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Electronic databases, from phone to e-mails logs, currently provide
detailed records of human communication patterns, offering novel
avenues to map and explore the structure of social and commu-
nication networks. Here we examine the communication patterns
of millions of mobile phone users, allowing us to simultaneously
study the local and the global structure of a society-wide commu-
nication network. We observe a coupling between interaction
strengths and the network’s local structure, with the counterin-
tuitive consequence that social networks are robust to the removal
of the strong ties but fall apart after a phase transition if the weak
ties are removed. We show that this coupling significantly slows
the diffusion process, resulting in dynamic trapping of information
in communities and find that, when it comes to information dif-
fusion, weak and strong ties are both simultaneously ineffective.

complex systems " complex networks " diffusion and spreading "
phase transition " social systems

Uncovering the structure and function of communication
networks has always been constrained by the practical

difficulty of mapping out interactions among a large number of
individuals. Indeed, most of our current understanding of com-
munication and social networks is based on questionnaire data,
reaching typically a few dozen individuals and relying on the
individual’s opinion to reveal the nature and the strength of the
ties. The fact that currently an increasing fraction of human
interactions are recorded, from e-mail (1–3) to phone records
(4), offers unprecedented opportunities to uncover and explore
the large scale characteristics of communication and social
networks (5). Here we take a first step in this direction by
exploiting the widespread use of mobile phones to construct a
map of a society-wide communication network, capturing the
mobile interaction patterns of millions of individuals. The data
set allows us to explore the relationship between the topology of
the network and the tie strengths between individuals, informa-
tion that was inaccessible at the societal level before. We
demonstrate a local coupling between tie strengths and network
topology, and show that this coupling has important conse-
quences for the network’s global stability if ties are removed, as
well as for the spread of news and ideas within the network.

A significant portion of a country’s communication network
was reconstructed from 18 weeks of all mobile phone call records
among !20% of the country’s entire population, 90% of whose
inhabitants had a mobile phone subscription [see supporting
information (SI) Appendix]. Whereas a single call between two
individuals during 18 weeks may not carry much information,
reciprocal calls of long duration between two users serves as a
signature of some work-, family-, leisure-, or service-based
relationship. Therefore, to translate the phone log data into a
network representation that captures the characteristics of the
underlying communication network, we connected two users
with an undirected link if there had been at least one recipro-
cated pair of phone calls between them (i.e., A called B, and B
called A) and defined the strength, wAB " wBA, of a tie as the

aggregated duration of calls between users A and B. This
procedure eliminates a large number of one-way calls, most of
which correspond to single events, suggesting that they typically
reach individuals that the caller does not know personally. The
resulting mobile call graph (MCG) (4) contains N " 4.6 # 106

nodes and L " 7.0 # 106 links, the vast majority (84.1%) of these
nodes belonging to a single connected cluster [giant component
(GC)]. Given the very large number of users and communication
events in the database, we find that the statistical characteristics
of the network and the GC are largely saturated, observing little
difference between a two- or a three-month-long sample. Note
that the MCG captures only a subset of all interactions between
individuals, a detailed mapping of which would require face-to-
face, e-mail, and land line communications as well. Yet, although
mobile phone data capture just a slice of communication among
people, research on media multiplexity suggests that the use of
one medium for communication between two people implies
communication by other means as well (6). Furthermore, in the
absence of directory listings, the mobile phone data are skewed
toward trusted interactions (that is, people tend to share their
mobile numbers only with individuals they trust). Therefore, the
MCG can be used as a proxy of the communication network
between the users. It is of sufficient detail to allow us to address
the large-scale features of the underlying human communication
network and the major trends characterizing it.

