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GRAPH AND SEMIGROUP HOMOMORPHISMS ON 
NETWORKS OF RELATIONS 

Douglas R. WHITE and Karl P. REITZ 
Un~oers~~~~ of Calrfornta, Irorne * md Chapmun College ** 

The algebraic definitions presented here are motivated by our search for an adequate formaliza- 
tion of the concepts of social roles as regularities in social network patterns. The theorems 
represent significant homomorphic reductions of social networks which are possible using these 
defimtions to capture the role structure of a network. The concepts build directly on the pioneering 
work of SF. Nadel(l957) and the pathbreaking approach to blockmodeling introduced by Lorrain 
and White (1971) and refined in subsequent years (White, Boorman and Brelger 1976; Boorman 
and White 1976; Arabie. Boorman and Levitt, 1978; Sailer. 1978). 

Blockmodeling 1s one of the predominant techniques for deriving structural models of social 
networks. When a network is represented by a directed multigraph, a blockmodel of the 
multigraph can be characterized as mapping points and edges onto their images in a reduced 
multigraph. The relations in a network or multigraph can also be composed to form a semigroup. 

In the first part of the paper we examine “graph” homomorphisms, or homomorphic mappings 
of the points or actors in a network. A family of basic concepts of role equlbalence are Introduced, 
and theorems presented to show the structure preservmg properties of their various induced 
homomorphisms. This extends the “classic” approach to blockmodeling via the equivalence of 

positions. 
Lorrain and White (1971), Pattison (1980). Boyd (1980, 1982). and most recently Bona&h 

(1982) have explored the topic taken up in the second part of this paper. namely the homomorphic 
reduction of the semigroup of relations on a network, and the relation between semigroup and 
graph homomorphisms. Our approach allows us a significant beginning in reducing the complexity 
of a multigraph by collapsing relations which play a similar “role” in the network. 

1. Networks with single relations 

1.1. Graphs and their images 

Definition 1. A graph (usually referred to as a digraph) is an 
ordered pair 

G=(P,R) 
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where P is a finite set of points (points, objects, actors), and R is a 
relation (type of tie) on P, that is, a subset of the ordered pairs of 
points in P X P. 

Definition 2. A function f: P + P’ is a mapping of each element a in 
the set P to an image element f(a) in the set P’. An “onto” function 
(surjection) is a mapping where all elements in P’ are images of 
elements in P. 

Definition 3. An equivalence = on P is a relation such that for all a, 6, 
c in P, 

a=a 

a = b implies b = a 

(a = b and b = c) implies a = c. 

These are the properties of reflexivity, symmetry, and transitivity. 

Lemma 1. Every function f: P + P’ induces an equivalence relation 
=! on P, namely, for each u, b E P, 

a=,bifandonlyiff(a)=f(b). 

The proof of this lemma is found in standard texts. All other proofs of 
lemmas and theorems will be given in the Appendix. 

Definition 4. Let G = (P, R) be a graph and f: P -+ P’ be an onto 
map. Let R’ be the relation on P’ defined by R’ = {(f(a), f(b)): 
(a, b) E R). Then R’ is called the relation on P’ induced by R and f. 

1.2. Graph homomorphisms and blockmodel images 

Homomorphisms are mappings which preserve structure. The 
minimal graph homomorphism is a function which maps the points of a 
graph into points in an image of the graph, and preserves edges or 
connections as image edges or connections. This may be expressed 
diagrammatically: 

Graph: Image: 
Everyedge----f---+Edge (Homomorphism) 



D. R. White and K. P. Reiiz / Graph and semrgroup homomorphtsms 195 

Different types of homomorphisms preserve additional features of the 
structure of a graph. The structure which is preserved may be defined 
by the properties of f in terms of its inverse mapping f-’ from the 
image to the preimage for different types of homomorphisms. 

Formal definitions for the types of homomorphisms which are most 
useful in the network analysis of role structures are given below. We 
begin with the full homomorphism in which every edge in the image is 
induced by some edge in the preimage. Since there are no extraneous 
edges in the image, this and each of the homomorphisms which follow 
generates a structural model of a network. 

Regular and structural homomorphisms are models of particular 
importance for the study of role systems. In the case of a regular 
homomorphism, points having the same image necessarily occupy the 
same abstract position or “role” in the total network or graph. Two 
points have the same (role) image in a regular homomorphism if and 
only if, given that one has a relation with a point in a second image set 
(or role), the other has an identical relation with a counterpart in that 
set. This is the principle of role parallels. Two points have the same 
image in a structural homomorphism if and only if they are identically 
related to all other points. 

Definition 5. Let G = (P, R) and G’ = (P’, R’) be two graphs. Then 
f: G + G’ is a full graph homomorphism if and only if f: P - P’ is an 
onto map such that for all a, b E P and X, y E P’ 

aRb implies f (a) R’f (6). 

and 

xR’y implies there exist c, d E P such thatcRd, f(c) = X, and f ( d ) = y. 

The full homomorphic image of a graph is termed a blockmodel by 
Arabie, Boorman and Levitt (1978: 31-32). 

Proposition A. Let G = (P, R) be a graph and f: P + P’ be an onto 
map for some set P’. If R’ is the relation on P’ induced by f and R, and 
G’ = (P’, R’) then the map f: G + G’ is a full graph homomorphism. 

Full homomorphisms are useful in structural comparisons of net- 
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Altneustadt 

Towertown 

Common Structure Graphs 

Figure I. Illustrative graphs from Brelger and Pattison (1978) Source: Bona&h (198 1). 

works or graphs. An example of the steps in this process derives from 
work by Laumann and Pappi (1976) on relations between elite mem- 
bers of two cities, ‘Altneustadt’ in Germany and ‘Towertown’ (pseudo- 
nyms) in the U.S. Breiger and Pattison (1978) blockmodeled structur- 
ally equivalent actors (see Definitions 10 and 25) to derive summary 
graphs of the role structures of the communities in terms of three 
relations: business (B), community affairs discussions (C), and social 
contacts (S), as shown in the graphs in Figure 1. Bonacich (198 1) then 
compared these two sets of graphs by using a full homomorphism from 
the graphs for each city to ‘common structure’ graphs, also shown in 
Figure 1. These graphs show shared aspects of the leadership structure 
in the two communities. The example shows how stronger homomor- 
phisms may be employed at one stage in the analysis to reveal particu- 
lar features of social networks, while weaker homomorphisms are 
employed at a later stage to show more generic features. The ad- 
vantages of a family of homomorphic modeling tools, from stronger to 
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weaker, ought to be obvious in terms of different levels of generality. 
The full homomorphism is useful for analysis of common structure 

(Bonacich 1981) but is too general to identify more precise role posi- 
tions. For example, any two non-empty graphs have the same full 
homomorphic image of a single point image-connected with itself. 
Unconnected as well as connected points in each graph are mapped 
onto this same point in the image. Clearly, this does not correspond to 
mapping points to common roles or positions in a network. 

The regular homomorphism, however, can be thought of as a map- 
ping of points in a graph onto distinct roles or positions, with the 
proviso that if two roles are image-connected, then an incumbent of one 
of the roles will be connected to some alter who is mapped onto the 
other role. This is formalized as follows. 

Definition 6. A full graph homomorphism f: G + G’ is regulur if and 
only if for all a, b E P, 

f(u) R’f (b) implies there exist c, d E P such that 

cRb,aRd,f(c)=f(a),andf(d)=f(b). 

Not every full graph homomorphism is a regular graph homomorphism, 
as is shown by the following example. Here (a, b, c, d) are points in the 
original graph, and the function f maps these points into the set (x, y} 
carrying over any of the interpoint connections onto the image graph. 

b f(a) = f(b) = x 

R 

d f(c) = f(d) = Y 

Example I 

Note that f( 6) R’f(d) but bRx is true for no x. 
Regular homomorphisms require that occupants of one role will be 

identically connected to some occupants of a “counterpart” role. In 
role systems, it is not expected that all occupants of one role will be 
identically connected to occupants of a “counterpart” role. This more 
stringent requirement is the basis for the analysis of role systems by 
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Harrison White and associates. There are some circumstances or types 
of roles in which it is expected that all occupants of one role will be 
identically connected to occupants of counterparts roles. This may be 
formally defined in terms of a structural homomorphism familiar to 
graph theory (Hedetniemi, 1966; Lorrain 1974; Arabie, Boorman and 
Levitt 1978), as follows. 

Definition 7. A full graph homomorphism f: G + G’ is structural if and 
only if for all a, b in P where n * b, 

f( a)R’f( b) implies aRb. 

Not every regular graph homomorphism is a structural homomor- 
phism, as is shown by Example 2. 

a f(a) = f(b) = x 

R R -f-t R’ 

c f(c) = f(d) = Y 

Example 2 

Note that f(a)R’f(d) but aRd is false. 
In structural homomorphisms the fact that the image of a point is 

image-connected to itself does not imply that its preimage is connected 
to itself. The strongest of the graph homomorphisms generalizes the 
concept of structural equivalence to include reflexivity. If the connec- 
tion of a point with itself is significant, then the image-connection of a 
point implies that it is connected to itself in the preimage. This is 
formalized as follows. 

Definition 8. A full graph homomorphism f: G + G’ is strong if and 
only if for all U, b in P, 

f( a)R’f (b) implies aRb. 

Not every structural graph homomorphism is strong, as illustrated by 
Example 3. 
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f(a) = f(b) = x 

’ Y f(c) = f(d) = y 

Example 3 

Note that f( b)R’f( b) but bRb is false. 
Strong homomorphisms are the basis for certain multidimensional 

spatial models of graphs or networks. Guttman (1977) shows that 
symmetric graphs can be represented in a multidimensional space 
where two points are mapped to the same image in the space if and 
only if they have identical connections to other points, to each other, 
and with themselves (the distance from a point in this space to itself is 
zero). He also notes how such spatial representations can be generalized 
to asymmetric graphs. These ideas are explored in more detail by 
Freeman ( 1983). 

