
nc

e
an

d
Le

e
Gi

le
s

de
fin

e
a

W
W

W
 c

om
m

un
ity

 a
s

do
cu

m
en

ts
 th

at
 h

av
e

m
or

e
lin

ks
 to

 e
ac

h
ot

he
r

th
an

 to

do
cu

m
en

ts
 o

ut
si

de
 th

ei
r

co
m

m
un

ity
 [1

5]
.

M
ich

el
le

 G
irv

an
 a

nd
 M

ar
k

Ne
w

m
an

Er
zs

éb
et

 R
av

as
z

Ea
rly

 C
om

m
un

iti
es

P
re

de
ce

ss
or

s
to

 c
om

m
un

ity

fin
di

ng
, g

ra
ph

 p
ar

tit
io

ni
ng

al

go
ri

th
m

s
op

tim
iz

e
th

e
la

yo
ut

 o
f

in
te

gr
at

ed
 c

ir
cu

its

Gr
ap

h
Pa

rti
tio

ni
ng

YE
AR

19
27

19
49

19
50

19
55

20
02

19
73

19
77

20
00

19
30

19
40

19
60

19
70

19
80

19
90

W
1

W
2

W
3

W
4

W
5

W
5

W
7

W
8

W
9

S 1

I 1

CL
IQ

UE
 A

CL
IQ

UE
 B

I 3

S 2
S 4

W
1

S 2
S 4

W
3

W
4

W
5

W
6

W
7

W
8

I 1
I 3

W
2

W
9

S 1

Th
e

R
oo

ts
M

an
y

of
 t

h
e

co
n

ce
pt

s
u

se
d

in
 c

om
m

u
n

it
y

fi
n

di
n

g
h

av
e

th
ei

r
ro

ot
s

in

so
ci

al
 a

n
d

co
m

pu
te

r
sc

ie
n

ce
, p

re
ce

ed
in

g
n

et
w

or
k

sc
ie

n
ce

.

Th
e

Ex
pl

os
io

n
Th

e
cu

rr
en

t i
n

te
re

st
 in

 c
om

m
u

n
it

y
fi

n
di

n
g

w
as

 ig
n

it
ed

 b
y

tw
o

pa
pe

rs
, p

ro
po

si
n

g
al

go
ri

th
m

s
to

 id
en

ti
fy

 c
om

m
u

n
it

ie
s

in
 s

oc
ia

l [
9]

 a
n

d
[1

1]
 b

io
lo

gi
ca

l s
ys

te
m

s.

HOMEWORKCOMMUNITIES 43

SECTION 9.9

HOMEWORK

9.1. Hierarchical Networks

Calculate the degree exponent of the hierarchical network shown in
Figure 9.33.

9.2. Communities on a Circle

Consider a one dimensional lattice with N nodes that form a circle,
where each node connects to its two neighbors. Partition the line into nc
consecutive clusters of size Nc=N/nc.

(a) Calculate the modularity of the obtained partition.
(b) According to the Maximum Modularity Hypothesis (SECTION 9.4), the

maximum of Mc corresponds to the best partition. Obtain the com-
munity size nc corresponding to the best partition.

9.3. Modularity Resolution Limit

Consider a network consisting of a ring of nc cliques, each clique having
Nc nodes and m(m–1)/2 links. The neighboring cliques are connected by a
single link (Figure 9.34). The network has an obvious community structure,
each community corresponding to a clique.

(a) Determine the modularity Msingle of this natural partition, and the
modularity Mpairs of the partition in which pairs of neighboring
cliques are merged into a single community, as indicated by the
dotted lines in Figure 9.34.

 (b) Show that only for nc < 2L will the modularity maximum predict the
intuitively correct community partition, where

 (c) Discuss the consequences of violating the above inequality.

9.4. Modularity Maximum.

Show that the maximum value of modularity M defined in (9.12) cannot
exceed one.

L n m m n(1) / 2 .c c= − +

Figure 9.33
Hierarchical Networks

The colors represent the subsequent stages of
the network's construction.

Figure 9.34
Modularity

!!
!!

!!

!!

!!
!!

!!

!!

!!

!!
kl

kl

kl

kl

klkl

kl

kl

kl

kl

ADVANCED TOPICS 9.ACOMMUNITIES 44

SECTION 9.10

In this section we discuss the scaling properties of the hierarchical mod-
el introduced in Figure 9.13. We calculate the degree distribution and the
degree-dependent clustering coefficient, deriving (9.8). Finally, we explore
the presence of hierarchy in the ten real networks.

Degree Distribution
To compute the model's degree distribution we count the nodes with

different degrees. Starting with the five nodes of the first module in Fig-

ure 9.13a, we label the middle one a hub and call the remaining four nodes
peripheral. All copies of this hub are again called hubs and we continue
calling copies of peripheral nodes peripheral (Figure 9.35).

The largest hub at the center of the network acquires 4n links during the
nth iteration. Let us call this central hub Hn and the four copies of this hub
Hn–1 (Figure 9.35). We call Hn–2 the 4 · 5 leftover module centers whose size
equals the size of the network at the (n–2)th iteration.

