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Structural balance theory affirms that signed social networks
(i.e., graphs whose signed edges represent friendly/hostile interac-
tions among individuals) tend to be organized so as to avoid con-
flictual situations, corresponding to cycles of negative parity. Using
an algorithm for ground-state calculation in large-scale Ising spin
glasses, in this paper we compute the global level of balance of
very large online social networks and verify that currently available
networks are indeed extremely balanced. This property is explain-
able in terms of the high degree of skewness of the sign distribu-
tions on the nodes of the graph. In particular, individuals linked by
a large majority of negative edges create mostly “apparent disor-
der,” rather than true “frustration.”

combinatorial optimization ∣ social network theory

Online social networks are examples of large-scale commu-
nities of interacting individuals in which local ties between

users (friend, fan, colleague, but also friend/foe, trust/distrust,
etc.) give rise to a complex, multidimensional web of aggregated
social behavior (1–4). For such complex networks, the emergence
of global properties from local interactions is an intriguing sub-
ject, so far investigated mostly at structural and topological level
(2, 5–8). In social network theory (9–11), however, the content of
the relationships is often even more important than their topol-
ogy, and this calls for the development of appropriate analytical
and computational tools, able to extrapolate content-related fea-
tures out of the set of interactions of a social community. Obtain-
ing efficient tools is particularly challenging when, as in social
networks retrieved from online media, the size of the community
is very big, of the order of 105 individuals or higher.

A global property that has recently attracted some attention
(1, 12–14) is determining the structural balance of a signed social
network. Structural (or social) balance theory was first formu-
lated by Heider (15) in order to understand the structure and ori-
gin of tensions and conflicts in a network of individuals whose
mutual relationships are characterizable in terms of friendship
and hostility. It was modeled in terms of signed graphs by Cart-
wright and Harary (16); see refs. 10 and 11 for an overview of the
theory. The nodes of the graph represent users and the positive/
negative edges their friendly/hostile relationships. It has been
known for some time how to interpret structural balance on such
networks (16): The potential source of tensions are the cycles of
the graph (i.e., the closed paths beginning and ending on the same
node), notably those of negative sign (i.e., having an odd number
of negative edges). It follows that the concept of balance is not
related to the actual number of negative edges on the cycles but
only to their parity; see Fig. 1 for an illustration on basic graphs.
In particular, a signed graph is exactly balanced (i.e., tensions are
completely absent) if and only if all its cycles are positive (16). As
such, structural balance is intrinsically a property of the network
as a whole, not fragmentable into elementary subgraphs.

From a computational point of view, verifying if a signed un-
directed network is exactly balanced is an easy problem, which
can be answered in polynomial time (17–19). When instead a
graph is not exactly balanced, one can compute a distance to exact
balance (i.e., a measure of the amount of unbalance in the net-
work). The most plausible distance is given by the least number of

edges that must be dropped (or changed of sign) in order for the
graph to become exactly balanced (16, 20, 21). Computing this
distance (called the “line index of balance” in refs. 20 and 21) is
a nondeterministic polynomial-time hard problem, equivalent to
a series of well-known problems, such as computing the ground
state of a (nonplanar) Ising spin glass (22); solving a maximum-
cut (MAX-CUT) problem (23, 24); or finding the best solution of
an overconstrained linear system over a finite field (the so-called
MAX-2XORSAT problem) (25). The equivalence with energy
minimization of a spin glass has, for example, been highlighted
recently in ref. 26 (see also refs. 27 and 28). In this context, a
negative cycle is denoted a frustration, and frustrations are the
trademark of complex energy landscapes, with many local minima
whose structure and organization has been so far explored only in
special cases. For instance, the case studied in ref. 28, the fully
connected graph, is unrealistic for real social networks, which
usually have heterogeneous connectivity degrees. As a matter of
fact, for what concerns the online signed social networks currently
available (see Materials and Methods for a description), only an
analysis of local, low-dimensional motifs has been carried out so
far (12, 13). This analysis amounts essentially to the enumeration
of the triangles and to their classification into frustrated/not
frustrated; see refs. 1 and 13. An alternative approach is taken in
ref. 18, where spectral properties of the Laplacian are investi-
gated. For connected signed graphs, the magnitude of the smal-
lest eigenvalue of the Laplacian is indicative of how unbalanced
a network is—i.e., of how much frustration is encoded in the
cycles of the networks.