The four graph homomorphisms in Definitions 5-8 are of ascending 
strength in the sense that the stronger imply the weaker, as stated in the 
following theorem. 

Theorem I. If f: G + G’ then 
(i) f is a strong graph homomorphism implies f is a structural homo- 

morphism; 
(ii) f is a structural homomorphism implies f is a regular homomor- 

phism. 

Full and strong homomorphisms are defined in Gratzer (1979: 81) 
for partial algebras. The regular and structural homomorphisms as 
defined here are used for analyzing specific aspects of role structure. 

I. 3. Equivalences 

Recall that every graph homomorphism induces an equivalence on 
the domain set (Lemma 1). The following theorems show that each type 
of graph homomorphism induces a particular kind of equivalence and 
conversely that each special type of equivalence is induced by a graph 
homomorphism of its associated type. 
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Definition 9. If G = (P, R) and = is an equivalence relation on P, 
then = is a strong equivalence if and only if for all a. b, c E P, a = b 
implies 

(i) aRb if and only if bRa; 
(ii) aRc if and only if bRc; and 

(iii) cRa if and only if cRb. 

Strongly equivalent points are related in the same way to themselves, 
to each other, and to every point. 

Definition 10. If G = (P, R) and = is an equivalence relation on P 
then = is a structural equivalence if and only if for all a, b, c E P such 
that a * c * b, a = b implies 

(i) aRb if and only if bRa; 
(ii) aRc if and only if bRc; 

(iii) CRU if and only if cRb; and 
(iv) aRa implies aRb. 

Structurally equivalent points are related in the same way to each 
other and to all other points. 

Definition 11. If G = (P, R) and = is an equivalence relation on P 
then = is a regular equivalence if and only if for all II, b, c E P, u = b 
implies 
(i) aRc implies there exists d E P such that bRd and d = c; and 

(ii) cRa implies there exists d E P such that dRb and d = c. 

Regularly equivalent points are connected in the same way to match- 
ing equivalents. 

Theorem ZA. The equivalence induced by a strong graph homomor- 
phism is a strong equivalence and conversely every strong equivalence 
is induced by some strong graph homomorphism. 

Theorem 2B. The equivalence induced by a structural graph homo- 
morphism is a structural equivalence relation and conversely every 
structural equivalence relation is induced by some structural homomor- 
phism. 
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Theorem 2C. The equivalence induced by a regular graph homomor- 
phism is a regular equivalence relation and conversely every regular 
equivalence relation is induced by some regular homomorphism. 

Equivalence relations on a set P can be thought of as subsets of 
P x P. As such, they are partially ordered by set inclusion. A collection 
of equivalences has a maximal element if there is one equivalence 
relation in the collection which contains all the rest. 

Theorem 3A. The collection of all strong equivalence relations on a 
graph has a maximal element. 

Theorem 3B. The collection of all structural equivalence relations on a 
graph has a maximal element. 

Theorem 3C. The collection of all regular equivalence relations on a 
graph has a maximal element. 

1.4. The semigroup of compound relations 

Let R be a relation and define 0 as composition of relations, i.e., if 
uRb and bRc then a( R 0 R)c, so 

RoR=((a,c): thereexistsbEPsuchthat (a, b) and(b, c) E R). 

The operation “ 0” is associative on the set S of all relations on P 
generated by R. In other words, (S, 0 ) is a semigroup. Note that 
elements R” and R”’ in S are equal if they contain the same set of 
ordered pairs in P X P. 

Let f: G + G’ be a full graph homomorphism from (P, R) to 
(P’, R’). Now for each relation Q E S let Q’ be the corresponding 
relation on P’ induced by f and Q (see Definition 4). Then let 

S’ = (Q’: Q E S}, 

and 

such that 

j(Q) = Q’. 
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Theorem 4. If f: G + G’ is a regular, structural, or strong graph 
homomorphism (with respect to R) then f is regular, structural, or 
strong, respectively, for any relation in S. That is f: (P, Q) - (P’, Q’) 
is regular, structural, or strong respectively for any Q E S. 

Theorem 5. If f: G + G’ is a regular graph homomorphism, then i: 
S + S’ is a semigroup homomorphism. That is 

Theorem 6. If f: G + G’ is a strong graph homomorphism, then 1: 
S + S’ is a semigroup isomorphism. 

The above theorem does not hold if f is only a structural homomor- 
phism. This can be seen in Example 3 (above). Note that for points 
Y * s, f (r)R'f( s) implies rRs. However, f( b) R’f( b) but not bRb, so f is 
structural but not strong. Note also that (b, b) E R but (b, b) E R2, so 
R * R2. However, R’ = (RI)’ so f: S + S’ is not an isomorphism. 

Definition 12. A graph G is acyclic if and only if (a, a) @ R” for all 
a E P and n E Zf. 

Theorem 7. If f: G --, G’ is a structural graph homomorphism and G is 
an acyclic graph, then f: S -+ S’ is a semigroup isomorphism. 

Strong homomorphisms of a graph preserve the exact structure of the 
semigroup of relations generated by the relation on the graph. Struct- 
ural homomorphisms preserve this structure only when all of the 
relations are irreflexive. Regular homomorphisms do not necessarily 
preserve exact semigroup structure, however, as is seen in the following 
example. 

a -b 

I_ ’ -f+ 

c d 

Example 4 
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Semigroup Composition Table: 

203 

0 IR RR RRR I 

R RR RRR I R 
RR RRR I R RR 
RRR I R RR RRR 
1 R RR RRR I 

2. Networks with attributes and multiple relations 

To generalize fully the use of these definitions, we want to define 
networks as multigraphs (with multiple relations), where the nodes of 
the network also have attributes. We can then define a network algebra 
on which our homomorphisms and equivalences operate. 

2.1. Node attributes: Equivalences and class identities 

Definition 13. An attribute equivalence on a graph G is the equivalence 
relation = A induced by a subset A of P having a given attribute, where 

Lemma 2. If G = (P, = A) is the graph of an attribute equivalence 
relation = A, = A is also the equivalence induced by the largest regular 
(structural or strong) homomorphism of the graph. 

Definition 14. A class identity on a graph G is a subset IA of the 
identify relation I= ((i, i) : i E P} for a set A of nodes in P having a 
given class attribute, thus 

IA = ((i, i): i E A c P}. 

Lemma 3. If G = (P, I,) is the graph of a class identity IA defined by 
the class attribute A, then the attribute equivalence = A is also the 
equivalence induced by the largest regular homomorphism of the graph. 
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2.2. Networks and multiple relations 

Definition 15. A network is an ordered pair N = (P, 9. ) where P is a 
set of points and 3. is a collection of relations on P. 

A network is sometimes called a (directed) multigraph and includes 
relations on P which may be attribute equivalences or class identities. 
As with graphs defined by a single relation, homomorphisms can be 
defined on networks. A network homomorphism involves two map- 
pings. The number of variations possible for defining stronger map- 
pings is greatly increased. 

Definition 16~. Let N = (P, C% ) and N’ = (P’, 9%‘) be two networks. 
A weak full network homomorphism f: N + N’ is an ordered pair of 

mappingsf = (f13f,) such that f,: P + P’ and f,: ‘3 + 9.’ are onto, for 
every a, b E P and R E 9L,, aRb impliesf,(a)f,( R)f,( b), and for every 
x,y~P’ and R’E%‘, xR’y implies there exists c, d E P and R E 3 
such that f,(c) = x, f,( d) =y, f,( R) = R’ and cRd. 

Definition 16b. Let N = (P, %) and N’ = (P’, 3,‘) be two networks. 
A full network homomorphism f: N + N’ is an ordered pair of mappings 
f = (f,, f,) such that fl: P + P’ and f2: CR + CR ’ are onto, for every 
a, bE P and R ~3, aRb impliesf,(a)f,(R)f,(b). and for everyx,.y E 
P’ and R E C%,, xf,( R)y implies there exist c, d E P such that f,(c) = 

x, f,( d) =y and cRd. 

Note that for each relation R E 3, the full network homomorphism 
f: N + N’ induces a full graph homomorphism from (P, R) to 
(P’, f,( R)). An example of two forms of regular homomorphisms 
follow. 

Definition 17~1. A weak full network homomorphism f: N + N’ is a 
weak regular network homomorphism if for each R’ E CL? ‘, f,( a)R’f,( b) 
implies there exist c. dE P and R, Q E 3 such that f,(u) =f,(c), f,(b) 
= f,( d), fz(Q) = f,( R), f,( R) = R’, cRb, and aQd for all a, b E P. 

Definition I7b. A full network homomorphism f: N + N’ is a regular 
network homomorphism if for each R E 6%, f,(a)f,( R)f,( b) implies 
there exist c, d E P such that f,(a) = f,( c), f,( 6) = f,( d), cRb and uRd 
for all a, b E P. 
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These two pairs of definitions treat differently the case where fi is 
not one-to-one. If two or more relations have the same image, the first 
of each pair of definitions requires that the homomorphism be full or 
regular on their union. The second definition requires that the homo- 
morphism be full or regular on each of the relations in 3. Similar 
variations can be made on the network homomorphisms corresponding 
to the structural, and strong graph homomorphisms. If we restrict our 
attention to only the strong version of each of these definitions. they 
can be defined simply by requiring that the induced graph homomor- 
phisms meet the property of being structural or strong. The theorems 
for both homomorphisms and equivalences on graphs will also now 
generalize to corresponding theorems for networks including those 
which involve composition of relations and their semigroups. 