At the nth iteration the degree of the hub Hi follows

 , (9.35)

where we used

 , (9.36)

or

 . (9.37)

For i < n the number of Hi modules is

 , (9.38)

kn(Hi) =
i

∑
l=1

4l = 4
3 (4i − 1)

i

∑
l=0

xl = xi+1 − 1
x − 1

i

∑
l=1

xl = xi+1 − 1
x − 1 − 1

Nn(Hi) = 4 ⋅ 5n−i−1

ADVANCED TOPICS 9.A
HIERARCHICAL MODULARITY

COMMUNITIES

PERIPHERAL

HUBS

Hn

Hn-1

Hn-2

Figure 9.35
Calculating the degree exponent

The structure of a hierarchical network and
the naming convention we use to refer to the
hubs. After [11].

ADVANCED TOPICS 9.A45COMMUNITIES

i.e. there are four modules for i = n – 1; 4 · 5 modules for i = n – 2; ...; and 4
· 5 n–2 for i=n. Since we have 4 · 5 n–i–1 Hi-type hubs of degree kn(Hi), (4.35) and

(4.38) allow us to write

 (9.39)

 (9.40)

where

 . (9.41)

Note that in (9.40) we used the approximation 4i–1≃4i.

For all k > n + 2 we can combine (9.40) and (9.41) to obtain

 (9.42)

or

 . (9.43)

To calculate the degree distribution we need to normalize Nn(Hi) by cal-
culating the ratio

 . (9.44)

Using

 (9.45)

we obtain

 . (9.46)

In other words the obtained hierarchical network’s degree exponent is

 . (9.47)

Clustering Coefficient
It is somewhat straightforward to calculate the clustering coefficient

of the Hi hubs. Their
i

∑
l=1

4l links come from nodes linked in a square, thus the
connections between them equals their number. Consequently the number
of links between the Hi’s neighbors is

 , (9.48)

providing

 (9.49)

In other words we obtain

lnNn(Hi) =Cn − i ⋅ ln5

ln kn(Hi) ≃ i ⋅ ln 4 + ln (4/3)

Cn = ln4 + (n − 1)ln5

ln Nn(Hi) = C ′n − ln ki
ln 5
ln 4

Nn(Hi) ∼ k− ln 5
ln 4

i

pki
∼ Nn(Hi)

ki+1 − ki
∼ k−γ

i

i+1

∑
l=1

4l
i

∑
l=1

4 3l 4i+1=== − kikiki+1 +4−

pki
=

k− ln 5
ln 4

i

3ki + 4 ∼ k−1− ln 5
ln 4

i

γ = 1 + ln 5
ln 4 = 2.16

i

∑
l=1

4l = kn(Hi)

C(Hi) = 2ki

ki(ki − 1) = 2
ki − 1

.

ADVANCED TOPICS 9.A46COMMUNITIES

 , (9.50)

indicating that C(k) for the hubs scales as k–1, in line with (9.8).

Empirical Results
Figure 9.36 shows the C(k) function for the ten reference networks. We

also show C(k) for each network after we applied degree-preserving ran-
domization (green symbols), allowing us to make several observations:

• For small k all networks have an order of magnitude higher C(k) than
their randomized counterpart. Therefore the small degree nodes are
located in much denser neighborhoods than expected by chance.

• For the scientific collaboration, metabolic, and citation networks with
a good approximation we have C(k)~k–1, while the randomized C(k) is
flat. Hence these networks display the hierarchical modularity of the
model of Figure 9.13.

• For the Internet, mobile phone calls, actors, email, protein interac-
tions and the WWW C(k) decreases with k, while their randomized C(k)
is k-independent. Hence while these networks display a hierarchical
modularity, the observed C(k) is not captured by our simple hierarchi-
cal model. To fit the C(k) of these systems we need to build models that
accurately capture their evolution. Such models predict that C(k)~k–β,
where β can be different from one [27].

• Only for the power grid we observe a flat, k-independent C(k), indicat-
ing the lack of a hierarchical modularity.

Taken together, Figure 9.36 indicates that most real networks display
some nontrivial hierarchical modularity.

C(k) ≃ 2
k

ADVANCED TOPICS 9.A47COMMUNITIES

10 -4

10 -3

10 -2

10 -1

10 0

10 0 10 1 10 2

POWER GRID

k

10 0 10 1 10 2k

C(k)

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

C(k)

10 -4

10 -3

10 -2

10 -1

10 0

10 0 10 1 10 410 310 2

INTERNET

k

10 0 10 1 10 410 310 2k

10 0 10 1 10 410 310 2k

C(k)

10 -4

10 -3

10 -2

10 -1

10 0

10 0 10 1 10 2

MOBILE PHONE CALLS

k

C(k)

10 -7

10 -3

10 -4

10 -5

10 -6

10 -2

10 -1

10 0

C(k)

10 -4

10 -3

10 -2

10 -1

10 0

C(k)

10 -3

10 -2

10 -1

10 0

10 0 10 1 10 310 2

SCIENTIFIC COLLABORATION

k

10 0 10 1 10 310 2k

C(k)