Both approaches provide useful information in order to under-
stand the structural balance of signed social networks, yet this
information is partial and unsatisfactory. The small motif analy-
sis, for example, only identifies the frustration on the smallest
possible groups of interacting users, but overlooks more long-
range conflicts associated to longer cycles (and larger commu-
nities); see Fig. 1B for an example. The spectral approach, on the
contrary, gives an idea of the overall amount of frustration of the
network, but does not provide any information on which relation-
ships remain unbalanced. In terms of spin glasses, solving the pro-
blem globally and identifying the residual ineliminable tensions
means computing the ground state(s) of a heterogeneous Ising
spin glass, with bimodal bond distribution. For this class of pro-
blems, algorithms have been benchmarked only on graphs of size
up to a few thousand nodes. An overview of the state of the art for
spin glass ground-state search is available in refs. 29 and 30, and
for MAX-CUT in refs. 23, 24, 31, and 32.

We have recently introduced a efficient heuristic for ground-
state search on signed graphs. This method is presented in ref. 33
in the context of monotonicity of biological networks. It is based
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on the application of equivalence transformations to the signed
graph, called gauge transformations in the spin glass literature

(34), or switching equivalences in the theory of signed graphs
(35). The aim of these transformations is essentially to eliminate
the so-called apparent disorder from the graph, while preserving
the original frustration. Practically, these transformations lead to
the reduction of the number of negative edges in the graph, see
Fig. 1C, which simplifies the calculation of global balance. Our
algorithm has proved capable of reaching very low energies on
extremely large graphs. For two of the three signed networks re-
ported in this study, in particular, our calculations are essentially
exact (upper and lower bounds on the computed global balance
differ by less than 1%).

Structural balance theory affirms that human societies tend to
avoid tensions and conflictual relations. In a signed graph, this
concept translates into a level of balance higher than expected,
given the network structure. The level of balance achieved by a
network depends on the connectivity of the graph, on the percen-
tage of negative edges, and, most of all, on the distribution of
these negative edges on the graph. Partial hints that social net-
works currently available are more balanced than expected are
provided by both the small motif screening of refs. 1 and 13,
and the spectral analysis of ref. 18, and are confirmed by our ana-
lysis. In particular, on the social networks analyzed in this work,
we show that the chance that a null model has the level of balance
of the true networks is essentially equal to zero. For all three net-
works, the level of balance turns out to be even less than the
Shannon bound one obtains developing a rate-distortion theory
for the null models (25, 36, 37). What makes our signed networks
so balanced is the skewed distribution of the signs of the edges on
the users: Users with a large majority of friends, but also users
with a large majority of enemies, are not causing any significant
frustration. In particular, when an individual is unanimously
tagged as an “enemy” by the other users, all the corresponding
negative edges disappear if we apply a gauge transformation.
As gauge transformations do not alter the sign of the cycles, it
implies that these negative edges are indeed not contributing to
the frustration but only to the apparent disorder, as in a so-called
Mattis system (26). In terms of social network theory, this prop-
erty means that individuals manifestly recognized as enemies do
not add to the structural tension of a community. The notion of
gauge transformation is instrumental to understand this impor-
tant feature of our social networks.