2.3. Connectivity 

Definition 18. A full network homomorphism is connectivity preserving 
if and only if for any sequence of points x,, . . . , x,+ , E P and relations 

R,,..., R, such that fl(xl)f2(Rl)fl(x2). . .fl(x,)fi(R,)fl(x,+,) there 
exist points y2,. , y, + , such thatf,(x,) =fl(y2),. . ..f,(x,,+,) =f,(y,+ ,) 
and ~,R,Y,R,. . . KY,+ i and there also exist points z,, . . . , z, such that 

fl(xI)=fl(zI),...,fl(xn)=fl(zn) andz,R,z,R,...z,R.x,+,. 

A sequence of related points is a path. The above definition states that 
a path in the image graph corresponds to specific paths in the preimage 
passing through each point mapped onto an endpoint of the image 
path. 

Theorem 8. If f is a regular network homomorphism then f is connec- 
tivity preserving. 

Definition 19. A full network homomorphism is strongly connectivity 
preserving if and only if for every sequence of points x,, . . , x, + , (where 
x, *x, for i*j) and relations R ,,..., R,, f,(x,)fi(R,)f,(x,)... 
fl(x,)f2(R,)fi(x,+,) implies x,R,x,R,. . . R,x,+,. 

Theorem 9. If f is a structural network homomorphism then f is 
strongly connectivity preserving. 
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2.4. Multiplex graphs and bundle equivalence 

In a network a particular ordered pair of points may be an element 
of more than one relation. We call the set of all relations which contain 
the pair of points (u, b) the bundle of relations for that pair. That is 
Bob = (R E 63%: aRb). A second ordered pair of points (c, d) may share 
the same bundle, that is Bob = Bed. It may be that the pair (a, b) is not 
related by any members of 3, so that Buh = $3. Let B* be the collection 
of all non-empty bundles. We can now define new relations on P by 
looking at the pairs of points that share bundles. These multiplex 
relations are of substantive interest in social theory. 

Definition 20. Let B E B*. Then the relation A4, = ((a, 6): B,, = B) is 
called a multiplex relation induced by the network N = (P, C%i>. 

For each ordered pair (a, b) there is a unique bundle associated with 
it. This bundle may be either empty or a member of B*. This implies 
that either (a, b) is a member of no MB or has only one such multiplex 
relation. The collection 9X of all such relations induced on a given 
network define a special type of graph. 

Definition 21. A multiplex graph is a network C = (P, %) such that 
for each pair of relations M,, M, E 3R, M, n M, = (?I. 

The graph consisting of the points from a given network and the 
multiplex relations induced on that network is a multiplex graph. The 
procedure for moving from a given network to its induced multiplex 
graph gives a unique result. However, as the following example shows, 
the properties of network homomorphisms do not carry over to the 
homomorphisms induced on the multiplex graph. In Example 5, N = 
(P, 9,) where P = (a, 6, c, d) and % = {R, S) and N’ = {P’, CR’) with 
P’ = (x, y) and %’ = (R’}. Note that f is regular as a homomorphism 
from N to N’. The multiplex graph is C = (P, %) where 9R= 
{M,, M2, M3). The map fl: P - P’ along with the requirement that f be 
at least a full network homomorphism gives an induced collection of 
relations on P’ namely ?X’ = {M;). To emphasize that the map from C 
to C’ = (P’, W) is a different network homomorphism, we have 
labeled it f,. Even though f is regular, fM is not. Regularity however is 
preserved in the opposite direction: 
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N 
a b 

d 

reduction by 
multiplex 
procedures 

b 
. 

M2 M3 . 

M1 l--,. M1 

. . 

c d 

- f,+ 

(not regular) 

N’ 

x 
. 

R’ 0 S' . 
C’ 

. 

R’ = S’ 

“; = “; = M’ 3 

Example 5 

Theorem 10. IfN=(P,%)’ 1s a network, C = (P, 9lL) the multiplex 
graph derived from it, and f: C + C’ = (P’, 9R’) a full network 
homomorphism, then f induces a full network homomorphism on N 

and 
(i) if f is regular th e induced homomorphism is regular; 

(ii) if f is strong the induced homomorphism is strong. 

The image of a multiplex graph under a regular network homomor- 
phism is not necessarily a multiplex graph. This is shown in Example 6, 
where a pair of image points are connected by more than one image 
relation, and the image relations R’ and S’ are distinct in their ordered 
pairs in P’ X P’. 

Multiplex graphs give a representation of the unique bundles of 
relations and shared attributes between individuals which are used to 
define roles. Mandel and Winship (1979) suggest that occupancy of the 
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Example 6 

same role is partly captured by the equivalence of points in a network 
in terms of these bundles. Using our definition of a multiplex graph, we 
restate their definition of local role equivalence as follows: 

&j&inn 22. If C = (P, ilm) is a multiplex graph and = is an 
equivalence on P then = is a bundle equivalence if and only if for all 
a, b, c E P and A4 E %, a = b implies 
(i) aMc if and only if there exists d such that bMd; 

(ii) cMa if and only if there exists d such that dMb 
A bundle homomorphism is a full network homomorphism which 

identifies the points of the equivalence classes defined by bundle 
equivalences, and where the mapping of relations is the identity. This 
reduction of graphs under bundle equivalence is not necessarily a 
regular homomorphism, as shown below. Here f is a bundle homomor- 

a b c Y = f(c) 
.-.A. . 

R s 

S -f+ 
s 

R , S I 
.-.-. 

d e g -+3 s s +f,, =A, 
=f(d) =f(b) 

=f(e) 

Example 7 

phism but is not regular. Regular, structural and strong homomor- 
phisms on a network are not necessarily bundle homomorphisms be- 
cause the former allow collapsing of relations while the latter does not, 
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However, a strong homomorphism on a network or multiplex graph 
where relations are not collapsed is a bundle homomorphism. 

While the local structure of social roles is captured in a bundle 
homomorphism by putting together points with the same patterns of 
incoming and outgoing arrows, the global or relational structure of 
their roles is not captured. In the image of the above graph, on Example 
7, f( 6) is connected to f( g) by S. In the preimage, however, we see that 
b is not connected by S to any point equivalent to g. 

To capture the global role structure of multiplex social relationships, 
we require a stronger homomorphism, one which has properties of both 
the bundle homomorphism and the regular homomorphism. The strong 
network homomorphism has both properties, but is too restrictive. A 
weaker homomorphism with both properties is defined below. 

Defined 23. Let f: N + N’ be a regular network homomorphism. f is a 
juncture network homomorphism if and only if for all a, b, c, d, in P 

Note that this also implies that Bob = BCb = B,, = B,,, or some are 
empty. This restriction guarantees that for this specialization of a 
regular homomorphism, there is a unique multiplex relation, if any, 
between every role pair. 

Theorem Ila.. Every strong network homomorphism is a juncture 
network homomorphism. 

Theorem Ilb. Let f = (f,, fi) b e a juncture homomorphism. Then 
f * = (f,, f3), where f, is the identity, is a bundle homomorphism. 

Example 8 below gives two juncture homomorphisms which are not 
strong. Example 7 gives a bundle homomorphism which is not juncture 
although the mapping of relations is the identity. For a network in 
which the collection of relations consists of only one relation, every 
regular homomorphism is trivially a juncture homomorphism. On the 
other hand the homomorphism f: N + N’ in Example 6 is regular but 
not juncture. 

The next collection of theorems shows that juncture homomorphisms 
have the desired properties of preserving multiplexity and preserving 
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the semigroup of relations without the restrictiveness of a strong 
homomorphism. 

Theorem 12. Let f: N + N’ be a juncture network homomorphism and 
C the multiplex graph derived from N. Then f induces a map from C to 
C’ and C’ is a multiplex graph. 

Thus the image of a multiplex graph under a juncture (unlike the 
regular) network homomorphism is a multiplex graph. Juncture homo- 
morphisms share with strong homomorphisms the property of preserv- 
ing composition of relations, as the following theorem shows. 

Theorem 13. Let f: N + N’ be a juncture network homomorphism 
where N= (P? a), N’= (P’. 9’) and f= (f,,fi). If 0 is relation 
composition and (3, 0 ) is a semigroup then fi: (%, 0) + (%‘, 0) is 
an isomorphism. 

‘q 

q(x1) = 9(X&) 
. 

Example 8 

q(y3) = q(Yg) 
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Juncture homomorphisms therefore are intermediate to regular and 
strong homomorphisms. They preserve both properties necessary in the 
description of roles: multiplexity and composition. Juncture homomor- 
phisms, unlike regular and strong homomorphisms, do not have maxi- 
mal members, as the following example shows. 

Example 8 shows that there is not a simplest unique representation 
of a role structure. All three networks are multiplex graphs and bothf 
and q are juncture homomorphisms but not strong. Neither of the two 
image networks can be further reduced while preserving a distinction 
between the relations. 

The implications of the juncture homomorphism for the analysis of 
role structure are revealing of a fundamental dilemma. If we require 
unambiguous contents of role relationships, then the simplest reduc- 
tions of the role positions of actors are not necessarily uniquely 
determined. This is consistent with Heil and White’s (1976) homomor- 
phic approach to role structure, as well as Nadel’s more general 
theoretical rationale for the multiplicity of social structure. 

Juncture equivalences can be defined as follows. 

Definition 24. Let = be a regular network equivalence, then = is a 
juncture network equivalence if for every a, b, c, d E N, a = b and c = d 
implies B,,. = B,,, B,, = 8, or B,, = 8. 

We have now defined a partial order of homomorphisms and their 
equivalences on networks. 

juncture structural 

Note: In the case of a multiplex network, a juncture homomorphism is a special case of a bundle 
homomorphism. 