10 -3

10 -2

10 -1

10 0

C(k)

10 -3

10 -2

10 -1

10 0

C(k)

10 -3

10 -2

10 -1

10 0

C(k)

ACTOR EMAIL

PROTEIN METABOLIC

WWW CITATION

10 0 10 1 10 4 10 510 310 2 k

10 0 10 1 10 4 10 510 310 2 k

(a)

(e)

(b)

(f)

(c)

(g)

(i)

(d)

(h)

(j)

Figure 9.36
Hierarchy in Real Networks

The scaling of C(k) with k for the ten reference
networks (purple symbols). The green sym-
bols show C(k) obtained after applying degree
preserving randomization to each network,
that washes out the local density fluctuations.
Consequently communities and the under-
lying hierarchy are gone. Directed networks
were made undirected to measure C(k). The
dashed line in each figure has slope -1, follow-
ing (9.8), serving as a guide to the eye.

ADVANCED TOPICS 9.BCOMMUNITIES 48

SECTION 9.11

In this section we derive the expressions (9.12) and (9.13), characterizing
the modularity fuction and its changes.

Modularity as a Sum Over Communities
Using (9.9) and (9.10) we can write the modularity of a full network as

 , (9.51)

where Ci is the label of the community to which node i belongs to. As only
node pairs that belong to the same community contribute to the sum in
(9.51), we can rewrite the first term as a sum over communities,

 (9.52)

where Lc is the number of links within community Cc. The factor 2 disap-
pears because each link is counted twice in Aij.

In a similar fashion the second term of (9.51) becomes

 , (9.53)

where kc is the total degree of the nodes in community Cc. Indeed, in the
configuration model the probability that a stub connects to a randomly
chosen stub is 1

2L
, as in total we have 2L stubs in the network. Hence the

likelihood that our stub connects to a stub inside the module is kc

2L
. By re-

peating this procedure for all kc stubs within the community Cc and adding
1/2 to avoid double counting, we obtain the last term of (9.53).

Combining (9.52) and (9.53) leads to (9.12).

M = 1
2L

N

∑
i, j=1

(Aij −
kikj

2L
)δCi ,Cj

Ci ,Cj

1
2L

N

∑
i, j=1

Aijδ =
nc

∑
c=1

1
2L ∑

i, j∈Cc

Aij =
nc

∑
c=1

Lc

L

1
2L ∑

i, j=1

kikj

2L
δ =

nN c

∑
c=1

1
(2L)2 ∑

i, j∈Cc

kikj =
nc

∑
c=1

kc
2

4L2Ci ,Cj

ADVANCED TOPICS 9.B
MODULARITY

COMMUNITIES

ADVANCED TOPICS 9.B49COMMUNITIES

Merging Two Communities
Consider communities A and B and denote with kA and kB the total de-

gree in these communities (equivalent with kc above). We wish to calculate
the change in modularity after we merge these two communities. Using
(9.12), this change can be written as

 , (9.54)

where

 , (9.55)

lAB is the number of direct links between the nodes of communities A and
B, and

 . (9.56)

After inserting (9.55) and (9.56) into (9.54), we obtain

 (9.57)

which is (9.13).

ΔMAB = LAB

L
−(kAB

2L)
2

− LA

L
− (kA

2L)
2
+ LB

L
− (kB

2L)
2

LAB= LA +LB + lAB

kAB = kA + kB

ΔMAB = lAB

L
− kAkB

2L2

ADVANCED TOPICS 9.CCOMMUNITIES 50

SECTION 9.12

The algorithms discussed in this chapter were chosen to illustrate the
fundamental ideas and concepts pertaining to community detection. Con-
sequently they are not guaranteed to be neither the fastest nor the most ac-
curate algorithms. Recently two algorithms, called the Louvain algorithm
and Infomap have gained popularity, as their accuracy is comparable to
the accuracy of the algorithms covered in this chapter but offer better
scalability. Consequently we can use them to identify communities in very
large networks.

There are many similarities between the two algorithms:

• They both aim to optimize a quality function Q . For the Louvain al-
gorithm Q is modularity, M, and for Infomap Q is an entropy-based
measure called the map equation or L.

• Both algorithms use the same optimization procedure.

Given these similarities, we discuss the algorithms together.

THE LOUVAIN ALGORITHM
The O(N2) computational complexity of the greedy algorithm can be

prohibitive for very large networks. A modularity optimization algorithm
with better scalability was proposed by Blondel and collaborators [2]. The
Louvain algorithm consists of two steps that are repeated iteratively (Figure

9.37):

Step I
Start with a weighted network of N nodes, initially assigning each node
to a different community. For each node i we evaluate the gain in mod-
ularity if we place node i in the community of one of its neighbors j. We
then move node i in the community for which the modularity gain is
the largest, but only if this gain is positive. If no positive gain is found, i
stays in its original community. This process is applied to all nodes until
no further improvement can be achieved, completing Step I.