Results
The MCG has a skewed degree distribution with a fat tail (Fig.
1A), indicating that although most users communicate with only
a few individuals, a small minority talks with dozens (4, 7). If the
tail is approximated by a power law, which appears to fit the data
better than an exponential distribution, the obtained exponent
!k " 8.4 is significantly higher than the value observed for
landlines (! " 2.1 for the in-degree distribution; see refs. 8 and
32). For such a rapidly decaying degree distribution, the hubs are
few, and therefore many properties of traditional scale-free
networks (33), from anomalous diffusion (9) to error tolerance
(10), are absent. This decay is probably rooted in the fact that
institutional phone numbers, corresponding to the vast majority
of large hubs in the case of land lines, are absent, and in contrast
with e-mail, in which a single e-mail can be sent to many
recipients, resulting in well-connected hubs (1), a mobile phone
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conversation typically represents a one-to-one communication.
The tie strength distribution is broad (Fig. 1B), however, decay-
ing with an exponent !w " 1.9, so that although the majority of
ties correspond to a few minutes of airtime, a small fraction of
users spend hours chatting with each other. This finding is rather
unexpected, given that fat-tailed tie strength distributions have
been observed mainly in networks characterized by global trans-
port processes, such as the number of passengers carried by the
airline transportation network (11), the reaction fluxes in met-
abolic networks (12), or packet transfer on the Internet (13), in
which case the individual f luxes are determined by the global
network topology. An important feature of such global f low
processes is local conservation: All passengers arriving to an
airport need to be transported away, each molecule created by
a reaction needs to be consumed by some other reaction, or each
packet arriving to a router needs to be sent to other routers.
Although the main purpose of the phone is information transfer
between two individuals, such local conservation that constrains
or drives the tie strengths are largely absent, making any
relationship between the topology of the MCG and local tie
strengths less than obvious.

Complex networks often organize themselves according to a
global efficiency principle, meaning that the tie strengths are
optimized to maximize the overall f low in the network (13, 14).
In this case the weight of a link should correlate with its
betweenness centrality, which is proportional to the number of
shortest paths between all pairs of nodes passing through it (refs.
13, 15, and 16, and S. Valverde and R. V. Sole, unpublished
work). Another possibility is that the strength of a particular tie
depends only on the nature of the relationship between two

individuals and is thus independent of the network surrounding
the tie (dyadic hypothesis). Finally, the much studied strength of
weak ties hypothesis (17–19) states that the strength of a tie
between A and B increases with the overlap of their friendship
circles, resulting in the importance of weak ties in connecting
communities. The hypothesis leads to high betweenness central-
ity for weak links, which can be seen as the mirror image of the
global efficiency principle.