212 D. R. White and K. P. Reit: / Graph and semigroup hornornorphims 

Table I 
Five graph homomorphisms and their properties 

Homo- Image Induced semigroup Maximal Connectivity 
morphism homomorphism equivalence preserving 

strong Strong blockmodel Isomorphism Yes Strong 
Structural Structural blockmodel isomorphic for 

irreflexive graph Yes strong 
Juncture Junctural blockmodel Isomorphism No Weak 
Regular Regular blockmodel Homomorphism Yes Weak 
Full Blockmodel Not necessarily a 

Homomorphism Yes No 

Table 1 reviews these homomorphisms and their properties. Three 
homomorphisms (strong, structural, and regular) have maximal mem- 
bers. Juncture homomorphisms, although lacking the property of hav- 
ing maximal members, have the desirable properties of preserving 
semigroup structures and multiplexity. The fact that unique maximal 
members do not occur indicates that “role” may sometimes be analyzed 
from different and incompatible vantages. 

2.5. Network blockmodels and cross-cutting roles 

Previous approaches to empirical blocking methods are based on 
various generalizations of the full homomorphism via a density crite- 
rion (Arabie, Boorman and Levitt 1978: 32), or approximation to a 
structural homomorphism. 

The density homomorphism can be defined in the following way. Let 
N be the network (P, 9) and let f,: P + P’ be an onto map. For the 
points a, b E P’ let/; ‘(a) = {x,, . . . , x,~,)andf,‘(b)={y,,...,y,,,).Then 
for each pair (a, 6) E P’ x P’ and R E 9, we can define the number 

‘1, “h 

c c [ GY,] 
1 if (x,,.v,> E R 

r R IJ 
oh = 

no ’ nh 

where [x,Ry,] = 
i 0 if (x,,.~,) CL R. 

Definition 25. Let N = (P, 3) be a network and f,: P * P’ an onto 
map. For each R E $I, let R’ be a relation such that, for each a, b in P’, 
a$‘b that is, a is not related by R’ to b, if r,” < 01, and aR’b if r,“h z ,8. 
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The map f = (fi?fi> 1s a density homomorphism with a “zeroblock” 
impurity parameter LY > 0 and a “oneblock” impurity parameter /3 < 1, 
if and only if there exist no a, b E P’ such that (Y < r,Rh I /3. We write 
,8 + 1 to indicate that p is set sufficiently close to 1 so that perfect 
oneblock density is required. 

If CY = p then any partition of points can be sent via the density 
homomorphism into an image. Our &I1 network homomorphism is the 
case where (Y = ,B = 0. Breiger, Boorman and Arabie (1975) refer to the 
case where (Y = /3 = 0 as lean fit. As (Y and p move further apart, ruling 
out intermediate densities, fewer partitions will satisfy the density 
homomorphism. Where (Y = 0 and /? - 1, there is only one maximal 
partition satisfying the homomorphism. This corresponds to our strong 
network homomorphism. Modification of the density parameter Y,‘, to 
exclude reflexive relations corresponds to the case of our structural 
network homomorphism, where again (Y = 0 and /3 + 1. Breiger, Boor- 
man and Arabie refer to the case where a = 0 and b = 1 as fat fit. Note 
that there is no way to define regular or juncture homomorphisms via 
these parameters as density homomorphisms. 

To summarize the shortcomings of previous work on blockmodeling: 

(1) Structural equivalence yields groupings of points which are re- 
lated to each other and to all other points in identical ways; network 
blockmodeling under this equivalence preserves the semigroup of rela- 
tions on the network, but is too restrictive to capture the more abstract 
basis of role parallels. This restrictiveness increases for strong equiva- 
lence, where equivalent points are related to each other, to themselves, 
and to all other points in identical ways. The restrictiveness of struct- 
ural equivalence is relaxed somewhat by “fat fit” approximations (e.g.. 
Breiger, Boorman and Arabie 1975), but these still fail to capture the 
idea of role parallels, or being related in the same way to equivalent 
alters. 

(2) Full equivalence, even if generalized in terms of a “lean fit” 
density of exceptions allowed in zeroblocks, is too coarse an equiva- 
lence to capture role parallels. If the density cutoff is below the density 
of the entire graph, the maximal full blockmodel is a single point 
connected to itself. Structured role regularities in the patterns of 
connections in the original network must be captured by other criteria. 



(3) Bundle equivalence (Mandel and Winship 1979) is an improve- 
ment, but is still too coarse to capture positional or role equivalence. 

The two criteria for blockmodeling we introduce here are based on 
definitions of the abstract pattern of role relatedness: 

(4) Regular equivalence yields groupings of points in which for every 
pair of persons in the equivalent position, iJ‘ 017e l7us u relcrt7on wirl7 (I 

persot ir7 0 secoi7d positiot7, the other bus ut7 rdef7tiuiI relutioi7 wvtl7 u 

cow7terprrrt in that positioj7. This equivalence has two related problems. 
One is that in networks with multiple relations there may be more than 
one characteristic multiplex relation (Definition 20) between positions. 
Because of this, the regular homomorphism does not necessarily pre- 
serve the structure of the semigroup of relations defined on the multi- 
graph. 

(5) Juncture equivalence is a regular equivalence in which (a) there is 
no more than one characteristic bundle of relations between positions; 
and (b) the semigroup of relations defined on the multigraph is isomor- 
phically preserved in the blockmodel image. 

The limitation of juncture equivalence is that there is not necessarily 
a n7aximul juncture equivalence for a given network. Consequently, if 
juncture equivalence most closely captures the abstract role concept, we 
may find for a given network that there are a multiplicity of maximal 
role structures (blockmodels) which do not reduce to a single role 
system. 

This limitation is simply a statement of the obvious fact that roles 
may cmss-cut one another in complex ways such that it is impossible to 
assign every actor a unique role position and then characterize the 
relations between these positions. 

We are thus impelled by this study of homomorphisms towards a 
formal solution of the problem of how, in a multiplex network. to 
delimit the distinct cross-cutting role-like structures. This topic will not 
be examined here. 

White and Reitz (1982) present an algorithm which finds a measure 
of the degree to which nodes in a network are regularly equivalent. 
Using this algorithm they analyze several different sets of data and give 
a reduced role structure for each. 
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3. Semigroup homomorphisms 

Lorrain and White (1971), Pattison (1980), and most recently Bona- 
cich (1982) have explored the relationships between graph homomor- 
phisms and semigroup homomorphisms. We have shown that under 
conditions of regularity, network homomorphisms induce semigroup 
homomorphisms on the semigroup of relations on the graph. In this 
section, we will explore the converse idea. Semigroup homomorphisms 
can not be said to induce mappings on the underlying graph in the 
same fashion that graph homomorphisms induce mappings on the 
relations. However, semigroup homomorphisms can be termed “com- 
patible” with graph homomorphisms in the sense that the semigroup 
homomorphisms can serve as the relational mapping in the ordered pair 
of mappings which make up a network homomorphism. We will show 
that in fact certain types of semigroup homomorphisms have this 
property. 

Let (P, S) be a network with P the set of points and S a set of 
binary relations on P. Furthermore, suppose S is a semigroup under the 
operation of composition. Let f = (f,, fi) be a weak full network 
homomorphism. Then [R]fi = (Q: f,( (2) =fi( R)) is the equivalence 
class of all relations identified with R by fi. U [R],f2 is the relation 
consisting of those pairs in any of the relations in [ R]f2. 

A network homomorphism which collapses only relations and not 
points is a union of these relations: 

Theorem 14. If N= (P, S) and N’= (P, S’) are networks,/,: P--+ P 
the identity, and fi: S + S’ a mapping then f = (f,, f2) is a weak full 
network homomorphism if and only if f,( R) = U [ R] f,. 

Theorem 14 gives the necessary and sufficient conditions under 
which a mapping fi can be thought of as a network homomorphism. It 
also gives us a procedure for constructing a network homomorphism 
which collapses only relations. That is, relations are collapsed simply by 
forming their union. However, the mapping so constructured does not 
necessarily preserve composition of relations. 

Suppose S is a semigroup of relations on a network. Bonacich (1982) 
poses the problem of how to consider semigroup homomorphisms on a 
network in terms of unions of relations which preserve composition. 
The problem can be stated as follows. Given a network (P, S) and a 
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semigroup homomorphism f: (S, 0 ) + (S’, 0 ), under what conditions 
can / be represented as the relational map from the network (P. S) to 
a network (P, S’)? Note that any solution to Bonacich’s problem must 
first show under what conditions an arbitrary semigroup image of a 
semigroup of binary relations can be represented as another semigroup 
of binary relations. Ideally, some such conditions can be specified with 
as little reference as possible to the underlying network. 

Givenf= (f,, fi>: (P, S) + (P, S’), a network homomorphism, we 
will develop necessary and sufficient conditions for fi and S such that 
f,: (X 0) + (S’, 0) 1s a semigroup homomorphism. Thus given the 
semigroup (S, 0 ) and a semigroup homomorphism fi: (S, 0 ) + 
( S’, * ), where (S’, * ) is any semigroup image of ( S, 0 ) , we will have 
necessary conditions on S and f2 such that (S’, * ) is isomorphic to a 
semigroup of binary relations (S’, 0 ) on a set P and (i, /,) is a 
network homomorphism with i the identity. 

The following example illustrates the problem. Given the network 
N = (P, S) as illustrated below, the composition table for (S, 0 ) can 
be derived as follows. 

T 
Q ,\I u 

R 
--. 

Example 9 

Note that a homomorphic image of (S, 0) can be formed by identify- 
ing the relations T and U. This new semigroup (S’, * ) has the 
following composition table: 

p Q' R’ T’ 

Theorem 14 tells us that if T and U are to be identified as part of a 
weak full network homomorphism, the image T’ of T and U must be 
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the union of T and U, which gives the following network image of N: 

. . 

T' 

Q' 

,\\ 

T' 

R’ 
. 

Note, however, that in this case Q’ 0 R’ is not equal to T’ but only a 
subset of T’. Stated another way, [Q]fi 0 [ R]fi c U [ Q 0 RI&. In order 
for fi to be a semigroup homomorphism equality must hold. This 
motivates the following theorem for the necessary and sufficient condi- 
tions under which a relational map in a network homomorphism is a 
semigroup homomorphism. 