ADVANCED TOPICS 9.C
FAST ALGORITHMS FOR
COMMUNITY DETECTION

COMMUNITIES

ADVANCED TOPICS 9.C51COMMUNITIES

The modularity change ∆M obtained by moving an isolated node i into a
community C can be calculated using

 (9.58)

where ∑in is the sum of the weights of the links inside C (which is LC for
an unweighted network); ∑tot is the sum of the link weights of all nodes
in C; ki is the sum of the weights of the links incident to node i; ki,in is the
sum of the weights of the links from i to nodes in C and W is the sum of
the weights of all links in the network.

Note that ∆M is a special case of (9.13), which provides the change in
modularity after merging communities A and B. In the current case B
is an isolated node. We can use ∆M to determine the modularity change
when i is removed from the community it belonged earlier. For this we
calculate ∆M for merging i with the community C after we excluded i
from it. The change after removing i is –∆M.

Step II
We construct a new network whose nodes are the communities iden-
tified during Step I. The weight of the link between two nodes is the
sum of the weight of the links between the nodes in the correspond-
ing communities. Links between nodes of the same community lead to
weighted self-loops.

Once Step II is completed, we repeat Steps I - II, calling their combi-
nation a pass (Figure 9.37). The number of communities decreases with
each pass. The passes are repeated until there are no more changes and
maximum modularity is attained.

ΔM = [Σin + 2ki,in
2W

− (Σtot + ki

2W)
2

] − [Σin

2W
− (Σtot

2W)
2

− (ki

2W)
2

]

15

2

2
12

4
4

4

9

5

1

1 1 1

7

3

3

14

14STEP I STEP II

1ST PASS

2ND PASS

16

8
11

10
13

6

0

STEP I STEP II

15

2

12

4

9

7

3

13

6
5

1

14

8

11

10

0

2

4
4

1 1 1

3

14

16

24
3

26

2

4
4

1 1 1

3

14

16

∆M0,2 = 0 .023
∆M0,3 = 0 .032
∆M0,4 = 0 .026
∆M0,5 = 0 .026

Figure 9.37
The Louvain Algorithm

The main steps of the Louvain algorithm. Each
pass consists of two distinct steps:

Step I
Modularity is optimized by local changes. We
choose a node and calculate the change in
modularity, (9.58), if the node joins the com-
munity of its immediate neighbors. The figure
shows the expected modularity change ∆Mo,i
for node 0. Accordingly node 0 will join node
3, as the modularity change for this move is
the largest, being ∆M0,3=0.032. This process is
repeated for each node, the node colors corre-
sponding to the resulting communities, con-
cluding Step I.

Step II
The communities obtained in Step I are aggre-
gated, building a new network of communi-
ties. Nodes belonging to the same community
are merged into a single node, as shown on the
top right. This process will generate self-loops,
corresponding to links between nodes in the
same community that are now merged into a
single node.

The sum of Steps I & II are called a pass. The
network obtained after each pass is processed
again (Pass 2), until no further increase of
modularity is possible. After [2].

ADVANCED TOPICS 9.C52COMMUNITIES

Computational Complexity
The Louvain algorithm is more limited by storage demands than by
computational time. The number of computations scale linearly with L
for the most time consuming first pass. With subsequent passes over a
decreasing number of nodes and links, the complexity of the algorithm
is at most O(L). It therefore allows us to identify communities in net-
works with millions of nodes.

INFOMAP
Introduced by Martin Rosvall and Carl T Bergstrom, Infomap exploits

data compression for community identification (Figure 9.38) [44-46]. It does
it by optimizing a quality function for community detection in directed
and weighted networks, called the map equation.

Consider a network partitioned into nc communities. We wish to encode
in the most efficient fashion the trajectory of a random walker on this net-
work. In other words, we want to describe the trojectory with the smallest
number of symbols. The ideal code should take advantage of the fact that
the random walker tends to get trapped into communities, staying there
for a long time (Figure 9.38c).

To achieve this coding we assign:

• One code to each community (index codebook). For example the pur-
ple community in Figure 9.38c is assigned the code 111.

• Codewords for each node within each community. For example the
top left node in (c) is assigned 001. Note that the same node code can
be reused in different communities.

• Exit codes that mark when the walker leavers a community, like 0001
for the purple community in (c).

The goal, therefore, is to build a code that offers the shortest description
of the random walk. Once we have this code, we can identify the network's
community structure by reading the index codebook, which is uniquely as-

1111100

01011

1100

10000

0110

11011

0011
10111

1001
0100

111111 11010

10110

10101

11110

00011

0010
0000

1111101

10100

01010

1110

10001
0111

00010

0000

001

11

100

01

101

110
011

00
111

1010 100

010

00

10

011

11
011

0010

010

1101

10

000
111

1100

110 00010 0001

0 1011111 0001

110

10

0

111

1111100 1100 0110 11011 10000 11011 0110 0011 10111 1001 0011
1001 0100 0111 10001 1110 0111 10001 0111 1110 0000 1110 10001
0111 1110 0111 1110 1111101 1110 0000 10100 0000 1110 10001 0111
0100 10110 11010 10111 1001 0100 1001 10111 1001 0100 1001 0100
0011 0100 0011 0110 11011 0110 0011 0100 1001 10111 0011 0100
0111 10001 1110 10001 0111 0100 10110 111111 10110 10101 11110
00011

