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It is not uncommon for certain social networks to divide into two
opposing camps in response to stress. This happens, for example, in
networks of political parties during winner-takes-all elections, in
networks of companies competing to establish technical standards,
and in networks of nations faced with mounting threats of war.
A simple model for these two-sided separations is the dynamical
system dX∕dt ¼ X2, where X is a matrix of the friendliness or
unfriendliness between pairs of nodes in the network. Previous
simulations suggested that only two types of behavior were pos-
sible for this system: Either all relationships become friendly or two
hostile factions emerge. Here we prove that for generic initial con-
ditions, these are indeed the only possible outcomes. Our analysis
yields a closed-form expression for faction membership as a func-
tion of the initial conditions and implies that the initial amount
of friendliness in large social networks (started from random initial
conditions) determines whether they will end up in intractable
conflict or global harmony.

random matrix theory ∣ polarization

The mathematical model that we want to study is best under-
stood as an outgrowth of a theory from social psychology

known as structural balance (1). So let us begin with a brief
explanation of what this theory says.

Consider three individuals: Anna, Bill, and Carl, and suppose
that Bill and Carl are friends with Anna, but are unfriendly with
each other. If the sentiment in the relationships is strong enough,
Bill may try to strengthen his friendship with Anna by encoura-
ging her to turn against Carl, and Carl might likewise try to con-
vince Anna to terminate her friendship with Bill. Anna, for her
own part, may try to bring Bill and Carl together so they can
reconcile and become friends. In abstract terms, relationship tri-
angles containing exactly two friendships are prone to transition
to triangles with either one or three friendships.

Alternately, suppose that Anna, Bill, and Carl all view each
other as rivals. In many such situations, there are incentives
for the two people in the weakest rivalry to cooperate and form
a working friendship or alliance against the third. In these cases, a
single friendship may be prone to appear in a relationship triangle
that initially has none.

These two thought experiments suggest a notion of stability, or
balance, that can be traced back to the work of Heider (2). Hei-
der’s theory was expanded into a graph-theoretic framework by
Cartwright and Harary (3), who considered graphs on n nodes
(representing people, countries, or corporations) with edges
signed either positive (+) to denote friendship or negative (−)
to denote rivalry. If a social network feels the proper social stres-
ses (those felt by Anna, Bill, and Carl in the examples above),
then Cartwright and Harary’s theory predicts that in steady state
the triangles in the graph should contain an odd number of
positive edges—in other words, three positive edges or one
positive edge and two negative edges. We refer to such triangles
as balanced, and triangles with an even number of positive edges
as unbalanced. Finally, we call a graph complete if it contains
edges between all pairs of nodes, and we say that a complete
graph with signs on its edges is balanced if all its triangles are
balanced. (All graphs in our discussion will be complete.)

As it turns out, these local notions of balance theory are
closely related to the global structure of two opposing factions. In

particular, suppose that the nodes of a complete graph are parti-
tioned into two factions such that all edges inside each faction are
positive and all edges between nodes in opposite factions are
negative. (One of these factions may be empty, in which case
the other faction includes all the nodes in the graph, and conse-
quently all edges of the network are positive.) Note that this net-
work must be balanced, because each triangle either has all three
members in the same faction (yielding three positive edges) or
has two members in one faction and the third member in the
other faction (yielding one positive edge and two negative ones).
In fact, a stronger and less obvious statement is true: Any
balanced graph can be partitioned into two factions in this
way, with one faction possibly empty (3). As a result, when we
speak of balanced graphs, we can equivalently speak of networks
with this type of two-faction structure.

Model
Structural balance is a static theory—it posits what a “stable”
signing of a social network should look like. However, its under-
lying motivation is dynamic, based on how unbalanced triangles
ought to resolve to balanced ones. This situation has led naturally
to a search for a full dynamic theory of structural balance. Yet
finding systems that reliably guide networks to balance has
proved to be a challenge in itself.

A first exploration of this issue was conducted byAntal et al. (4)
who considered a family of discrete-time models. In one of the
main models of this family, an edge of the graph is examined in
each time step, and its sign is flipped if this producesmorebalanced
triangles than unbalanced ones. Although a balanced graph is a
stable point for these discrete dynamics, it turns out that many un-
balanced graphs called jammed states are as well (4, 5).