Computation of Global Balance
A signed network is a graph in which the nodes are the users and
the edges are their bipartite relationships. In this paper, the re-
lationships are always represented as mutual—i.e., the edges are
undirected. For the three online social networks discussed in this
paper (see Table 1 and Materials and Methods for details), this is
largely an acceptable assumption. Practically, if Jij ∈ f�1g ¼ B2

is the edge between the nodes si and sj of the graph, computing
global balance means assigning aþ1 or a −1 to all the nodes so as
to minimize the energy functional

hðsÞ ¼ ∑
ði;jÞ

ð1 − JijsisjÞ∕2; [1]

Fig. 1. Balanced and unbalanced graphs. (A) Simplest cases of balance and
unbalance: triangles. Users A and C are related directly and indirectly
(through B). The sentences on the top connote this indirect relationship be-
tween A and C. Blue edges represent friendship, red hostility. The triangles
are balanced when the direct and the indirect relationships have the same
sign, unbalanced otherwise. (B) For generic graphs, testing all triangles
may not give a satisfactory measure of the global balance. In the example,
the graph is not globally balanced, although all triangles are balanced. (C)
Illustration of a gauge transformation. Applying a sign change to all edges
adjacent to the node A of (B) only one negative edge is left in the graph, and
δ ¼ 1 in this case. In [2], this optimum corresponds to choosing sA ¼ −1,
sB ¼ sC ¼ sD ¼ sE ¼ þ1. Notice that counting the total number of ba-
lanced/unbalanced cycles is not a significant measure of balance. It is evident,
then, that in the ground state the nodes A, D, and E are perfectly balanced,
whereas the nodes B and C have a nonnegative sum of signed edges (i.e., the
global optimum is also a local optimum for each node).

Table 1. Signed social networks

Network n m m− mþ q R

Epinions 131,513 708,507 118,619 589,888 0.167 0.186
Slashdot 82,062 498,532 117,599 380,933 0.236 0.165
WikiElections 7,114 100,321 21,529 78,792 0.214 0.071

Data for the three networks described in Materials and Methods, after
symmetrization (the original directed graphs are reported in Table S1);
n and m are the number of nodes and edges of the undirected graph,
m− and mþ are the number of negative and positive edges of the
networks; q ¼ m−∕m is the probability of a negative edge and R ¼ n∕m is
the “rate of compression” (see text and SI Text).

20954 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1109521108 Facchetti et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109521108/-/DCSupplemental/pnas.1109521108_SI.pdf?targetid=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109521108/-/DCSupplemental/pnas.1109521108_SI.pdf?targetid=STXT


where the summation runs over all adjacent pairs of nodes and
s ¼ ½s1;…;sn�T ∈ Bn

2 ; i.e., si ∈ f�1g, i ¼ 1;…;n, with n equal to the
number of nodes. When Jij represents friendship (Jij ¼ þ1) each
term in [1] gives a zero contribution if signðsiÞ ¼ signðsjÞ and aþ1

contribution if signðsiÞ ¼ −signðsjÞ, whereas when Jij represents
hostility (Jij ¼ −1) the summand is zero if signðsiÞ ¼ −signðsjÞ
and þ1 otherwise. The network is exactly balanced when there
exists s ∈ Bn

2 such that all terms in [1] can be made simultaneously
equal to zero. Call J the n × n matrix of entries Jij. As the signed
graph is undirected, its adjacency matrix J is symmetric: Jij ¼ Jji.
Up to a constant, [1] can be identified with the Hamiltonian of a
so-called (heterogeneous) Edwards–Anderson spin glass, with bi-
modal bond distribution (38). For connected signed graphs, if ki is
the connectivity degree of the ith node, and K ¼ diagðk1;…;knÞ,
then [1] is exactly balanced if and only if the smallest eigenvalue
of the Laplacian L ¼ K −J is equal to zero (18). If this is not
the case, then necessarily no choice of s can render all terms in [1]
simultaneously zero: hðsÞ > 0∀s ∈ Bn

2 . Computing the global bal-
ance of the network then means solving the following Boolean
optimization problem:

δ ¼ min
s∈Bn

2

hðsÞ ¼ min
s∈Bn

2

�
m −

1

2
sTJs

�
; [2]

where m is the number of edges, m ¼ ∑n
i¼1 ki∕2. In correspon-

dence of so ¼ argmins∈Bn
2
hðsÞ, the residual positive terms in [1]

correspond to the least number of unbalanced pairwise relation-
ships between nodes (i.e., the frustrations of the spin glass
Hamiltonian [1] in its ground state).