111 0000 11 01 101 100 101 01 0001 0 110 011 00 110 00 111 1011 10
111 000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 011 010
011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111
110 111 110 1011 111 01 101 01 0001 0 110 111 00 011 110 111 1011
10 111 000 10 000 111 0001 0 111 010 1010 010 1011 110 00 10 011

111 0 110 011 00 110 00 111 1011 10
111 000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 011 010
011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111
110 111 110 1011 111 0 110 111 00 011 110 111 1011
10 111 000 10 000 111 0001 0 111 010 1010 010 1011 110 00 10 011

1111100

01011

1100

10000

0110

11011

0011
10111

1001
0100

111111 11010

10110

10101

11110

00011

0010
0000

1111101

10100

01010

1110

10001
0111

00010

0000

001

11

100

01

101

110
011

00
111

1010 100

010

00

10

011

11
011

0010

010

1101

10

000
111

1100

110 00010 0001

0 1011111 0001

110

10

0

111

1111100 1100 0110 11011 10000 11011 0110 0011 10111 1001 0011
1001 0100 0111 10001 1110 0111 10001 0111 1110 0000 1110 10001
0111 1110 0111 1110 1111101 1110 0000 10100 0000 1110 10001 0111
0100 10110 11010 10111 1001 0100 1001 10111 1001 0100 1001 0100
0011 0100 0011 0110 11011 0110 0011 0100 1001 10111 0011 0100
0111 10001 1110 10001 0111 0100 10110 111111 10110 10101 11110
00011

111 0000 11 01 101 100 101 01 0001 0 110 011 00 110 00 111 1011 10
111 000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 011 010
011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111
110 111 110 1011 111 01 101 01 0001 0 110 111 00 011 110 111 1011
10 111 000 10 000 111 0001 0 111 010 1010 010 1011 110 00 10 011

111 0000 11 01 101 100 101 01 0001 0 110 011 00 110 00 111 1011 10
111 000 10 111 000 111 10 011 10 000 111 10 111 10 0010 10 011 010
011 10 000 111 0001 0 111 010 100 011 00 111 00 011 00 111 00 111
110 111 110 1011 111 01 101 01 0001 0 110 111 00 011 110 111 1011
10 111 000 10 000 111 0001 0 111 010 1010 010 1011 110 00 10 011

(a) (b) (c) (d)

Figure 9.38
From Data Compression to Communities

Infomap detect communities by compressing
the movement of a random walker on a net-
work.

(a) The orange line shows the trajectory of
a random walker on a small network.
We want to describe this trajectory with
a minimal number of symbols, which
we can achieve by assigning repeatedly
used structures (communities) short and
unique names.

(b) We start by giving a unique name to each
node. This is derived using a Huffman
coding, a data compression algorithm that
assigns each node a code using the esti-
mated probability that the random walk
visits that node. The 314 bits under the
network describe the sample trajectory of
the random walker shown in (a), starting
with 1111100 for the first node of the walk
in the upper left corner, 1100 for the sec-
ond node, etc., and ending with 00011 for
the last node on the walk in the lower right
corner.

(c) The figure shows a two-level encoding of
the random walk, in which each commu-
nity receives a unique name, but the name
of nodes within communities are reused.
This code yields on average a 32% shorter
coding. The codes naming the communi-
ties and the codes used to indicate an exit
from each community are shown to the
left and the right of the arrows under the
network, respectively. Using this code, we
can describe the walk in (a) by the 243 bits
shown under the network in (c). The first
three bits 111 indicate that the walk begins
in the red community, the code 0000 spec-
ifies the first node of the walk, etc.

() By reporting only the community names,
and not the locations of each node within
the communities, we obtain an efficient
coarse graining of the network, which cor-
responds to its community structure.

ADVANCED TOPICS 9.C53COMMUNITIES

signed to each community (Figure 9.38c).

The optimal code is obtained by finding the minimum of the map equa-
tion

 . (9.59)

In a nutshell, the first term of (9.59) gives the average number of bits neces-
sary to describe the movement between communities where q is the prob-
ability that the random walker switches communities during a given step.

The second term gives the average number of bits necessary to describe
movement within communities. Here H(Pc) is the entropy of within-com-
munity movements — including an “exit code” to capture the departure
from a community i.

The specific terms of the maps equation and their calculation in terms of
the probabilities capturing the movement of a random walker on a net-
work, is somewhat involved. They are described in detail in Ref [44-46].
Online Resource 9.3 offers an interactive tool to illustrate the mechanism be-
hind (9.59) and its use.

At the end L serves as a quality function, that takes up a specific value
for a particular partition of the network into communities. To find the best
partition, we must minimize L over all possible partitions. The popular im-
plementation of this optimization procedure follows Steps I and II of the
Louvain algorithm: We assign each node to a separate community, and we
systematically join neighboring nodes into modules if the move decreases
L. After each move L is updated using (9.59). The obtained communities are
joined into supercommunities, finishing a pass, after which the algorithm
is restarted on the new, reduced network.