Theorem 15. Let f = ( fi, f,) : (P, S) -+ (P, S’) be a weak full net- 
work homomorphism such that fl is the identity mapping. Then f,. 
preserves composition if and only if U [ R,] fz * U [R 2] f2 = 
U[R, o Rzlfi. 

Suppose S is a semigroup of binary relations under composition. Then 
under the conditions stated in Theorem 15, f2 is a semigroup homomor- 
phism. From semigroup theory, we know that the compositions of 
semigroup homomorphisms are semigroup homomorphisms. 

Theorem 15 characterizes the general problem posed by Bonacich. It 
simply states that every relational mapping embedded in a network 
homomorphism, even if it appears to be a semigroup homomorphism of 
a semigroup composition table, must in fact be checked to insure that it 
preserves composition on the network of relations. Since the weak full 
network homomorphism creates images of relations in terms of the 
unions of equated relations, the necessary and sufficient conditions to 
insure the preservation of composition consists of actually checking the 
compositions of these unions to insure, for all R ,, R, in the set S of 
relations, that f,( R,)o f,( R,) = fi( R, 0 R,). 

The more specific problem posed by Bonacich is whether there are 
characteristics of S and f2 which, independent of the underlying net- 
work, insure that a relation mapping in a network homomorphism will 
preserve composition. 
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We are particularly interested in highly interpretable semigroup 
homomorphisms. One reason for collapsing relations in a semigroup, 
for example, is that they have the same products. This is analogous to 
strong equivalence in the context of collapsing points in a graph when 
they have identical linkages. In the relation context, having the same 
products means that two relations generate identical paths of length 
two or more in the network. Here, then, we begin with defining a strong 
relational mapping and its induced equivalence. 

Definition 26. Let f: S + S’ be a mapping of relations and (S, 0 ) a 
semigroup of relations under composition. Then f is strong if for all T, 
R,,R,inS,f(R,)=f(R,)ifandonlyifR,~T=R,~TandToR,= 
To R,. 

Definition 27. Let R, and R, be elements of S. Then R, and R z are 
strong equivalent (denoted by R, = R2) if for all Tin S, R, 0 T = R, 0 T 
and To R, = To R,. 

It is clear from the definition that strong equivalence is indeed an 
equivalence relation. While it satisfies a condition stronger than con- 
gruence on the semigroup (S, 0 ), namely that R, = R, and Q, = Q2 
implies R, 0 Q, = R, 0 Q2, the semigroup S/= is not necessarily a 
semigroup of binary relations, as seen in Example 9. 

The proof of the following theorem follows directly from these 
definitions. 

Theorem 16. The equivalence on S induced by a strong mapping is a 
strong equivalence and conversely every strong equivalence is induced 
by some strong mapping. 

It is not the case that the composition of two strong mappings is a 
strong mapping, as shown by the following example. 

Example IO 

where g,(R) = g,(S) = LJ, and gz( U) = g,(T) = I/. Both g, and gz are 
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strong but g, 0 g, is not. Because of the interpretability of strong 
mappings, the following definition is useful. 

Definition 28. A relational mapping which can be written as the 
composition of two or more strong relational mappings is quasistrong. 

While we will not prove it here as a theorem, both strong and quasi- 
strong relational mappings of semigroups are semigroup homomor- 
phisms (as in Example lo), but not with respect to relational unions 
and their compositions. That is, strong and quasistrong mappings 
cannot necessarily be the relational map in a network homomorphism 
and preserve composition. We now show the condition under which 
they do preserve composition. 

We have defined the strong relational mapping and its congruence 
without reference to networks. Lemma 4 gives us the necessary and 
sufficient conditions in order that the relational part of a network 
mapping preserves compositions. Under the condition that the rela- 
tional map be strong we can prove a stronger theorem. 

Theorem 17. Let f= (f,, fi) : (P, S) + (P, S’) be a weak full net- 
work homomorphism, f, the identity, fi a strong mapping, and (S, 0 ) a 
semigroup. Then f, is a semigroup homomorphism if and only if 
f2(T) =f2(R, 0 R,) implies TC R, 0 R, for all T, R,, R, in S. 

This is a strong result: it allows us to identify strong relational 
mappings from the semigroup composition table (by equality of prod- 
ucts) and check whether the unions of equated relations preserve 
composition by inspection of the lattice of inclusions among elements 
of S, without further reference to the underlying network. 

Reductions of this form can be chained to yield further semigroup 
homomorphisms on a network. At each step a new inclusion lattice 
among relational elements is computed by taking unions of relations 
equated in the previous step, and checking each new pair of relations 
for set inclusion. In a chain of such mappings, the relational mapping 
becomes quasistrong. 

The quasistrong homomorphism of a network allows the following 
interpretation. Starting with the original semigroup of relations on a 
network, we equate all strongly equivalent relations as role “substitut- 
able” in generating identical paths in the network of length two or 
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more. Further relations may be equated on this basis in the image 
network. The largest strong reduction at each step is unique, and the 
largest quasistrong reduction is unique. It defines a hierarchy of levels 
in which relations are equated or role “substitutable.” If the strong 
relational mappings in Example 10 were composition preserving in a 
network homomorphism, we would have the role “substitutability” 
hierarchy: 

./I’\ 
/“\ T 

R s 

The relations at the bottom were equated in the first strong relation 
mapping, and those in the middle equated in the next strong mapping. 

There is a second related condition for a semigroup homomorphism 
of relations on a network which is highly interpretable. Like the 
previous one, it makes use of inclusions between relations. The second 
condition is more directly motivated by Boorman and White’s (1976) 
idea of equating relations linked by inclusion. 

Definition 29. Let (S, 0) be a semigroup of binary relations and 1 a 
map on S. Then f is an inclusion map if for all R , , R 2 in S, /( R , ) = f( R 2) 
implies R, L R, or R, c R,. 

Unlike the strong mapping, there is not necessarily a maximal inclusion 
map of a semigroup of relations. For example, there may be two 
inclusions between three relations, where P c R and Q 2 R. Only two 
of the three (either P and R or Q and R) can be equated since the other 
two are not linked by inclusion. Congruence does not necessarily hold, 
and f is not necessarily a semigroup homomorphism. 

Iff = (fl,fd IS a weak full network homomorphism in which f, is 
the identity and f2 an inclusion map, it is easy to see that among the 
relations identified by f, there exists a maximal relation. This is because 
all equated elements are linked by inclusion, which defines a total 
ordering of elements within each equivalence set. Therefore f,(R) = 

maWlf2. 
The following characterizes the conditions under which an inclusion 

map is a semigroup homomorphism. 
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Theorem 18. Let f = (f,, fi) : (P, S) -+ (P, S’) where f, is the iden- 
tity map and fi is an inclusion mapping. Then f2 preserves composition 
if and only if 
(i) f2(R,)=fZ(R2) implies f,(T~R,)=f,(T~R,) and f,(R, oT)= 

f,(R, 0 T); and 
(ii) f,(T)=f,(R,oR,) implies Tcmax[R,]f,omax[R,]f,; for all 

T, R,, R, in S. 

This is the same type of strong result we obtained for checking whether 
a strong relation mapping qualifies as a semigroup homomorphism on a 
network of relations. Here, we can identify inclusion mappings which 
preserve composition from the semigroup composition tables plus the 
inclusion lattice of the relations. 

Semigroup homomorphisms of the relations on a network defined by 
inclusion mappings can, like strong mappings, be composed to yield 
further semigroup homomorphisms. However, since inclusion is transi- 
tive, the composition of two inclusion mappings is also an inclusion 
mapping, and can be identified in a single step from the original 
semigroup composition table of relations on the network and the 
inclusion lattice. 

Our first two approaches come close to the intuitions of Boorman 
and White (1976), who include in their description of the “role struc- 
ture” of a social network both the semigroup table of compositions of 
relations and the inclusion lattice among the relations. Their concept of 
“role structure” is thus sufficient to characterize the strong and inclu- 
sion semigroup homomorphisms of social networks. These semigroup 
homomorphisms are highly interpretable in terms of the “substitutabil- 
ity” of relations, and are analogous to the criteria we used earlier to 
characterize the equivalence of points in the network. 

Homomorphisms on the semigroup of all binary relations on a set 
which are also union and symmetry preserving have been well char- 
acterized by Clifford and Miller ( 1970) and Magi11 ( 1966). Inclusion 
homomorphisms on a subsemigroup of the set of binary relations on a 
set N can be easily extended to the set of all relations (via lattices). 
There are, however, no strongly equivalent relations in the semigroup of 
all binary relations on a set. The utility of quasistrong homomorphisms 
is thus restricted to subsemigroups of the set of all binary relations on a 
set. 

The definitions and theorems in this final section of the paper 
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provide basic tools for the structural analysis of semigroup homomor- 
phisms in social networks. One line of investigation consists of a 
semigroup reduction by a chain of strong semigroup homomorphisms. 
Another consists of reduction via the inclusion homomorphisms. A 
third consists of alternating the two types of semigroup reductions. The 
definitions and theorems in the first part of the paper provide basic 
tools for homomorphic reductions of points in a network which pre- 
serve aspects of semigroup and graph structure. Together these methods 
provide a powerful basis for extending blockmodel analyses of the role 
structure of social networks. 

The representation we have chosen of network homomorphisms is a 
powerful one. It enables us to prove a number of significant theorems 
regarding the role structure of social networks, to illuminate a number 
of natural-language intuitions concerning social roles, and to yield 
deeper insights into the type of role structure analysis developed by 
Lorrain and White (1971), White. Boorman and Breiger (1976), and 
Boorman and White (1976). It allows us to integrate the analysis of 
graph homomorphisms and the analysis of semigroup homomorphisms 
of binary relations under composition. Our results open the door to 
further mathematical study of the relation between semigroup and 
graph homomorphisms on networks. For the analyst of social networks, 
our theorems represent a considerable practical advance in the methods 
for deriving homomorphic image5 of social networks. Such methods 
provide the formal basis for the network analysis of complex social 
structures. 