The enormous dimension of the configuration space (2n)
makes the problem [2] hard to solve. As a matter of fact, MAX-
CUT is one of those problems for which currently existing heur-
istics are normally tested only on small to medium benchmark
problems, of the order of 103 nodes (23, 24, 31). The heuristic
we have introduced in ref. 33 is, however, able to produce fairly
tight upper and lower bounds for δ (henceforth δup and δlow), also
for very large signed graphs. This local search algorithm is de-
scribed in some detail in the SI Text and in ref. 33. The outcome
of the algorithm is a gauge transformation of the adjacency matrix
J into the equivalent Jσ :

J → Jσ ¼ TσJTσ ; [3]

where Tσ is a diagonal signature matrix Tσ ¼ diagðσÞ, σ ∈ Bn
2 ,

such that Jσ has the same frustration as J, but the least possible
number of negative entries among all transformations of the form

[3]. Because σ ¼ Tσ1, where 1 is the all-spins-up configuration, in
terms of the energy function [1], we have

hðσÞ ¼ m −
1

2
σTJσ ¼ m −

1

2
1TTσJTσ1; [4]

meaning that minimizing the energy over the spin configurations
s ∈ Bn

2 as in [2] or minimizing the number of negative entries of
Jσ through operations such as [3] yield identical results.

Global Balance for Social Networks
The local search algorithm was applied to the three online social
networks of Table 1. Some approximately 4,700 replicas were
computed for Epinions, approximately 8,000 for Slashdot, and
approximately 18,000 for WikiElections. Of these replicas, the
best (in terms of δ) 606 for Epinions, 953 for Slashdot, and
1,000 for WikiElections were used in our statistics. The distribu-
tions of these δup;replica are shown in Fig. 2. The corresponding
δup ¼ minðδup;replicaÞ are given in Table 2, where also the corre-
sponding lower bounds on δ, δlow, are shown. That this algorithm
scales well with size, and in fact that it can deal effectively with the
signed social networks of dimension 105 used in this paper, is
proved by the tiny gap left between δlow and δup (see Table 2)
which guarantees that the estimate for δ is accurate. For two of
the three networks, we have essentially computed the true optimum,
as δlow∕δup > 0.99, whereas the residual gap in the third network
(Slashdot, δlow∕δup > 0.95) is most likely due to the lack of precision
of the lower bound computation (see SI Text for more details).

By definition, a local optimum of the energy [1] is any s such
that for every user the majority of pairwise relationships are
“satisfied” (i.e., yield a zero contribution to [1]). Because of the
ruggedness of the energy landscape, the number of local minima
can be huge (27). It is only by solving [2] that a local minimum
becomes also a global optimum and, in the present context,
acquires the meaning of balance value for the network. Because
our computed δup is very close to the true δ, essentially all the
residual conflicts in Jσ are ineliminable—i.e., they represent the
real disorder of the problem. Due to the gauge equivalence, what
holds in the ground state 1 for Jσ holds also in the configuration
so ¼ σ for the original J. In the optimal balance state so, a
consistent fraction of users results to be completely free from
tensions: from the 52.7% of WikiElections to the 83.7% for
Epinions; see Table 2. If we restrict to these users, then the iden-
tification of clusters of perfectly balanced subcommunities is
straightforward because it corresponds to determining the con-
nected components of the subgraph of perfectly balanced users.
See SI Text, Tables S2–S4, and Fig. S1 for details.