Computational Complexity
The computational complexity of Infomap is determined by the pro-

cedure used to minimize the map equation L. If we use the Louvain pro-
cedure, the computational complexity is the same as that of the Louvain
algorithm, i.e. at most O(LlogL) or O(NlogN) for a sparse graph.

In summary, the Louvain algorithm and Infomap offer tools for fast
community identification. Their accuracy across benchmarks is compara-
ble to the accuracy of the algorithms discussed throughout this chapter
(Figure 9.28).

L= qH(Q) +
nc

∑
c =1

p↻
cH(Pc)

>
Online Resource 9.3

Map Equation for Infomap

For a dynamic visualization of the mechanism
behind the map equation, see http://www.
tp.umu. se/~rosvall/livemod/mapequation/.

>

ADVANCED TOPICS 9.DCOMMUNITIES 54

SECTION 9.13

In this section we derive the percolation threshold (9.20) for clique percola-
tion on a random network and discuss the main steps of the CFinder algo-
rithm (Figure 9.39).

When we roll a k-clique to an adjacent k-clique by relocating one of its
nodes, the expectation value of the number of adjacent k-cliques for the
template to roll further should equal exactly one at the percolation thresh-
old (Figure 9.20). Indeed, a smaller than one expectation value will result in a
premature end of the k-clique percolation clusters, because starting from
any k-clique, the rolling would quickly come to a halt. Consequently the
size of the clusters would decay exponentially. A larger than one expecta-
tion value, on the other hand, allows the clique community to grow indefi-
nitely, guaranteeing that we have a giant cluster in the system.

The above expectation value is provided by

 , (9.63)

where the term (k–1) counts the number of nodes of the template that can
be selected for the next relocation; the term (N-k–1)k–1 counts the number
of potential destinations for this relocation, out of which only the fraction
pk–1 is acceptable, because each of the new k–1 edges (associated with the
relocation) must exist in order to obtain a new k-clique. For large N, (9.63)
simplifies to

(k–1)Npck–1 = 1 ,

which leads to (9.16).

(k − 1)(N − k − 1)k−1

ADVANCED TOPICS 9.D
THRESHOLD FOR CLIQUE
PERCOLATION

COMMUNITIES

ADVANCED TOPICS 9.DCOMMUNITIES 55

1 2 3 4 5
1 0 1 0 0 0
2 1 0 0 0 0
3 0 0 0 1 0
4 0 0 1 0 1
5 0 0 0 1 0

O=

1

2
3 4 5

1 2
3

4
5

(a)

(b)

(c)

Figure 9.39
CFinder algorithm

The main steps of the CFinder algorithm.

(a) Starting from the network shown in the
figure, our goal is to identify all cliques.
All five k=3 cliques present in the network
are highlighted.

(b) The overlap matrix O of the k=3 cliques.
This matrix is viewed as an adjacency
matrix of a network whose nodes are the
cliques of the original network. The ma-
trix indicates that we have two connect-
ed components, one consisting of cliques
(1,2) and the other of cliques (3, 4, 5). The
connected components of this network
map into the communities of the original
network.

(c) The two clique communities predicted by
the adjacency matrix.

(d) The two clique communities shown in (c),
mapped on the original network.

(d)

BIBLIOGRAPHYCOMMUNITIES 56

[1] B. Droitcour. Young Incorporated Artists. Art in America, 92-97,
April 2014.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast un-
folding of communities in large networks. J. Stat. Mech., 2008.

[3] G.C. Homans. The Human Groups. Harcourt, Brace & Co, New York,
1950.

[4] S.A. Rice. The identification of blocs in small political bodies. Am.
Polit. Sci. Rev., 21:619–627, 1927.

[5] R.D. Luce and A.D. Perry. A method of matrix analysis of group struc-
ture. Psychometrika, 14:95–116, 1949.

[6] R.S. Weiss and E. Jacobson. A method for the analysis of the struc-
ture of complex organizations. Am. Sociol. Rev., 20:661–668, 1955.

[7] W.W. Zachary. An information flow model for conflict and fission in
small groups. J. Anthropol. Res., 33:452–473, 1977.

[8] L. Donetti and M.A. Muñoz. Detecting network communities: a new
systematic and efficient algorithm. J. Stat. Mech., P10012, 2004.

[9] M. Girvan and M.E.J. Newman. Community structure in social and
biological networks. PNAS, 99:7821–7826, 2002.

[10] L.H. Hartwell, J.J. Hopfield, and A.W. Murray. From molecular to
modular cell biology. Nature, 402:C47–C52, 1999.

[11] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási.
Hierarchical organization of modularity in metabolic networks. Science,
297:1551-1555, 2002.

[12] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabá-
si. The human disease network. PNAS, 104:8685-8690, 2007.

SECTION 9.14

BIBLIOGRAPHY

COMMUNITIES

57 BIBLIOGRAPHY

[13] J. Menche, A.Sharma, M. Kitsak, S. Ghiassian, M. Vidal, J. Loscalzo,
A.-L. Barabási. Oncovering disease-disease relationships through the hu-
man interactome. 2014.