Thus, the natural problem became to identify and rigorously
analyze a simple system that could progress to balanced graphs
from generic initial configurations. An approach to this problem
was taken by Kułakowski et al. (6), who proposed a continuous-
time model for structural balance. They represented the state of a
completely connected social network using a real symmetric n × n
matrix X whose entry xij represents the strength of the friendli-
ness or unfriendliness between nodes i and j (a positive value
denotes a friendly relationship and a negative value an unfriendly
one). Note that for a given X , there is a signed complete graph
with edge signs equal to the signs of the corresponding elements
xij in X . We will call X balanced if this associated signed complete
graph is balanced.

Kułakowski et al. considered variations on the following basic
differential equation, which they proposed as a dynamical system
governing the evolution of the relationships over time:
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dX
dt

¼ X2: [1]

Remarkably, simulations showed that for essentially any initial
Xð0Þ, the system reached a balanced pattern of edge signs in finite
time.

Writing Eq. 1 directly in terms of the entries xij gives a sense of
why this differential equation should promote balance:

dxij
dt

¼ ∑
k

xikxkj: [2]

Notice that xij is being pushed in a positive or negative direction
based on the relationships that i and j have with k: If xik and xkj
have the same sign, their product guides the value of xij in the
positive direction, whereas if xik and xkj have opposite signs, their
product guides the value of xij in the negative direction. In each
case, this is the direction required to balance the triangle fi;j;kg.
Note also that Eq. 2 applies for the case that i ¼ j. Although this
case is harder to interpret, the monotonic increase of xii implied
by Eq. 2 might be viewed in psychological terms as an increase of
self-approval or self-confidence as i becomes more resolute in its
opinions about others in the network.

For a network with just three nodes, it can be easily proved that
a variant of these dynamics generically balances the single tri-
angle in this network; such a three-node analysis has been given
by Kułakowski et al. (6), and we describe a short proof in SI Text.
What is much less clear, however, is how the system should
behave with a larger number of nodes, when the effects governing
any one edge fi;jg are summed over all nodes k to produce a sin-
gle aggregate effect on xij.

It has therefore been an open problem to prove that Eq. 2 or
any of the related systems studied by Kułakowski et al. will bring a
generic initial matrix Xð0Þ to a balanced state. It has also been
an open problem to characterize the structure of the balanced
state that arises as a function of the starting state Xð0Þ.
Results
In this paper, we resolve these two open problems. We first show
that for a random initial matrix (with entries sampled indepen-
dently from an absolutely continuous distribution with bounded
support), the system reaches a balanced matrix in finite time with
a probability converging to 1 in the number of nodes n. In addi-
tion, we provide a closed-form expression for this balanced matrix
in terms of the initial one; essentially, we discover that the system
of differential equations serves to “collapse” the starting matrix
to a nearby rank-one matrix. We also characterize additional
aspects of the process, giving, for example, a description of an
“exceptional” set of matrices of probability measure converging
to 0 in n for which the dynamics are not necessarily guaranteed to
produce a balanced state.

We then analyze the solutions of the system for classes of ran-
dom matrices in the large-n limit—in particular, we consider the
case in which each unique matrix entry is drawn independently
from a distribution with bounded support that is symmetric about
a number μ (the mean value of the initial friendliness among the
nodes). In this case, we find a transition in the solution as μ varies:
When μ > 0, the system evolves to an all-positive sign pattern,
whereas when μ ≤ 0, the system evolves to a state in which the
network is divided evenly into two all-positive cliques connected
entirely by negative edges. We end by discussing some implica-
tions of the model and the associated transition between harmony
and conflict, including an evaluation of the model on empirical
data and some potential connections to research on reconcilia-
tion in social psychology.

Behavior of the Model: Evolution to a Balanced State
Suppose we randomly select the xijð0Þ’s from a continuous distri-
bution on the real line. Then the xijðtÞ’s found by numerical
integration generally sort themselves in finite time into the sign
pattern of two feuding factions. To reformulate this observation
as a precise statement and explain why the behavior holds so
pervasively, we now solve Eq. 1 explicitly.