Fig. 2. Global balance and its statistical significance. (Upper) Optimal level of balance δup;replica reached on different replicas for the three networks. The (low-
energy) replicas shown are 606 for Epinions, 953 for Slashdot, and 1,000 for WikiElections. (Lower) Comparison of δup;replica with lower bounds and with null
models generated from a Bernoulli distribution BðqÞ. The lower bounds δlow are shown in red, the distributions of δup;replica are in blue, and the distribution of
δnullup in 100 null models are in green. In each of the three networks, δup ¼ minðδup;replicaÞ ≪ δnullup , meaning that the true networks are much less frustrated than
expected from the null models (Z test, with p value <10−100). Furthermore, the interval of uncertainty of the optimal level of balance is very limited because
δlow∕δup > 0.95 (δlow∕δup > 0.99 for Epinions and WikiElections) and δup − δlow ≪ δnullup − δup.
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Statistical Analysis of the Level of Balance
For a signed graph, the amount of frustration depends on the to-
pology of the network, on the percentage of negative edges and,
most of all, on their distribution on the graph. Unlike for spin
glasses on regular lattices, for heterogeneous signed networks,
systematic predictions of the expected frustration, given the con-
nectivity and the percentage of negative edges, are completely
missing. We observe that on the three social networks of Table 1
the fraction of negative edges is always limited (q ¼ m−∕m ¼
16.7 ÷ 23.6%). In terms of spin glasses, this fact would correspond
to a “partially ferromagnetic” quenching (more ferromagnetic
than antiferromagnetic bonds). Obviously it leads to a lower frus-
tration than in a spin glass with equally distributed edge signs. To
evaluate if also the arrangements of the negative edges on the
graph are favoring balance, we have to compare the sign arrange-
ments on our networks with null models. In the null models we
discuss here, the edge signs are drawn as independent and iden-
tically distributed (i.i.d.) variables from a Bernoulli distribution
with probability of negative sign equal to q, hereafter denoted
BðqÞ. For each of the three networks, 100 randomizations were
performed, and the corresponding δnulllow and δnullup computed sol-
ving [2] via the same heuristic used for the true networks (see
Table 2). The distribution of the δnullup is compared with δlow
and δup of the true networks in Fig. 2. It can be observed that
the null models are unavoidably much more frustrated than the
real social networks (Z test, p value approximately zero). It fol-
lows that indeed the organization of the signs in our social net-
works is such that tensions are largely avoided. Analogous results
are obtained if the null models are constructed using a hypergeo-
metric distribution, corresponding to reshuffling randomly the
signs on the edges while keeping constant the ratio negative/
positive edges; see Fig. S2 A–C.

For our networks, the property of being much more balanced
than expected goes beyond the statistical significance of a Z test

on null models. As a matter of fact, δup is even less than a Shan-
non-type bound which can be associated with the average frustra-
tion of our null models. For n and m sufficiently large, denoting
R ¼ n∕m the rate and D ¼ δ∕m the distortion, the rate-distortion
theorem (see ref. 39) affirms that when the edge signs are drawn
as i.i.d. variables fromBðqÞ then the distortions achievable are in
expectation lower bounded by the distortion-rate curves shown in
Fig. 3, regardless of the topology of J (see SI Text for a more
rigorous formulation of these information-theoretical concepts).
Distortions (and hence frustrations) that lie below this Shannon
bound must be considered as obtained from edge sign assign-
ments that are highly atypical for the probability “source”
BðqÞ. All three networks have sign arrangements that violate
the Shannon bound, meaning that indeed the true “quenchings”
are away from BðqÞ with high significance. In Fig. 3 notice that,
instead, the distortions δnulllow∕m and δnullup ∕m of the null models all
lie above the Shannon bounds, as expected.

Skewness of the Sign Distributions and Its Social Meaning
The feature that makes our networks so atypical is the skewness
of the sign distribution on the individuals. In particular, the three
networks have a significant fraction of nodes that are enriched for
positive or negative edges (cumulative binomial test, p value
10−5), property not shared with the null models (see Fig. 4
and Table S5). Both fat tails of this sign distribution contribute
to increase the balance of a network: the tail of positive edges
because users with many friends have less enemies than expected
from null models; the tail of negative edges for the opposite rea-
son. A direct consequence of the sign skewness is that a consider-
able part of negative edges can be eliminated by means of gauge
transformations, meaning that a vast fraction of the negative
edges contribute only to the apparent disorder, not to the real
frustration. On the contrary, the reduction of negative edges
in the null models is always minimal (see Fig. 2 and Table 2).