In Fig. 2A, we show the network in the vicinity of a randomly
selected individual, where the link color corresponds to the
strength of each tie. It appears from this figure that the network
consists of small local clusters, typically grouped around a
high-degree individual. Consistent with the strength of weak ties
hypothesis, the majority of the strong ties are found within the
clusters, indicating that users spend most of their on-air time
talking to members of their immediate circle of friends. In
contrast, most links connecting different communities are visibly
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Fig. 1. Characterizing the large-scale structure and the tie strengths of the
mobile call graph. (A and B) Vertex degree (A) and tie strength distribution (B).
Each distribution was fitted with P(x) " a(x $ x0)%x exp(%x/xc), shown as a blue
curve, where x corresponds to either k or w. The parameter values for the fits
are k0 " 10.9, !k " 8.4, kc " & (A, degree), and w0 " 280, !w " 1.9, wc " 3.45 #
105 (B, weight). (C) Illustration of the overlap between two nodes, vi and vj, its
value being shown for four local network configurations. (D) In the real
network, the overlap 'O(w (blue circles) increases as a function of cumulative
tie strength Pcum(w), representing the fraction of links with tie strength
smaller than w. The dyadic hypothesis is tested by randomly permuting the
weights, which removes the coupling between 'O(w and w (red squares). The
overlap 'O(b decreases as a function of cumulative link betweenness centrality
b (black diamonds).
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Fig. 2. The structure of the MCG around a randomly chosen individual. Each
link represents mutual calls between the two users, and all nodes are shown
that are at distance less than six from the selected user, marked by a circle in
the center. (A) The real tie strengths, observed in the call logs, defined as the
aggregate call duration in minutes (see color bar). (B) The dyadic hypothesis
suggests that the tie strength depends only on the relationship between the
two individuals. To illustrate the tie strength distribution in this case, we
randomly permuted tie strengths for the sample in A. (C) The weight of the
links assigned on the basis of their betweenness centrality bij values for
the sample in A as suggested by the global efficiency principle. In this case, the
links connecting communities have high bij values (red), whereas the links
within the communities have low bij values (green).
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weaker than the links within the communities. As a point of
comparison, when we randomly permute the link strengths
among the connected user pairs (Fig. 2B), in what would be
consistent with the dyadic hypothesis, we observe dramatically
more weak ties within the communities and more strong ties
connecting distinct communities. Finally, even more divergent
with the observed data (Fig. 2 A), we illustrate what the world
would be like if, as predicted by the global efficiency principle
and betweenness centrality, intercommunity ties (‘‘bridges’’)
were strong and intracommunity ties (‘‘local roads’’) weak (Fig.
2C). To quantify the differences observed in Fig. 2, we measured
the relative topological overlap of the neighborhood of two users
vi and vj, representing the proportion of their common friends
(20) Oij " nij/((ki % 1) $ (kj % 1) % nij), where nij is the number
of common neighbors of vi and vj, and ki (kj) denotes the degree
of node vi (vj). If vi and vj have no common acquaintances, then
we have Oij " 0, the link between i and j representing potential
bridges between two different communities. If i and j are part of
the same circle of friends, then Oij " 1 (Fig. 1C). The dyadic
hypothesis implies the absence of a relationship between the
local network topology and weights, and, indeed, we find that
permuting randomly the tie strengths between the links results
in Oij that is independent of wij (Fig. 1D). We find, however, that
according to the global efficiency principle $O%b decreases with
the betweenness centrality bij, indicating that on average the links
with the highest betweenness centrality bij have the smallest
overlap. In contrast, for the real communication network, $O%w
increases as a function of the percentage of links with weights
smaller than w, demonstrating that the stronger the tie between
two users, the more their friends overlap, a correlation that is
valid for !95% of the links (Fig. 2D). This result is broadly
consistent with the strength of weak ties hypothesis, offering its
first societal-level confirmation. It suggests that tie strength is, in
part, driven by the network structure in the tie’s immediate
vicinity. This suggestion is in contrast with a purely dyadic view,
according to which the tie strength is determined only by the
characteristics of the individuals it connects, or the global view,
which asserts that tie strength is driven by the whole network
topology.

To understand the systemic or global implications of this local
relationship between tie strength and network structure, we
explore the network’s ability to withstand the removal of either
strong or weak ties. To evaluate the impact of removing ties, we
measure the relative size of the giant component Rgc( f ), pro-
viding the fraction of nodes that can all reach each other through
connected paths as a function of the fraction of removed links,
f. We find that removing in rank order the weakest (or smallest
overlap) (Fig. 3 A and B) to strongest (greatest overlap) ties leads
to the network’s sudden disintegration at f w " 0.8 ( f O " 0.6). In
contrast, removing first the strongest (or highest overlap) (Fig.
3 A and B) ties will shrink the network but will not precipitously
break it apart. The precise point at which the network disinte-
grates can be determined by monitoring S̃ " ¥s)smaxnss2/N, where
ns is the number of clusters containing s nodes. According to
percolation theory, if the network collapses because of a phase
transition at fc, then S̃ diverges as f approaches fc (21, 22). Indeed,
we find that S̃ develops a peak if we start with the weakest (or
smallest overlap) links (Fig. 3 C and D). Finite size scaling, a well
established technique for identifying the phase transition, indi-
cates that the values of the critical points are f c

O(&) " 0.62 * 0.05
and and f c

w(&) " 0.80 * 0.04 for the removal of the weak ties,
but there is no phase transition when the strong ties are removed
first.