Solution to theModel.The initial matrix Xð0Þ is real and symmetric
by assumption, so we can write it as QDð0ÞQT , where Dð0Þ is
the diagonal matrix with the eigenvalues of Xð0Þ, denoted λ1 ≥
λ2 ≥ ⋯ ≥ λn, as diagonal entries ordered from largest to smallest,
and Q is the orthogonal matrix with the corresponding eigenvec-
tors of Xð0Þ, denoted ω1;ω2;…;ωn, as columns. The superscript
T signifies transposition.

The differential equation Eq. 1 is a special case of a general
family of equations known as matrix Riccati equations (7). The
analysis of the full family is complicated and not fully resolved,
but we now show that the special case of concern to us, Eq. 1, has
an explicit solution with a form that exposes its connections to
structural balance. We proceed as follows. First, we observe that
by separation of variables, the solution of the single-variable
differential equation _x ¼ x2 (overdot representing differentiation
by time) with initial condition xð0Þ ¼ λk is

ℓkðtÞ ¼
λk

1 − λkt
: [3]

Therefore the diagonal matrix DðtÞ ¼ diag½ℓ1ðtÞ;ℓ2ðtÞ;…;ℓnðtÞ�
is the solution of Eq. 1 for the initial condition Xð0Þ ¼ diagðλ1;
λ2;…;λnÞ.

Moreover Y ðtÞ ¼ QDðtÞQT is also a solution of Eq. 1 because
_Y ¼ Q _DQT ¼ QðD2ÞQT ¼ ðQDQTÞ2 ¼ Y 2. But Y ðtÞ has the
same initial condition as XðtÞ in our original problem: Y ð0Þ ¼
QDð0ÞQT ¼ Xð0Þ. So by uniqueness, Y ðtÞ ¼ QDðtÞQT must be
the solution we seek.

Our solution XðtÞ can also be written in a different way to mi-
mic the solution of the one-dimensional equation _x ¼ x2. Because
xijðtÞ ¼ ∑n

k¼1 qikℓkðtÞqjk, where qij is the ði;jÞth entry of Q, we can
expand the denominators of the ℓkðtÞ functions in powers of t to
rewrite XðtÞ as Xð0Þ þ Xð0Þ2tþ Xð0Þ3t2 þ…, or more concisely,

XðtÞ ¼ Xð0Þ½I − Xð0Þt�−1: [4]

(Note that the matrices Xð0Þ and ½I − Xð0Þt�−1 commute.) This
equation is valid when t is less than the radius of convergence
of every λk, that is, when t < 1∕λ1 (assuming λ1 > 0).

Finally we note that the above method of solving Eq. 1 contains
a reduction of the number of dynamical variables of the system
from ðnþ1

2
Þ to n. The ðn

2
Þ constants of motion generated by this

reduction are just the off-diagonal elements of QTXðtÞQ ¼ DðtÞ,
or ∑n

k¼1 ∑
n
ℓ¼1 qkixkℓðtÞqℓj ¼ 0 for all 1 ≤ i < j ≤ n. Furthermore,

the procedure for reducing XðtÞ can be easily generalized to any
system of the form _X ¼ f ðXÞ, where f is a polynomial of X .

Behavior of the Solution. Let us now examine the behavior of our
solution XðtÞ to see why in the typical case it splits into two fac-
tions in finite time. It turns out that this is the guaranteed out-
come if the following three conditions hold (and as we see below,
they hold with probability converging to 1 as n goes to infinity):

1. λ1 > 0,
2. λ1 ≠ λ2 (and hence λ1 > λ2), and
3. all components of ω1 are nonzero.