Table 2. Global balance of the networks

Network δlow δup δnulllow δnullup δup∕m δlow∕δup Perfectly balanced nodes (%)

Epinions 50,452 50,806 105,247 105,520 0.0717 0.9930 110,087 (83.71)
Slashdot 70,014 73,604 90,346 106,163 0.1476 0.9512 56,041 (68.29)
WikiElections 14,194 14,245 20,878 20,880 0.1420 0.9964 3,766 (52.94)

The lower and upper bounds on the global balance are δlow and δup. These are much lower than δnulllow and δnullup , the corresponding average values of
balance obtained on null models generated from a Bernoulli distributionBðqÞ. The ratio δ∕m (themore conservative δup∕m for us) represents the distortion
—i.e., the fraction of frustrated bipartite relationships in the global balance configuration so (see Fig. 3). For the values of δlow and δup, the ratio δlow∕δup is
much higher than the value achieved by popular semidefinite programming approaches to MAX-CUT (0.8785, see ref. 43), meaning that our ground-state
algorithm is indeed quite efficient. The last column reports the number and the percentage of perfectly balanced nodes in the ground state.

Fig. 3. Rate-distortion plots. In the rate (R ¼ n∕m)-distortion (D ¼ δ∕m) plane, the yellow curves are the Shannon bounds of the rate-distortion theorem
associated to a Bernoulli distributionBðqÞ. The region above (below) the curve is achievable (unachievable) in expectation by an edge sign assignment drawn
as a length-m sequence of i.i.d. variables from BðqÞ, compressed to a length-n sequence, and then reconstructed (see Fig. S4). The compression step is equiva-
lent to our ground-state search problem, and the distortion obtained is the frustration normalized by m. Full details on these information-theoretical aspects
are provided in the SI. The distortion of the three true sign assignments (tip of the triangles, blue for δup and red for δlow, partially overlapping) is less than this
Shannon-type bound, meaning that these edge signatures are significantly away from a typical i.i.d. sequence from BðqÞ. The signatures used in the null
models of Table 2 (tip of the triangles, green for δnullup and black for δnulllow, also partially overlapping) are instead in the achievable region.

20956 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1109521108 Facchetti et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109521108/-/DCSupplemental/pnas.1109521108_SI.pdf?targetid=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109521108/-/DCSupplemental/pnas.1109521108_SI.pdf?targetid=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109521108/-/DCSupplemental/pnas.1109521108_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109521108/-/DCSupplemental/pnas.1109521108_SI.pdf?targetid=ST5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109521108/-/DCSupplemental/pnas.1109521108_SI.pdf?targetid=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109521108/-/DCSupplemental/pnas.1109521108_SI.pdf?targetid=SF4


That the reduction of negative edges in passing fromJ toJσ is
primarily because of users with high connectivity of enemies is
confirmed on all three networks by the signed degree distribu-
tions of Fig. S3 (compare the degree distributions of negative
edges in J and Jσ). In practice, a small fraction of individuals
attracting a large number of negative edges contributes less to
unbalance the social community than a homogeneous distribu-
tion of unfriendly relationships. The sociological interpretation
of this fact is clear: Unpopular individuals are easily “cast away”
from the bulk of the community without creating much conflict
within the community itself. Something similar does not happen
for homogeneous distributions of the negative edges in the com-
munity. In conclusion, in all three networks analyzed, the local
process of choosing friends/enemies induces a collective behavior
that is strongly biased toward the creation of a disorder that is
only apparent, thereby confirming the validity of Heider’s theory
(15) for this class of networks.

Materials and Methods
The three signed social networks analyzed in this study were downloaded
from the Stanford Network Analysis Platform (http://snap.stanford.edu/)
(12): (i) Epinions, trust/distrust network among users of product review
web site Epinions (40), (13); (ii) Slashdot, friend/foes network of the techno-
logical news site Slashdot (Zoo feature) (41), (12); (iii) WikiElections, election
of administrators among Wikipedia users (42). More details on these net-
works are provided in ref. 13 (see also ref. 12 for Slashdot). The size (n)
and number of edges (m) of these networks are given in Table 1. The edges
of the networks are always considered as undirected. This process leads to
only a limited number of sign inconsistencies between pairs of edges Jij
and Jij (see Table S1). These inconsistencies are disregarded in our analysis.
The methods used in the paper are described in full detail in the SI Text.
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