Taken together, these results document a fundamental differ-
ence between the global role of the strong and weak ties in social
networks: The removal of the weak ties leads to a sudden, phase
transition-driven collapse of the whole network. In contrast, the
removal of the strong ties results only in the network’s gradual

shrinking but not its collapse. This finding is somewhat unex-
pected, because in most technological and biological networks
the strong ties are believed to play a more important structural
role than the weak ties, and in such systems the removal of the
strong ties leads to the network’s collapse (10, 23–25). This
counterintuitive finding underlies the distinct role weak and
strong ties play in a social network: Given that the strong ties are
predominantly within the communities, their removal will only
locally disintegrate a community but not affect the network’s
overall integrity. In contrast, the removal of the weak links will
delete the bridges that connect different communities, leading to
a phase transition driven network collapse.

The purpose of the mobile phone is information transfer
between two individuals. Yet, given that the individuals are
embedded in a social network, mobile phones allow news and
rumors to diffuse beyond the dyad, occasionally reaching a large
number of individuals, a much studied diffusion problem in both
sociology (26) and network science (7). Yet, most of our current
knowledge about information diffusion is based on analyses of
unweighted networks, in which all tie strengths are considered
equal (26). To see whether the observed local relationship
between the network topology and tie strength affects global
information diffusion, at time 0 we infected a randomly selected
individual with some novel information. We assumed that at
each time step, each infected individual, vi, can pass the infor-
mation to his/her contact, vj, with effective probability Pij " xwij,
where the parameter x controls the overall spreading rate. (Note
that the qualitative nature of results is independent of the choice
of x; see SI Appendix for details.) Therefore, the more time two
individuals spend on the phone, the higher the chance that they
will pass on the monitored information. The spreading mecha-
nism is similar to the susceptible-infected model of epidemiology
in which recovery is not possible, i.e., an infected individual will
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continue transmitting information indefinitely (27). As a control,
we considered spreading on the same network, but replaced all
tie strengths with their average value, resulting in a constant
transmission probability for all links.

As Fig. 4A shows (the real diffusion simulation), we find that
information transfer is significantly faster on the network for
which all weights are equal, the difference being rooted in a
dynamic trapping of information in communities. Such trapping
is clearly visible if we monitor the number of infected individuals
in the early stages of the diffusion process (Fig. 4B). Indeed, we
observe rapid diffusion within a single community, correspond-
ing to fast increases in the number of infected users, followed by
plateaus, corresponding to time intervals during which no new
nodes are infected before the news escapes the community.
When we replace all link weights with an average value w (the

control diffusion simulation) the bridges between communities
are strengthened, and the spreading becomes a predominantly
global process, rapidly reaching all nodes through a hierarchy of
hubs (23).

The dramatic difference between the real and the control
spreading process raises an important question: Where do
individuals get their information? We find that the distribution
of the tie strengths through which each individual was first
infected (Fig. 4C) has a prominent peak at w ! 102 seconds,
indicating that, in the vast majority of cases, an individual learns
about the news through ties of intermediate strength. The
distribution changes dramatically in the control case, however,
when all tie strengths are taken to be equal during the spreading
process. In this case, the majority of infections take place along
the ties that are otherwise weak (Fig. 4D). Therefore, in contrast
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with the celebrated role of weak ties in information access (17,
19), we find that both weak and strong ties have a relatively
insignificant role as conduits for information (‘‘the weakness of
weak and strong ties’’), the former because the small amount of
on-air time offers little chance of information transfer and the
latter because they are mostly confined within communities, with
little access to new information.

To illustrate the difference between the real and the control
simulation, we show the spread of information in a small
neighborhood (Fig. 4 E and F). First, the overall direction of
information flow is systematically different in the two cases, as
indicated by the large shaded arrows. In the control runs, the
information mainly follows the shortest paths. When the weights
are taken into account, however, information flows along a
strong tie backbone, and large regions of the network, connected
to the rest of the network by weak ties, are only rarely infected.
For example, the lower half of the network is rarely infected in
the real simulation but is always infected in the control run.
Therefore, the diffusion mechanism in the network is drastically
altered when we neglect the tie strengths responsible for the
differences between the curves seen in Fig. 4 A and B.