Appendix 

Proposition A. Let G = (P, R) be a graph and f: P + P’ be an onto 
map for some set P’. If R’ is the relation on P’ induced by R and f, and 
G’ = (P’, R’), then the map f: G + G’ is a full graph homomorphism. 

Proof. If aRb for a, b E P then by definition f(a)R’f(b). If xR’.v for 
somex,y~P’then(x,y)~R’.ButR’=((f(a),f(b)):u,b~Pand 
(a, b) E R). Therefore (x, y) = (f(a), f(b)) for some u, b E P where 
(a, b) ER so x=f(u), y=f(b) and uRb. Therefore f is a full graph 
homomorphism. 
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Theorem 1. If f: G + G’ then 
(i) f is a strong homomorphism implies f is a structural homomor- 

phism; 
(ii) f is a structural homomorphism implies f is a regular homomor- 

phism. 

Proof. 
(i) The proof of (i) follows directly from the definition of strong and 

structural homomorphism. 
(ii) Let f: G + G’ be a structural graph homomorphism and suppose 

f(a)R’f(b). If a*b then aRb so let c=a and d=b. f(c)=f(a) 
and cRb, similarly f(d) = f (6) and aRd. If a = b then f(a) R’f (a). 
Since f is a full graph homomorphism there exist x, Y E P such that 
f(x)=f(a), f(y)=f(a) and xRy. If both x and)’ are equal to c1 
then let c = d = a. If y * a, then f(y) R’f ( a) and by the definition 
off being structural yRu so let c = y. Similarly f (a) R’f( y) so aRy, 
d =y. In an identical fashion, if x * ~1, let c = d = x. In each of 
these cases given f (a) R’f( b) we have shown the existence of some c 
anddEPsuchthatf(c)=f(u),f(d)=f(b),cRb,anduRd. 

Theorem 2A. If -, is an equivalence relation on the set P induced by a 
full homomorphism f, then f is a strong graph homomorphism f: 
G + G’ if and only if for all a, 6, c E P, 
u =,-b implies (i) uRb if and only if bRa; 

(ii) uRc if and only if bRc; and 
(iii) cRa if and only if cRb. 

Proof. Let f: G -+ G’ be a strong homomorphism and let =, be the 
equivalence relation induced by f. If a =,b then f(u) =f( b). Now if 

aRb, f(a)R’f(b), and f(b)R’f(u). S’ mcefis strong, bRa. By symmetry 
if bRu then aRb. So a =,b implies (i). Similarly if a -,b and uRc then 

f(a)R’f(c) b u t since f(u) = f (b), f(b) R’f( c) and bRc. Similarly bRc 
implies uRc. Therefore a =,b implies (ii). Finally, if a -,b and cRa then 
f(c)R’f(a) and since f(u)=f(b), f(c)R’f(b) so cRb. Similarly cRb 
implies cRa. So a -,b implies (iii). An argument similar to the reverse 
of the above proves the converse. 

Theorem 2B. If -, is an equivalence relation on a set P induced by a 
full homomorphism f, then f is a structural graph homomorphism if 
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and only if for all a, b, c in P. where c + a and c z b, 
a -,b implies (i) aRb if and only if bRa; 

(ii) aRc if and only if bRc; 
(iii) cRa if and only if cRb; and 
(iv) aRa implies aRb. 

Proof. Let f: G + G’ be a structural graph homomorphism; let c1 =/b. 
If aRb thenf(a)R’f(b). Since a=,b, f(a)=f(b) and f(b)R’/(u). If 
a = b, aRb implies bRa immediately. However, if a * b, f( b)R’f( a) 
implies by the definition of structural homomorphism that bRa. Simi- 
larly if bRa then aRb. So a -,b implies (i). If aRc, a * c, b * c and 
a -,b implies (ii). An almost identical argument proves that a =,h 
implies (iii). If aRa and a = b then aRb. If aRa and a * b then 
f(a)R’f(a) andf(a)R’f(b). S’ _/ t mce is s ructural, aRb, so (iv) holds and 
=, is structural. Conversely, supposefis full, -/is induced byf and =, 
is structural. Then if a * b and f(a)R’f( b) there exists c, d E P such 
that f(c) =f( a), f(d) =f( b) and cRd. There are essentially 5 distinct 
cases to consider: (1) a, b, c, and dare all distinct: (2) CI = c, b f d, and 
c * d; (3) a = d, b * c and c 1 d; (4) c = d, a f c and b f c; (5) a = d 
and b = c. The proof for case (1) is identical to that for a strong 
homomorphism. The proofs for cases (2) through (5) are similar and 
only the proof for (4) will be presented. If cRd then CRC since c = d. By 
condition (iv) cRa and by condition (i) aRc. This in turn implies aRd 
which by condition (iii) implies aRb. Q.E.D. 

Theorem 2C. If -, is an equivalence relation induced by a full 
homomorphism f, then f is induced by a regular homomorphism if and 
only if for all a, b, c E P. 
a -,b implies 
(i) aRc implies there exists d E P such that bRd and d -,c; and 

(ii) cRa implies there exists d t P such that dRb and d -,c. 

Proof: Iffis a regular homomorphism, a E/b, and aRc thenf(u) =f( b) 
andf( b) R’f ( c). Since f is regular there exists d E P such that f( d) = f( c) 
and bRd. Since f( d) = f( c), d E/C. Therefore a =,b implies (i). If o =/b 
and cRa then f(c) R’f( b) and there exists d E P such that f(d) = f ( c) 
and dRb. Again d =,c. Therefore u -,b implies (ii). An argument 
similar to the reverse of the above proves the converse. 
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Theorem 3A. The collection of all strong equivalences on a graph has 
a maximal element. 

Proof. Let E be the collection of all strong equivalence relations on P 
and let 
=,,, = ((a, b): a, b E P which satisfy 

(i) aRb if and only if bRa; 
(ii) aRc if and only if bRc; and 

(iii) cRa if and only if cRb for all c E P}. 
We must first show that -M is indeed an equivalence relation. If u E P, 
aRa if and only if aRa so condition (i) holds. aRc if and only if uRc so 
condition (ii) holds. Similarly condition (iii) holds and a = Ma for all 
uEPand sM is reflexive. If a -,,,,b then the symmetry of conditions 
(i), (ii), and (iii) implies that b = Mu so = ,,, is symmetric. Now suppose 
uGMb and bcM d. By the conditions, aRd if and only if bRd if and 
only if dRb if and only if dRa so condition (i) holds for the pair (u, d). 
By condition (ii) uRc if and only if bRc if and only if dRc so condition 
(ii) holds for the pair (a, d). A similar argument shows that condition 
(iii) holds for (u, d) and therefore a eMd and sM is transitive. 
Therefore = M is a strong equivalence relation. All that remains to be 
shown is that = M is maximal. Let = be a strong equivalence relation 
on P. By definition of what a strong equivalence relation is, a = b 
implies that conditions (i)-(iii) are satisfied and a = Mb. Therefore = M 
is maximal. Q.E.D. 

Theorem 3B. The collection of all structural equivalences on a graph 
has a maximal element. 

Proof. The proof is similar to the proof of 3A except that conditions 
(ii) and (iii) have the added condition that a * c * 6. Every conclusion 
still follows. 

Theorem 3C. The collection of all regular equivalences on a graph has 
a maximal element. 

Proof. Let =, = ((a, b) E P x P}, 
sz ={(a, 6) E P X P: 

(i) aRc implies there exists d E P such that bRd and d = ,c; 
(ii) bRc implies there exists d E P such that aRd and d = ,c; 
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(iii) cRa implies there exists d E P such that dRb and d = ,c; and 
(iv) cRb implies there exists d E P such that dRa and d = ,c}. 

Similarly define = 3 in terms of =, as = z has been defined in terms of 
= i. Continue in this fashion defining recursively = I + , in terms of = I,. 
We first show that each sk is an equivalence relation. Certainly = , is 
an equivalence relation. Assume =x is also. Let u E P, then &implies 
aRc and c eke since -k is an equivalence relation. Similarly conditions 
(ii)- hold and a fhCla and =k, , is reflexive. Suppose in =,+,h then 
by the symmetry of the conditions (i))(iv) h~~+,a and Ed+, is 
symmetric. Suppose a sk+,h and b E~+,x, then crHc implies there 
exists d E P such that bRd and d = hc. But if bRd, then there exists an 
e E P such that xRe and e G~C. But since -h is an equivalence relation 
e E~C, so xRe and e =kc so the pair (u, X} satisfies condition (i). 
Similarly (a, x) satisfies conditions (ii)- and u = 1 + ,I so = k+, is 
transitive. So by assuming -1 is an equivalence relation we have 
shown that = i+, is an equivalence relation. By the axiom of mathe- 
matical induction -/, is an equivalence relation for all k. 

Next we show that =x 2 Ed+, for all i. Certainly = z c = , .4ssume 
-kc ‘k-l and let (a, b) E fk+,. Suppose aRc, then there exists 
dEP such that bRd and d=,c. But =r.s=x_, so dGA_,c. That 
means the pair (a, b) satisfies condition (i) for -x. In a similar 
fashion, (a, 6) satisfies conditions (ii) (iv) for = k and (a, h) E =x. So 
=,z=,+,.Bytheaxiomofinduction -,s-,+,forallk.SincePis 
finite there must be an N such that =,,, = -,,_ ,. This means that -,,, is 
defined in terms of itself and therefore satisfies the properties of a 
regular equivalence relation. 