To see why these conditions imply a split into two factions, ob-
serve from Eq. 3 that each ℓkðtÞ diverges to infinity at t ¼ 1∕λk.
Because xijðtÞ ¼ ∑n

k¼1 qikℓkðtÞqjk, all xij’s diverge to infinity when
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the ℓk with the smallest positive 1∕λk does. Under the first and
second conditions, this ℓk is ℓ1, so the blow-up time t� of Eq. 1
must be 1∕λ1. To show that the nodes are partitioned into two
factions as XðtÞ approaches t�, let XðtÞ ¼ XðtÞ∕jjXðtÞjj on the
half-open interval ½0;t�Þ, where jjXðtÞjj denotes the Frobenius
norm of X . The matrix XðtÞ has the sign pattern of XðtÞ, and
as t approaches t� it converges to the rank-one matrix

X� ¼ Qdiagð1;0;0;…;0ÞQT ¼ ω1ω
T
1 : [5]

Now let ω1k denote the value of the kth coordinate of ω1, and let
S ¼ fk: ω1k > 0g and T ¼ fk: ω1k < 0g: Then S and T partition
the node indices 1;2;…;n by our condition that ω1 has no zero
components. From Eq. 5, this partition must correspond to
two cliques of friends joined by a complete bipartite graph of
unfriendly ties.

The Three Conditions.We now return to the three conditions above.
We first show that the second and third hold with probability 1.
We then show that the first condition holds with probability
converging to 1 as n goes to infinity. Finally, we analyze the
behavior of the system in the unlikely event that the first condi-
tion does not hold. The fact that the conjunction of all three con-
ditions holds with probability converging to 1 as n grows large
justifies our earlier claim that the behavior described above holds
for almost all choices of initial conditions.

First we show why the second and third conditions hold with
probability 1 so long as the (joint) distribution from which Xð0Þ is
drawn is absolutely continuous with respect to Lebesgue measure
—in other words, assigns probability zero to any set of matrices
whose Lebesgue measure is zero. Our arguments below make use
of the following two basic facts:

i. The set of zeros of a nontrivial multivariate polynomial has
Lebesgue measure zero, and

ii. the existence of a common root of two univariate polynomials
P and Q is equivalent to the vanishing of a multivariate poly-
nomial in the coefficients of P and Q (specifically, it is equiva-
lent to the vanishing of the determinant of the Sylvester matrix
of P and Q, also called the resultant of P and Q).

To show that λ1 ≠ λ2 with probability 1, let P denote the char-
acteristic polynomial of Xð0Þ, and let Q denote the derivative of
P. Then Xð0Þ has a repeated eigenvalue if and only if P has a
repeated root, which it does if and only if P andQ have a common
root. This condition is equivalent to the vanishing of the resultant
of P and Q, which is a multivariate polynomial in the entries of
Xð0Þ. The polynomial cannot be zero everywhere, because there
is at least one symmetric matrix that does not have a repeated
eigenvalue. So the set of matrices having a repeated eigenvalue
has Lebesgue measure zero.

Similarly, to show that all components of ω1 are nonzero, let P
denote the characteristic polynomial of Xð0Þ and Pi the charac-
teristic polynomial of the ðn − 1Þ × ðn − 1Þ submatrix Xið0Þ
obtained by deleting the ith row and ith column of Xð0Þ. It is easy
to check that if any eigenvector of Xð0Þ has a zero in its ith com-
ponent, then the vector obtained by deleting that component is an
eigenvector of Xið0Þ with the same eigenvalue. Consequently,
P and Pi must have a common root, implying that the resultant
of P and Pi vanishes. This resultant is once again a multivariate
polynomial in the entries of Xð0Þ, and once again it must be non-
zero somewhere because there is at least one symmetric matrix
whose eigenvectors all have nonzero entries. Hence, the set of
matrices having an eigenvector with zero in its ith component
has Lebesgue measure zero.

Finally, to determine the likelihood of the first condition, we
first must say a bit more about the way that Xð0Þ is selected. Sup-
pose that the off-diagonal xijð0Þ’s are drawn randomly from a
common distribution F and the on-diagonal xiið0Þ’s are drawn

randomly from a common distribution G. All selections are
independent for i ≤ j. [For i > j, we let xijð0Þ ¼ xjið0Þ, so that Xð0Þ
is symmetric.] For this construction of Xð0Þ, Arnold (8) has shown
that with the remarkably weak additional assumption that F has
a finite second moment, Wigner’s semicircle law holds in prob-
ability as n grows to infinity. This in turn implies that λ1 > 0 in
probability in the same limit.

Moreover, suppose we are in the low-probability case that
λ1 ≤ 0. In this case, the analysis above shows that all the functions
ℓiðtÞ converge to 0 as t → ∞. Thus, limt→∞DðtÞ ¼ 0, and because
XðtÞ ¼ QDðtÞQT , we also have limt→∞XðtÞ ¼ 0.