[14] A.-L. Barabási, N. Gulbahce, and J. Loscalzo. Network medicine: a
network-based approach to human disease. Nature Review Genetics, 12:56-
68, 2011.

[15] G. W. Flake, S. Lawrence, and C.L. Giles. Efficient identification of
web communities. Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, 150-160, 2000.

[16] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defin-
ing and identifying communities in networks. PNAS, 101:2658–2663, 2004.

[17] A.B. Kahng, J. Lienig, I.L. Markov, and J. Hu. VLSI Physical Design:
From Graph Partitioning to Timing Closure. Springer, 2011.

[18] B.W. Kernighan and S. Lin. An efficient heuristic procedure for par-
titioning graphs. Bell Systems Technical Journal, 49:291–307, 1970.

[19] G.E. Andrews. The Theory of Partitions. Addison-Wesley, Boston,
USA, 1976.

[20] L. Lovász. Combinatorial Problems and Exercises. North-Holland,
Amsterdam, The Netherlands, 1993.

[21] G. Pólya and G. Szegő. Problems and Theorems in Analysis I. Spring-
er-Verlag, Berlin, Germany, 1998.

[22] V. H. Moll. Numbers and Functions: From a classical-experimental
mathematician’s point of view. American Mathematical Society, 2012.

[23] M.E.J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review E, 69:026113, 2004.

[24] M.E.J. Newman. A measure of betweenness centrality based on
random walks. Social Networks, 27:39–54, 2005.

[25] U. Brandes. A faster algorithm for betweenness centrality. J. Math.
Sociol., 25:163–177, 2001.

[26] T. Zhou, J.-G. Liu, and B.-H. Wang. Notes on the calculation of node
betweenness. Chinese Physics Letters, 23:2327–2329, 2006.

[27] E. Ravasz and A.-L. Barabasi. Hierarchical organization in complex
networks. Physical Review E, 67:026112, 2003.

[28] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Pseudofractal
scale-free web. Physical Review E, 65:066122, 2002.

[29] E. Mones, L. Vicsek, and T. Vicsek. Hierarchy Measure for Complex
Networks. PLoS ONE, 7:e33799, 2012.

COMMUNITIES

58 BIBLIOGRAPHY

[30] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure
and the prediction of missing links in networks. Nature, 453:98-101, 2008.

[31] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas. Comparing com-
munity structure identification. Journal of Statistical Mechanics, P09008,
2005.

[32] S. Fortunato and M. Barthélemy. Resolution limit in community de-
tection. PNAS, 104:36–41, 2007.

[33] M.E.J. Newman. Fast algorithm for detecting community structure
in networks. Physical Review E, 69:066133, 2004.

[34] S. Fortunato and M. Barthélemy. Resolution limit in community de-
tection. PNAS, 104:36–41, 2007.

[35] A. Clauset, M.E.J. Newman, and C. Moore. Finding community
structure in very large networks. Physical Review E, 70:066111, 2004.

[36] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the over-
lapping community structure of complex networks in nature and society.
Nature, 435:814, 2005.

[37] R. Guimerà, L. Danon, A. Díaz-Guilera, F. Giralt, and A. Arenas.
Self-similar community structure in a network of human interactions.
Physical Review E, 68:065103, 2003.

[38] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas. Comparing com-
munity structure identification. J. Stat. Mech., P09008, 2005.

[39] J. Ruan and W. Zhang. Identifying network communities with a
high resolution. Physical Review E 77: 016104, 2008.

[40] B. H. Good, Y.-A. de Montjoye, and A. Clauset. The performance
of modularity maximization in practical contexts. Physical Review E,
81:046106, 2010.

[41] R. Guimerá, M. Sales-Pardo, and L.A.N. Amaral. Modularity from
fluctuations in random graphs and complex networks. Physical Review E,
70:025101, 2004.

[42] J. Reichardt and S. Bornholdt. Partitioning and modularity of
graphs with arbitrary degree distribution. Physical Review E, 76:015102,
2007.

[43] J. Reichardt and S. Bornholdt. When are networks truly modular?
Physica D, 224:20–26, 2006.

[44] M. Rosvall and C.T. Bergstrom. Maps of random walks on complex
networks reveal community structure. PNAS, 105:1118, 2008.

[45] M. Rosvall, D. Axelsson, and C.T. Bergstrom. The map equation. Eur.
Phys. J. Special Topics, 178:13, 2009.

COMMUNITIES

BIBLIOGRAPHY59COMMUNITIES

[46] M. Rosvall and C.T. Bergstrom. Mapping change in large networks.
PLoS ONE, 5:e8694, 2010.

[47] A. Perey. Oksapmin Society and World View. Dissertation for De-
gree of Doctor of Philosophy. Columbia University, 1973.

[48] I. Derényi, G. Palla, and T. Vicsek. Clique percolation in random net-
works. Physical Review Letters, 94:160202, 2005.

[49] J.M. Kumpula, M. Kivelä, K. Kaski, and J. Saramäki. A sequential al-
gorithm for fast clique percolation. Physical Review E, 78:026109, 2008.