All that remains to be shown is that =N is maximal. Suppose = is a 
regular equivalence relation. Clearly = c = ,. Suppose = c = A, let 
a = b, then if aRc, by the definition of regular equivalence relations 
there exists d E P such that bRd and d = c. But since = z = rc, d = kc, so 
the pair (a, 6) satisfies condition (i) of sk+ ,. Similarly (u, b) satisfies 
condition (ii)- and (u, b) E sk+,. So = & sL+, and hence by 
induction = c =A for all k. Therefore = c =h, and sN is the maximal 
regular equivalence relation. Q.E.D. 

The following lemma although not in the text, is useful in the proof 
of the following theorems. 

Lemma. If f: G + G’ is a regular graph homomorphism and R’ is the 
relation induced by f and R then (R’)’ = (RI)‘. 



D. R. White and K.P. Reit: / Graph and semigroup homomorphisms 221 

Proof. Let (X y) E (K’)‘, then there exists (~1, 6) E R’ such that 
(f(a),f(b)) =(x,_v). If (a,b)~R’, there exists c,?c2 ,..., c,_, such 
that (a, c,), (c,, c2), . . , (c,_ ,, b) are all members of R and 

(f(a),f(c,)), (f(c,),f(c,))7,..., (f(c,-l)3f(b)) are all members of 
R’. But this implies that (f(a), f( b)) = (x, y) E (RI)‘. So (RI)’ c (RI)‘. 

Now suppose (x, y) E (R’)‘, then there exists w,, . . . , w,_, such that 

(.x3 WI>? (WI, w*),..., ( w,_ ,, ,v) are all members of R’. Since f is full, 
there exists (a, c,) E R such that (f(a), f( c,)) = (x, w,). So 
(f (c,), w2) E R’ and since f is regular there exists c2 such that f( c2) = wz 
and (c,, c2) E R. In similar fashion there exists c3,. . , c,_ ,, b such that 

( c,,c,+,)~Randf(c,)=w,and(c,_,, 6) E R with f( b) = y. Therefore 
(a, 6) E R’ and (f(a), f(b)) = (x, y) E (RI)‘. We have then (R’)’ 2 
(RI)‘. Q.E.D. 

Theorem 4. If f: G + G’ is a regular, structural, or strong graph 
homomorphism then f is regular, structural or strong respectively for 
any relation in S. That is f: (P, Q) + (P’, Q’) is regular, structural, or 
strong respectively for any Q E S. 

Proof. In the case that f is regular, the theorem holds trivially for 
Q = R’ = R. Suppose it holds for Q = R’. Consider 

I‘: (P, ,‘+I) + (P’, (R’)‘+‘). 

If f( a)( R’)‘+‘f(b), then there is some x E P’ such that f(a)( R’)‘x and 
xR’f(b). Since f is “onto”, there exists c E P such that f(c) = x, so 
f(a)( R’)‘f( c). Since f is regular with respect to R’ there exists e E P 
such that f(c) =f( ) e and aR’e. Similarly there exists s E P such that 
f(s) = f( b), and eRs. Note that aR’e and eRs so aR'+ ‘s and f(s) = f( b) 
so the first half of the condition for regularity holds. Since f( c) R’f (b), 
there exists u E P such that f(u) =f( c) and uRb. Since f(u) =f( c), 
f( a)( R’)‘f (u), so by the induction hypothesis there exists w such that 
f(w) =f(a) and wR ‘u. Since wR’u and uRb we have wR’+ ‘b. Thus by 
the axiom of induction f is regular on R’ for all i. In the case that f is 
strong with respect to (P, R) the proof is less involved. Again for 
Q = R’ the theorem holds. Suppose it holds for Q = R’. If 

f( a)( RI)‘+ ‘f(b), then f( a)( R’+ ‘)‘f( b), whence aR’+ ‘b and f is strong 
with respect to RI+‘. By induction f is strong with respect to R’ for all i. 
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The proof for the case that f is structural follows exactly as for f 
strong except that the condition a f b must be added. 

Q.E.D. 

Theorem 5. If f: G + G’ is a regular graph homomorphism then f: 
s + S’ is a semigroup homomorphism. That is f( Q, 0 Q, ) = 
~(Q,P~~Q,~. 

Proof. f: G + G’ is a regular homomorphism. Let* Q, = R’ and Q, = 
RJ; then Q, 0 Q, = R’ 0 RJ = R”’ 
(R’)‘+J = 

so f(QoQ,)=f(<‘+‘)=(R’+‘)‘= 
(R’)‘~(R’)‘=(R’)‘~(R’)‘=j‘(R’)~f(R’)=f(Q,)oj(Q,). 

Q.E.D. 

Theorem 6. If f: G + G’ is a strong homomorphism then 1: S - S’ is a 
semigroup isomorphism. 

Proof. By Theorem 5, j is a semigroup homomorphism. Suppose 
f(Q,> =.f(Q,). Then for all pairs (a, 6) E P X P, (f(a),f(b)) E~(Q,> 
if and only if (f(a),f(b)) E?(Q~). But (f(a),f(b)) E&Q,) if and 
only if (a, b) E Q,. Similarly (f(a),f(b)) Ed if and only if 
(a, b) E Q2. So (a. b) E Q, if and only if (a, b) E Q,. Therefore 
Q, = Q, and jis an isomorphism. Q.E.D. 

Theorem 7. If f: G + G’ is a structural homomorphism and G an 
acyclic graph then j: S --* S’ is an isomorphism. 

Proof. The proof is identical with that of Theorem 6 with the added 
condition that a * b. With this condition it is sufficient to hypothesize 
that (a, u) CZ R’ for all i. The conclusion that Q, = Q2 follows. 

Lemma 2. If G = (P, sA) is the graph of an attribute equivalence 
relation = A, then -A is also the equivalence induced by the largest 
regular, structural, or strong homomorphism of the graph. 

Proof. Define P’ = (0, 1) and let f: P -+ P’ be defined by 

f(a) = ( 
1 UEA 
0 u@A’ 

Then f is a strong homomorphism from (P, =A) to (P’, = ) where 
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, = 1, 0 * 0, 0 * 1. =A is also the equivalence induced by f and is 
clearly maximal. 

Lemma 3. If G = (P, I,) is the graph of a class identity IA, defined by 
the class attribute A, then the attribute equivalence =A is also the 
equivalence induced by the largest regular homomorphism of the graph. 

Proof. The proof is identical to that of Lemma 2 except f is no longer 
strong but only regular. 

Theorem 8. If f is a regular network homomorphism, then f is connec- 
tivity preserving. 

Proof. Let x,, . . , x,, , E P be a sequence of points and R,, . . . , R,, a 
set of relations on P such that f,(~,)f~(R,)f,(y,). . . 

fl(Xn)fZ(Rn)fl(Xn+l ). Since f is regular, there exists y, such that 
f,(y,) =fi(xA and ~,R,Y,. Since f,( yz)f2( R2)f,(x3) there exists y, 
such that f( y3) = f( x3) and yz R, y,. Continue in like manner establish- 
ing Y~~Y~~...~Y~+~ with 0x2) =f,(~~),...J,(x,+,) =f,(~,+,) and 
x,R, Y,R,. . . R,Y,+ ,. Similarly since f,( xn)fi( R,)f,( x,+ ,), there exists 
z, such that f,(~,,)=f,(z~) and z,R,x,+,. Since f,(~~)=f,(z,,), 
f,(x,_,)f2(R,_,)f,(zn) and thereexistsaz,_, E Psuch thatf,(z,_,)= 
f,&- ,) and z,- ,R,- ,z,. In this manner, we construct z,, z2,. . . , z, 
such thatf(z,)=f(xi) for 1 si<n andz,R,z,R,...z,R,x,+,. There- 
fore f is connectivity preserving. 

Theorem 9. If f is a structural network homomorphism then f is 
strongly connectivity preserving. 

Proof. The proof follows directly from the definition of structural 
graph homomorphisms. 

Theorem 10. If N = (P, 3) is a network, C = (P, %) the multiplex 
graph derived from it, and f: C + C’ = (P’, ‘%‘) a full network 
homomorphism then f induces a full network homomorphism on N and 
(i)iff’ gl is re u ar the induced homomorphism is regular; 
(ii) if f is strong the induced homomorphism is strong. 

Proof. Let f: C + C’ be the ordered pair (f,, f2) where f, : P + P’ 
andf,:%+%‘.LetRE%anddefinef;“(R)=((f,(a),f,(b)): (u,b) 
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E R). Let ‘3’ = (f;“(d): R E 3 ) then the ordered pair (f,, f;) is a full 
network homomorphism f*: N + N’ where N’ = (P’, (3’). Suppose 
f,(a)/;“(R)f,(b) for some a, b E P and R E 9,. Since f* = (f,,f:) is 
full, there exist X, y E P such thatf,(a) =f,(x),f,(b) =f,(.~), and xRy. 
This implies that R E B,,. * 8. Let M = {(c, d) : B,, = B,,) then XMV 

and f,(x)f,(M)f,(y) m h w ‘c in turn implies f,( a)fi( M)f,( b). 
(i) If we assume that f is regular, there exist c, d E P such that 

f,(c) = f,( a), f,(d) = f,( b), cMb and aMd. By the definition of M. 
B,, = B,, = B,,., whence cRb, aRd, and f* is regular. 

(ii) If we assume that f is strong, then aMb, B,, = B.,, , aRb, and f * is 
strong. 

Theorem I la. Every strong network homomorphism is a juncture 
network homomorphism. 

Proof. Assume f: N + N’ is strong and there exists a, b, c, d E P such 
thatf,(a) =f,(c) and f,(b) =f,(d). If B,, = Q, or B,, = 9, the theorem is 
proved. If Bab f $3, let R E Bob, then aRb. Also, f,( a)f2( R)f,( b) and 

f,(c)fz(R)f,(d). S ince f is strong, cRd and R E B,.,. Therefore B,, c B,.,. 
Similarly, B,, 2 BCd and B,, = B,.,. Therefore f is a juncture homomor- 
phism. 