Although the entries of XðtÞ converge to zero when λ1 ≤ 0, one
might still want to know if the sign pattern of XðtÞ is eventually
constant (i.e., remains unchanged for all t above some threshold
value) and, if so, what determines this sign pattern. It is possible
to answer this question, again assuming the second and third con-
ditions. By expanding the function ℓiðtÞ ¼ λi∕ð1 − λitÞ in powers
of u ¼ 1∕t, we obtain the asymptotic series

ℓiðtÞ ¼ −u − u2λ−1i −Oðu3Þ; [6]

which implies

XðtÞ ¼ QDðtÞQT ¼ −uI − u2Xð0Þ−1 −Oðu3Þ: [7]

In the limit of small u, the leading-order term of the diagonal
entries of XðtÞ is the linear term, which has negative sign. For
the off-diagonal entries of XðtÞ, the leading-order term as u tends
to zero is the quadratic term, whose sign matches the sign of the
corresponding off-diagonal entry of the matrix −Xð0Þ−1.
Behavior of the Model: From Factions to Unification
The analysis in the previous section tells us how to find both the
blow-up time t� and final sign configuration of a network if we
know its initial state Xð0Þ. However, we might also want to know
whether we can characterize the behavior of XðtÞ in the large-n
limit in terms of statistical parameters of Xð0Þ. This could, for
example, help us forecast the behavior of groups of individuals
when collecting complete relationship-level data is not feasible.
Clearly if the underlying network is a complete graph, it is not
realistic to consider n that are too large, but we find fortunately
in simulations that the asymptotic behavior we will derive in
this section becomes apparent even for moderate values of n (less
than 100). As a result, these large-n results are perhaps most use-
fully viewed as an approximate guide to what happens in medium-
sized groups that are large enough to show predictable collective
behavior but for which a completely connected set of relation-
ships is still feasible to maintain.

In this section, we show that there is a transition from final
states consisting of two factions to final states consisting of all-
positive relations as the “mean friendliness” of Xð0Þ (the mean
of the distributions used to generate the off-diagonal entries of
Xð0Þ) is increased from negative to positive values. This is con-
sistent with the numerical simulations shown in Fig. 1; as noted
above, the asymptotic behavior we are studying is already clear in
these simulations, which are performed with n ¼ 90.

Before discussing the details, we describe how Xð0Þ is selected
in this section. We start by adopting the procedure of Füredi and
Komlós (9): The elements xijð0Þ are drawn independently from
distributions Fij with zero mass outside of ½−K;K �. The off-diag-
onal Fij’s have a common expectation μ and finite variance σ2,
whereas the on-diagonal Fii’s have a common expectation ν
and variance τ2. In addition, we require that each off-diagonal
distribution Fij be symmetric about μ. Random matrix models
of this type have attracted considerable recent interest (see,
e.g., refs. 10 and 11), but we need only the basic results of Füredi
and Komlós (9) for our purposes, and so we use these in the
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development below. We consider the three cases of positive, zero,
and negative μ.

Case 1: μ > 0.The results of Füredi and Komlós (9) show that when
μ > 0, the deviation of ω1 from ð1;1;…;1Þ∕ ffiffiffi

n
p

vanishes in prob-
ability in the large-n limit. Hence the final state of the system
consists of one large clique of friends containing all but at most
a vanishing fraction of the nodes. Moreover, by assuming a bound
on σ we can strengthen this statement further: If σ < μ∕2, then
the findings of Füredi and Komlós imply that the final state con-
sists of a single clique of friends, with no negative edges. These
observations are consistent with the representative numerical
trial shown in Fig. 1A. Moreover, Füredi and Komlós show that
the asymptotic behavior of λ1 grows like μnþOð1Þ, and hence the
blow-up time scales like 1∕ðμnÞ.