Discussion
Although the study of communication and social networks has
a long history, examining the relationship between tie strengths
and topology in society-spanning networks has generally been
impossible. In this paper, taking advantage of society-wide data
collection capabilities offered by mobile phone logs, we show
that tie strengths correlate with the local network structure
around the tie, and both the dyadic hypothesis and the global
efficiency principle are unable to account for the empirical
observations.

It has been long known that many networks show resilience to
random node removal, but are fragile to the removal of the hubs
(10, 28–30). In terms of the links, one would also expect that the
strong ties play a more important role in maintaining the
network’s integrity than the weak ones. Our analyses document
the opposite effect in communication networks: The removal of
the weak ties results in a phase transition-like network collapse,
although the removal of strong ties has little impact on the
network’s overall integrity. Furthermore, we find that the ob-
served coupling between the network structure and tie strengths
significantly slows information flow, trapping it in communities,
explaining why successful searches in social networks are con-

ducted primarily through intermediate- to weak-strength ties
while avoiding the hubs (3). Therefore, to enhance the spreading
of information, one needs to intentionally force it through the
weak links or, alternatively, adopt an active information search
procedure.

Taken together, weak ties appear to be crucial for maintaining
the network’s structural integrity, but strong ties play an impor-
tant role in maintaining local communities. Both weak and
strong ties are ineffective, however, when it comes to informa-
tion transfer, given that most news in the real simulations reaches
an individual for the first time through ties of intermediate
strength.

The observed coupling between tie strengths and local topol-
ogy has significant implications for our ability to model processes
taking place in social networks. Indeed, many current network
models either assign the same strength to all ties or assume that
tie strengths are determined by the network’s global character-
istics, such as betweenness centrality. In addition, some of the
most widely used algorithms used to identify communities and
groups in complex networks use either betweenness centrality
(16) or are based on topological measures (31). Our finding that
link weights and betweenness centrality are negatively correlated
in mobile communication networks, together with the insights
provided by the visually apparent community structure (Fig. 2),
offer new opportunities to design clustering algorithms that are
tailored to communication networks, and force us to reevaluate
many results that were obtained on unweighted graphs. Putting
the structural and functional pieces together, we conjecture that
communication networks are better suited to local information
processing than global information transfer, a result that has the
makings of a paradox. Indeed, the underlying reason for char-
acterizing communication networks with global network con-
cepts, such as path length and betweenness centrality, is rooted
in the expectation of communication networks to transmit
information globally.
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Foundation for a travel grant to visit A.-L.B. at Harvard University. This
research was partially supported by the Academy of Finland, Centres of
Excellence Programmes, Project nos. 44897 and 213470 and Grant
OTKA K60456. G.S. and A.-L.B. were supported by National Science
Foundation Grants ITR DMR-0426737, CNS-0540348, and IIS-0513650
and by the James S. McDonald Foundation.

1. Ebel H, Mielsch L-I, Bornholdt S (2002) Phys Rev E Stat Phys Plasmas Fluids
Relat Interdiscip Top 66:35103.

2. Eckmann J-P, Moses E, Sergi D (2004) Proc Natl Acad Sci USA 101:14333–
14337.

3. Dodds PS, Muhamad R, Watts DJ (2003) Science 301:827–829.
4. Aiello W, Chung F, Lu L (2000) Proceedings of the 32nd ACM Symposium on

the Theory of Computing (Assoc Comput Machinery, New York), pp 171–180.
5. Wasserman S, Faust K (1994) Social Network Analysis: Methods and Applica-

tions (Cambridge Univ Press, Cambridge).
6. Haythornthwaite C (2005) Inf Commun Soc 8:125–147.
7. Newman MEJ, Watts DJ, Barabási A-L (2006) The Structure and Dynamics of

Networks (Princeton Univ Press, Princeton).
8. Dorogovtsev SN, Mendes JFF (2003) Evolution of Networks (Oxford Univ

Press, New York).
9. Pastor-Satorras R, Vespignani A (2001) Phys Rev Lett 86:3200–3203.

10. Cohen R, Erez K, ben Avraham D, Havlin S (2000) Phys Rev Lett 85:4626–4628.
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