Theorem 11 b. Let f = (f,, fi) be a juncture homomorphism. Then 

f * = (f,, f3>, wheref, is the identity, is a bundle homomorphism. 

Proof. Assume f = (f,, fi) is a juncture homomorphism and there 
exist LI, b E P such that f,(a) =f,( 6). Assume there exists c E P such 
that aMc. Then for every R EM, aRc. f is full, hence f,(a)fi( R)f,( c). f 
is regular, hence there exists d E P such that f,( d) = f,( c) and bRd. f is 
juncture, f](a) =f,(b) and f,(c) =f,(d), and B,,. * 8, hence B,,= B,,, 
hence bMd. Thus Condition (i) of the bundle equivalence and homo- 
morphism is satisfied. Similarly for Condition (ii). Therefore, f* = 
( fl, f3) is a bundle homomorphism. Q.E.D. 

Theorem 12. Let f: N + N’ be a juncture network homomorphism and 
C the multiplex graph derived from N. Then f induces a map from C to 
C’ and C’ is a multiplex graph. 

Proof. Let f: N + N’ be a juncture network homomorphism and let 
C = (P, 9lL) be the multiplex graph derived from N. Let M E 9Tt, 
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define *fi(M)=((f(a),f(b)): (u,6) EM). Define %‘={*fi(M): 
ME ‘?X), then *f: C + C’ = (P’, 9X’) where *f= (f,, *fi) is a full 
network homomorphism. Suppose *f,( M,) n *f;( A4,) * 8 then there 
exists an (/,(a), f,( b)) E *f,( M,) n *f,( M2) this implies there exist 
.Y,.v E Pandc, do P such thatf,(x)=f,(a),f,(y)=f,(b),f,(c)=f,(a), 
f‘,(d)=f,(b) and (x,y) EM, and (c, n) E M2. This in turn implies 
that ?,,, =B, where M,=(B: B=B,) and BI.,=B, where M,=(B: 
B = B,j. Note that both B,,. * $ * B,.,, f,(x) =f,( c) and f,(y) =f,( d). 
Because f is a juncture homomorphism B,,. = B<<,. But this implies that 
B, = B, and M, = M,. Therefore *f,( M,)‘f’ *f,( M2) # @ implies M, = 
M, so C’ is a multiplex graph. Q.E.D. 

Theorem 13. Let f: N -+ N’ be a juncture network homomorphism 
where N=(P,%), N’=(P’,$‘) and f=(f,,f2). If 0 is relation 
composition and (9%, 0 ) is a semigroup then fi: (3, 0) - (%‘, 0) is 
an isomorphism. 

Proof. Let (x, z) gf2(R,) 0 fZ(R2), then there exist y E P’ such that 
(~,y) gf2(R,) and (y, z) Ebb. Since f is regular there exists 
a, 6, c E P such that f(a)= x, f(b) =y, and f(c) = z such that aR,b 
and bR,c. But this implies that a( R, 0 R2)c andf,( a)fi( R, 0 R,)f,( c). 

So (x, z> Ef,(R, 0 R2) and f2(R,) 0 f,(R,) cf,(R, 0 R2). Now sup- 
pose (x, z) Ef2(R, 0 R,). Then there exists a, d E P such thatf( a) = x, 
f(d)=z and a(R, 0 R,)d. By definition there exists c E P such that 

aR,c and cR,d and f,(a)h(R,)f,(c) and fl(c)f2(Rz)f(d) so 
f,(a)(fi(R,) o f2(Rz))fl(d) and x(f,(R,) 0 f2(R2))z so (x, z) E 
f,( R,) 0 fZ(R2). Therefore fi( R,) 0 fi( R2) =fi( R, 0 R,). So far in the 
proof we have used only regularity but we need yet to show that fi is 
one to one. Suppose f2(R,) =f2(RZ) where R, f R,. Then there exist 
(a, b) in R, or R, but not the other. Suppose (a, b) E R, and 

(0, b) @ R,, (f,(o), f,(b)) Ebb but since f,(R,) = f2(R2), 
(f,b)J,(b)) ~fi(Rl). S’ mce f is reguiar there exists c E P such that 
f,( rr) = f,( c) and cR,b. Therefore B,., f 9. Since aR,b, B,, f 8, f,(a) = 
f,(c), and f,(b) =f,( b) together with the definition of juncture homo- 
morphism implies that BO,, = Bch. But cR,b so R, E Bch and R, E B,, 
and aR,b which is a contradiction so f2 is one to one and therefore an 
isomorphism. Q.E.D. 

Theorem 14. If N = (P, S) and N’ = (P, S’) are networks, f,: P + P 
the identity, and fi: S + S’ a mapping then f = (f,, f2) is a weak full 
network homomorphism if and only if fi( R) = U [ R] fi. 
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Proof. Let (x, _)I) be inf,( R). Then by definition there is some Q in S 
and (u, b) in Q such that f,( Q) =f,( R), f,( u) = x, and f,( 6) =y. f, is 
the identity map so a = x and b =y, thus (x, _v) is in (2. Q is in [R]fi 
therefore (x, y) is in U [ R]fi. Conversely, if (x, JJ) is in U [ R]fi there 
exists Q in S such that fi( Q) = f2( R) and (x, y) is in Q. But since f, is 
the identity (x, y) = (f,(x), f,( r)) is in fi( Q) =f,( R). Therefore 

f,(R) = U[Rlf,. 
Conversely, if (a, 6) E f,( R) = U [R] f2 there exists a relation Q in S 

such that f,(Q) =f2( R) and (0, b) E Q. Therefore (f,,f,) is a weak 
full network homomorphism. Q.E.D. 

Theorem 1 S. Let f = (f,, f,) : (P, S) + (P, S’) be a weak full net- 
work homomorphism such that f, is the identity mapping. Then fi 
preserves composition if and only if U [R,] fi 0 U [R,] fi = 
“[R, o Rzlfz. 

Proof. The proof follows directly from the definitions and Theorem 
14. 

Theorem 16. The equivalence on S induced by a strong mapping is a 
strong equivalence and conversely every strong equivalence is induced 
by some strong mapping. 

Proof. The proof follows directly from the definitions. 

Theorem 17. Let f = (f,, f,) : (P, S) -+ (P, S’) be a weak full net- 
work homomorphism, f, the identity, f, a strong mapping, and (S, 0 ) a 
semigroup. Then fi is a semigroup homomorphism if and only if 
f,(T) =f,(R, 0 R,) implies TC R, 0 R, for all T, R,, R, in S. 

Proof. Assume fi preserves composition and is a strong mapping, and 

suppose f,(T) =f,(R, o R,). Let (a, b)~ T. Then (u,b)~f~(T)= 
f,(R, o R,) =fz(R,) o fz(RI). Th en there exists c such that (a, c) E 
f,( R,) and (c, b) gf2( R2). Therefore there exist (2, and Q, such that 

MQ,) =f,(R,), f2(Qz) =f2(R2), and (a, 4 E Q, and (G b) E Q,. 
This implies that (a, 6) E Q, 0 Q,. But Q, 0 Q2 = Q, 0 R, = R, 0 R, 
sincef, is strong and (a, b) E R, 0 R,. Therefore TC R, 0 R,. 

Conversely, we assume f2 is strong and f,(T) = f,( R, 0 R,) implies 
TGR, 0 R, for each T,R,,R,rS. Let (a,b)Ef,(R, 0 R2). Then 
thereexists Tsuch that (a,b)~ Tandf,(T)=f,(R, 0 R2). By assump- 
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tion (a, b) E R, 0 R, GJ,(R,) 0 f2(R2). The reverse of this is obtained 
as in the first part of this proof, noting that R, 0 R, L~,(R, o R,). 

Q.E.D. 

Theorem 18. Let f = (f,, fi> : (P, S) + (P, S’} where f, is the iden- 
tity map and f, is an inclusion mapping. Then fi preserves composition 
if and only if 
(9 fi(R,)=fi(R2) implies f,(To R,)=fi(To R,) and f,(R, 0 T)= 

f2(R, 0 T), and 
(ii) f2(T)=fi(R, 0 R,) implies T&max[R,]f, 0 max[R,]f,, for all T, 

R,, R, in S. 

Proqf. Assume f, is an inclusion map which preserves composition. 

Suppose f,(R,) =f2(RZ), then f,(R, 0 T) =fi(R,) 0 f*(T) = 
,f2( R2) 0 fi(T) = f,( R, 0 T). Similarly f,( T 0 R,) = f,( T 0 R,) for ev- 
ery Tin S. Now suppose f,(T)=f?(R, 0 R,). Then T~max[T]f~= 
/z(T) =/z(R, o R,) =f,(R,) o f2(RZ) = max[R,lf, o max[R,lf,, so 
property (ii) is proven. 

Conversely, assume f2 is an inclusion mapping and satisfies condi- 
tions (i) and (ii). We know f,( R, 0 R2) = max[R, 0 R2] fi, therefore if 
(u, b) Ef2( R, 0 R2) then there exists a T in S such that f2(T) = 
fi(R, o R,) and (a, b) is in T. By condition (ii) T c 
max[RIIfi o max[R,lf, =fdR,) o f,(R,) so (a> b) EfdR,) o fARA. 
Now if (~1, 6) ??f2(R,) 0 fZ(R2) then there exists L’ such that (u, C) E 
f2( R,) and (c, b) E fi( R,). Therefore there exist Q, and Q, such that 

MQJ =f2(RI) andf,(Q,) =f2(RZ) and b 4 E Q, and (G b) E Q2. 
Therefore (a9 6) E Q, 0 Q2 Cf,(Q, 0 Qd =f2(Ql 0 R2) =f,(R, 0 R,) 
by condition(i)_ Thereforef,(R,) 0 fi( R,) = f,( R, 0 R2). Q.E.D. 
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