[50] G. Palla, A.-L. Barabási, and T. Vicsek. Quantifying social group evo-
lution. Nature, 446:664-667, 2007.

[51] Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal
multiscale complexity in networks. Nature, 466:761-764, 2010.

[52] T.S. Evans and R. Lambiotte. Line graphs, link partitions, and over-
lapping communities. Physical Review E, 80:016105, 2009.

[53] M. Chen, K. Kuzmin, and B.K. Szymanski. Community Detection via
Maximization of Modularity and Its Variants. IEEE Trans. Computational
Social Systems, 1:46-65, 2014.

[54] I. Farkas, D. Ábel, G. Palla, and T. Vicsek. Weighted network mod-
ules. New J. Phys., 9:180, 2007.

[55] S. Lehmann, M. Schwartz, and L.K. Hansen. Biclique communities.
Physical Review E, 78:016108, 2008.

[56] N. Du, B. Wang, B. Wu, and Y. Wang. Overlapping community de-
tection in bipartite networks. IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology, IEEE Computer Soci-
ety, Los Alamitos, CA, USA: 176–179, 2008.

[57] A. Condon and R.M. Karp. Algorithms for graph partitioning on the
planted partition model. Random Struct. Algor., 18:116–140, 2001.

[58] A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs
for testing community detection algorithms. Physical Review E, 78:046110,
2008.

[59] A. Lancichinetti, S. Fortunato, and J. Kertész. Detecting the over-
lapping and hierarchical community structure of complex networks. New
Journal of Physics, 11:033015, 2009.

[60] S. Fortunato. Community detection in graphs. Physics Reports,
486:75–174, 2010.

[61] D. Hric, R.K. Darst, and S. Fortunato. Community detection in
networks: structural clusters versus ground truth. Physical Review E,
90:062805, 2014.

BIBLIOGRAPHY60COMMUNITIES

[62] M. S. Granovetter. The Strength of Weak Ties. The American Journal
of Sociology, 78:1360–1380, 1973.

[63] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J.
Kertész, and A.-L. Barabási. Structure and tie strengths in mobile commu-
nication networks. PNAS, 104:7332, 2007.

[64] K.-I. Goh, B. Kahng, and D. Kim. Universal Behavior of Load Distri-
bution in Scale-Free Networks. Physical Review Letters, 87:278701, 2001.

[65] A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J.R. Banavar.
Universality Classes of Optimal Channel Networks. Science, 272:984 –986,
1996.

[66] L.C. Freeman. A set of measures of centrality based upon between-
ness. Sociometry, 40:35–41, 1977.

[67] J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Tracking evolving
communities in large linked networks. PNAS, 101:5249–5253, 2004.

[68] S. Asur, S. Parthasarathy, and D. Ucar. An event-based frame-
work for characterizing the evolutionary behavior of interaction graphs.
KDD ’07: Proceedings of the 13th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, pp.
913–921, 2007.

[69] D.J. Fenn, M.A. Porter, M. McDonald, S. Williams, N.F. Johnson, and
N.S. Jones. Dynamic communities in multichannel data: An application to
the foreign exchange market during the 2007–2008 credit crisis. Chaos,
19:033119, 2009.

[70] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary cluster-
ing, in: KDD ’06: Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ACM, New York, NY,
USA, pp. 554–560, 2006.

[71] Y. Chi, X. Song, D. Zhou, K. Hino, and B.L. Tseng. Evolutionary spec-
tral clustering by incorporating temporal smoothness. KDD ’07: Proceed-
ings of the 13th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, ACM, New York, NY, USA, pp. 153–162, 2007.

[72] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B.L. Tseng. Facetnet: a
framework for analyzing communities and their evolutions in dynamic
networks. in: WWW ’08: Proceedings of the 17th International Conference
on the World Wide Web, ACM, New York, NY, USA, pp. 685–694, 2008.

[73] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group
formation in large social networks: membership, growth, and evolution.
KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, pp.
44–54, 2006.

BIBLIOGRAPHY61COMMUNITIES

[74] M. E. J. Newman and J. Park. Why social networks are different from
other types of networks. Physical Review E, 03G122, 2003.

[75] B. Krishnamurthy and J. Wang. On network-aware clustering of
web clients. SIGCOMM Comput. Commun. Rev., 30:97–110, 2000.

[76] K.P. Reddy, M. Kitsuregawa, P. Sreekanth, and S.S. Rao. A graph
based approach to extract a neighborhood customer community for collab-
orative filtering. DNIS ’02: Proceedings of the Second International Work-
shop on Databases in Networked Information Systems, Springer-Verlag,
London, UK, pp. 188–200, 2002.

[77] R. Agrawal and H.V. Jagadish. Algorithms for searching massive
graphs. Knowl. Data Eng., 6:225–238, 1994.

[78] A.Y. Wu, M. Garland, and J. Han. Mining scale-free networks using
geodesic clustering. KDD ’04: Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, ACM Press,
New York, NY, USA, 2004, pp. 719–724, 2004.