We can gain insight into the behavior of the system for small t
using an informal Taylor series calculation: If we rescale time in
Eq. 1 by inserting a 1∕n before the summation, compute the
Taylor expansion of xijðtÞ term by term, and then take the expecta-
tion of each term, we obtain the geometric series xðtÞ ¼ μþ
μ2tþ μ3t2 þ⋯, or

xðtÞ ¼ μ

1 − μt
: [8]

With significantly more work, it can be proved that every trajec-
tory xijðtÞ has this time dependence on ½0;1∕KÞ in the large-n limit
with probability 1 (see SI Text), so we may write

lim
n→∞

xijðtÞ ¼ xijð0Þ − μþ μ

1 − μt
with prob: 1 [9]

for all t in ½0;1∕KÞ. Observe that this limit has a blow-up time t� of
1∕μ. Because our rescaling of time represents a zooming in or
magnification of time by a factor of n, this t� corresponds to a
blow-up time asymptotic to 1∕ðμnÞ for the unrescaled system,
consistent with the results of Füredi and Komlós.

Case 2: μ ¼ 0. In the event that the network starts from a mean
friendliness of zero, numerical experiments indicate that the sys-
tem ends up with two factions of equal size in the large-n limit
(Fig. 1B). We now prove this to be the case. For the remainder
of this discussion, we abbreviate Xð0Þ as A and xijð0Þ as aij.

Because the off-diagonal entries of A have symmetric distribu-
tions by assumption, we have for any off-diagonal aij and any
interval Sij on the real line that Pðaij ∈ SijÞ ¼ Pð−aij ∈ SijÞ. Now
let D be a diagonal matrix with some sequence of þ1 and −1
along its diagonal (where the ith diagonal entry is denoted by
di). Then the random matrices A and B ¼ DAD are identically
distributed, as we now show.

To say that A and B are identically distributed means that for
every Borel set of matrices S, PðA ∈ SÞ ¼ PðB ∈ SÞ. To prove this,
it suffices to consider the case in which S is a product of intervals
Sij, because these product sets generate the Borel σ-algebra. The
upper triangular entries of A are independent, so PðA ∈ SÞ ¼Q

i≤jPðaij ∈ SijÞ. Similarly, PðB ∈ SÞ ¼ Q
i≤jPðdiaijdj ∈ SijÞ. By the

symmetry of the off-diagonal distributions,
Q

i≤jPðaij ∈ SijÞ ¼Q
i≤jPðdiaijdj ∈ SijÞ, which gives us PðA ∈ SÞ ¼ PðB ∈ SÞ as de-

sired. (Note that when i ¼ j, the factor didj is 1 so the on-diagonal
distributions need not be symmetric.)

Now consider the set S of matrices with an ω1 consisting of
all-positive components. The above demonstration implies that
the probability of choosing an A in this set is the same as choosing
an A such that B is in this set. Regarding the later event,
AðDωiÞ ¼ λiðDωiÞ implies Bωi ¼ λiωi, so the λ1 eigenvector of
the A used to compute B is Dω1. This demonstrates that all sign
patterns for the components of ω1 are equally likely. In other
words, the distribution of the number of positive components
in ω1 is the binomial distribution Bðn;1∕2Þ and the fraction of
positive components in ω1 converges (in several senses) to 1∕2
as n grows large.

Additionally, we can consider how λ1 varies with n in the case
that μ ¼ 0 to determine when the blowup will occur. Füredi and
Komlós (9) found for this case that λ1 ∈ 2σ

ffiffiffi
n

p þOðn1∕3 log nÞ
with probability tending to 1, so with probability tending to 1
the blow-up time shrinks to zero like 1∕

ffiffiffi
n

p
, an order of

ffiffiffi
n

p
slower

than in the μ > 0 case.

Case 3: μ < 0. For this final case, Füredi and Komlós (9) found that
λ1 < 2σ

ffiffiffi
n

p þOðn1∕3 log nÞ with probability tending to 1. The
semicircle law gives a lower bound: λ1 > 2σ

ffiffiffi
n

p þ oð ffiffiffi
n

p Þ in prob-
ability. So the blow-up time goes to zero like 1∕

ffiffiffi
n

p
in the unres-

caled system.
Note also that if we define a matrix C ¼ −A, where A is now

the initial matrix Xð0Þ of Case 3, then C satisfies the condition of

B CA

Fig. 1. Representative large-n plots of the model for (A) μ > 0 (μ ¼ 3∕10 in the plot shown), (B) μ ¼ 0, and (C) μ < 0 (μ ¼ −3 in the plot shown). For all three
plots, σ ¼ 1 and n ¼ 90. To reduce image complexity, only one randomly sampled fifth of the trajectories is included. In the second plot, t� denotes the time at
which the system diverges, and ε denotes a sufficiently small displacement. The white curves superimposed on the three plots are the large-n trajectories
xijðtÞ ¼ xijð0Þ − μþ μ∕ð1 − μnctÞ for xijð0Þ ¼ μ;μ� 3σ∕2, where c represents a rescaling of time. Because we want to fix the blow-up time t� near 1 and because
ct� ¼ 1∕λ1 as found in the text, we choose c ¼ 1∕ðμnþ ν − μþ σ2∕μÞ for A and c ¼ 1∕ð2σ ffiffiffi

n
p Þ for B and C using estimates of λ1 taken from ref. 9. The black dotted

lines mark the blow-up times t� ¼ 1∕ðcλ1Þ.
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Case 1, μ > 0. Thus the distance between the top eigenvector of C
and ð1;1;…;1Þ∕ ffiffiffi

n
p

declines to zero in probability just as in Case 1.
Furthermore, every other eigenvector ofC is orthogonal to the lar-
gest one. Hence if σ < jμj∕2, then with probability tending to 1,
every other eigenvector acquires a mixture of positive and
negative components in the large-n limit, including the bottom
eigenvector of C, which is the top eigenvector of A. This
establishes that in the case that μ < 0 and σ < jμj∕2, the sys-
tem ends up in a state with two factions with probability con-
verging to 1 for all finite n.

Numerical simulations of the case that μ < 0 suggest the con-
jecture that the two factions are approximately equal in size for
large n. Furthermore, the derivation of Eq. 9 is in fact valid for all
μ, so each trajectory rapidly decays from xijð0Þ toward xijð0Þ − μ on
½0;1∕KÞ (Fig. 1C). This transient decay appears to extend beyond
t ¼ 1∕K in numerical simulations. So, for example, if time is
rescaled by 1∕

ffiffiffi
n

p
instead of 1∕n, we would hypothesize that (i)

each trajectory makes a complete jump from xijð0Þ to xijð0Þ − μ in
the large-n limit and that (ii) from this point onward, the system
behaves like an initial configuration of the μ ¼ 0 case and so se-
parates into two equal factions en route to its blowup at 1∕ð2σÞ.
Discussion
In this final section, we review our results and their significance
relative to previous work in structural balance theory. We then
compare the predictions of the model with data, discuss potential
criticisms of the model, and finish with some intriguing connec-
tions between the behavior of the model and recent social-psy-
chological work on neutralizing two-sided conflicts.

Our first result is a demonstration that the model forms two
factions in finite time across a broad set of initial conditions.
As noted at the outset, similar demonstrations have not been pos-
sible for dynamic models of structural balance in earlier literature
because these models contained so-called jammed states that
could trap a social network before it reached a two-faction con-
figuration (4, 5). The model of Kułakowski et al. by contrast has
no such jammed states for generic initial conditions and hence
provides a robust means for a social network to balance itself.

The second result of the paper is the discovery and character-
ization of a transition from global polarization to global harmony
as the initial mean friendliness of the network crosses from non-
positive to positive values. Similar transitions have been observed
in other models of structural balance but so far none has been

characterized at a quantitative level. For example, Antal et al.
(4) found a nonlinear transition from two cliques of equal size
to a single unified clique as the fraction of positively signed edges
at t ¼ 0 was increased from 0 to 1 (see figure 5 of ref. 4). The
authors provided a qualitative argument for this transition, but
left open the problem of its quantitative detail. Our results both
confirm the generality of their observations and provide a quan-
titative account of a transition analogous to theirs.

To complement the theoretical nature of our work and get a
better sense of how the model behaves in practice, we can numeri-
cally integrate it for several cases of empirical social network data
where the real-life outcomes of the time evolution are known. Our
first example is based on a study by Zachary (12) who witnessed
the breakup of a karate club into two smaller clubs. Prior to the
separation, Zachary collected counts of the number of social
contexts in which each pair of individuals interacted outside of
the karate club, with the idea being that the more social contexts
they shared, the greater the likelihood for information exchange.
These counts, or capacities as Zachary called them, can be con-
verted to estimates of friendliness and rivalry in many different
ways. For a large class of such conversions, Eq. 1 predicts the same
division that Zachary’s method found, which misclassified only 1
of the 34 club members (Fig. 2 A and B).

A second example can be constructed from the data of a study
by Axelrod and Bennett (13) regarding the aggregation of Allied
and Axis powers during World War II. If we simply take the
entries of their propensityði;jÞ · sizeðiÞ · sizeðjÞ matrix to be pro-
portional to the friendliness felt between the various pairs of
countries in the war, then running the model gives the correct
Allied-Axis split for all countries except Denmark and Portugal
(Fig. 2C).

Nevertheless, the model clearly contains several strong simpli-
fications of the underlying social processes. The first of these is
inherent to structural balance theory itself; it is a framework
restricted to capture a particular kind of social situation, in which
the need for consistency among one’s friendships and rivalries
brings about the emergence of two factions. Extensions of the
theory have considered models in which it is possible to have mul-
tiple mutual enemies and hence more than two factions (14), and
also networks that are not complete graphs (3). However, our
focus here has been on the basic theory, because as we have seen,
obtaining a satisfactory dynamics even for this simplest form of
structural balance has been an elusive challenge. Moreover, the

BA

Fig. 2. Tests of the model of Kułakowski et al. (Eq. 1) against two existing datasets. (A) The evolution of the model starting from Zachary’s capacity matrix with
the capacity of each relationship reduced by 0.58. This is the minimal downward displacement necessary (to two significant figures) for the resulting separation
to be correct for all but 1 of the 34 club members. For reasons described by Zachary (12), this is basically the best separation we can expect. (B) The evolution of
themodel from Zachary’s capacity matrix with the capacity of zero between the two club leaders replaced by−11; the resulting factions are identical to those in
A. Substituted values less than −11 yield the same two factions, whereas greater values produce less accurate divisions. (C) The evolution of the model starting
from Axelrod and Bennett’s 1939 propensityði;jÞ · sizeðiÞ · sizeðjÞmatrix for the 17 countries involved in World War II (by Axelrod and Bennett’s definition). The
model finds the correct split into Allied and Axis powers with the exceptions of Denmark and Portugal. Axelrod and Bennett’s own landscape theory of
aggregation does slightly better—its only misclassification is Portugal.
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basic version of structural balance that we have considered here,
with a complete graph of relationships and constraints leading to
two factions, is relevant to a range of different situations. These
span the kinds of settings discussed earlier in this section, includ-
ing clubs, classrooms, and small organizations (15), as well as
international relations during crisis (where a large set of nations
can all mutually maintain friendly or unfriendly diplomatic rela-
tions) (13, 16).

Another consequence of the particular model studied here
that has no direct analogue in real social situations is the diver-
gence to infinity of the relationship strengths xij. However, because
the purpose of the model is to study the pattern of signs that
emerges, our main conclusions are based not on the actual
magnitudes of these numbers but on the fact that the sign pattern
eventually stabilizes at a point before the divergence. This stabi-
lization of the sign pattern is our primary focus, and one could
interpret the subsequent singularity as simply the straightforward
and unimpeded “ramping up” of values caused by the system once
all inconsistencies have been worked out of the social relations—
the divergence itself can be viewed as taking place beyond the win-
dow of time over which the system corresponds to anything real.
Alternately, one can imagine that as the community completes its

separation into two groups, other social processes take over.
For example, individuals with differing ideological views or social
preferences may self-segregate, breaking the all-to-all assumption
of the model. In other cases, mounting tensions may erupt into
violence, reflecting a sort of bound on the relationship intensity
achievable for pairs of nodes in the network.

Finally, we note that there is a large body of work in social
psychology that studies issues such as the formation and recon-
ciliation of factions from a much more empirical basis; see, for
example, refs. 17 and 18. It is an interesting open problem to
determine the extent to which the strictly mathematical develop-
ment of the models here can be combined with the perspectives in
this empirical body of literature, ultimately leading to a richer
theory of these types of social processes.
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