
Collective Entity Resolution In Relational Data

Indrajit Bhattacharya and Lise Getoor
Department of Computer Science

University of Maryland, College Park, MD 20742, USA

Abstract

An important aspect of maintaining information quality in data repositories is determining which sets of
records refer to the same real world entity. This so called entity resolution problem comes up frequently
for data cleaning and integration. In many domains, the underlying entities exhibit strong ties between
themselves. Friendships in social networks and collaborations between researchers are examples of
such ties. In such cases, we stress the need for collective entity resolution where, instead of indepen-
dently tagging pairs of records as duplicates or non-duplicates, related entities are resolved collectively.
We present different algorithms for collective entity resolution that combine relational evidence with
traditional attribute-based approaches to improve entityresolution performance in a scalable manner.

1 Introduction

There has been an increase in automated acquisition and integration for data repositories and information sources
and, because completely manual curation is impossible in all but the smallest databases, there has been an
increasing dependence on automated techniques for maintaining data integrity and quality of information. While
we have seen a surge in research interest in this area over thelast decade, the problems are quite challenging.
Because accuracy is critical in many applications, there isneed for further improvement. In addition to the
attributes of records that have traditionally been used by data cleaning and integration algorithms, quite often
there may be relationships between different database records. In such cases, the models and algorithms for data
cleaning can take such relationships into account to improve performance.

Entity resolutionis an important problem that comes up frequently for cleaning and integration. In many
databases, records refer to real world entities, and as suchdatabases grow, there can many different records
that refer to the same entity. For example, a social network database can have different records with names
‘J. Doe’, ‘Jonathan Doe’ and ‘Jon Doe’ that refer to the same person. In the absence of keys such as social
security numbers, this duplication issue [13, 15] leads to many different problems, such as redundant records,
incorrectness of computed statistics, and several others.This issue also comes up when integrating data from
different heterogeneous sources without shared keys and possibly even different schemas [10]. Broadly, we call
such database recordsreferencesto real world entities, and the entity resolution problem isto find the underlying
entitiesin the domain and tag the references in the database with the entities to which they correspond.

Entity resolution is a difficult problem and cannot be solvedusing exact matches on tuple attributes. First,
there is theidentificationproblem, when different representations arising from recording errors or abbreviations

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



refer to the same entity. In our earlier example, figuring outthat ‘Jon Doe’ and ‘Jonathan Doe’ are the same
person is an instance of this problem. Failure in identification affects completeness of information. The second
issue isdisambiguation. It is possible that two records with name ‘J. Doe’, the same address and the same age
refer to two brothers and not to the same person. This affectsprecision. Early approaches to entity resolution
prescribed fuzzy attribute matches and many sophisticatedtechniques have been developed. However, attribute-
based approaches still cannot satisfactorily deal with theproblem of false attribute matches and, in general, it
may be hard to improve precision and completeness at the sametime using just attributes of records.

In many domains, some underlying entities exhibit strong relational ties to certain other entities. For instance,
people interact frequently with their close friends in a social network, while in academic circles, researchers
collaborate more with their close associates. When such ties exist between entities, co-occurrences between the
references to these entities can be observed in the data. In the social network example, we may have the records
for the best friends of ‘J. Doe’ and ‘Jon Doe’. Our goal will beto make use of such relationships between
references to improve entity resolution performance. However, the problem is that we do not know the entities
for these related records either. So how can we use these relations then? One way is to use the attributes of
related records as well when computing fuzzy matches. Whilethis is an improvement, it may not always work.
For example, we do not want to merge two person records simplybecause their best friends have similar names.
The correct evidence to use is whether their best friends arein fact the same entity. This is the idea behind
collective entity resolution, where the entity for any reference depends on the entities for its related references.
Computationally, it is a more difficult problem to solve thanattribute-based resolution. The database cannot
be cleaned with a single-pass approach anymore because of the dependent nature of the resolutions. We need
to resort to iterative approaches, where each resolution that we make potentially provides evidence to discover
other duplicate references. However, there is also the promise that the resolution accuracy can be significantly
improved over traditional techniques. In this article, we present a survey of algorithms we have proposed in
earlier work [3, 4, 5, 6] that address the computational challenge of collective resolution and combine attributes
of records with relational evidence to improve entity resolution performance.

2 Problem Formulation

In domains where the data contains relationships between different entity references, these may be represented
using an auxiliary table of relations. We now introduce a generic notion of areference databasethat records
information about references and the relationships between them that are observed in the data. Then we describe
the entity resolution problem in such a reference database using examples to illustrate the various issues involved.

2.1 Reference Database

In the simplest formulation, a reference database containsa table of references,R = {ri}, where each reference
has an identifierR.id and a set of attributes{R.A1, . . . ,R.Ak}. Also, we have the unobserved domain entities
E = {ej}. For any particular referenceri, we denote the entity to which it maps asE(ri). We will say that
two or more references areco-referent if they correspond to the same entity. Note however that the database is
unresolved — the references do not have any identifiers that disclose the mappingE(ri). Further, the domain
entitiesE and even the number of such entities is not known. To model relationships between references in a
generic way, we use a hyper-edge tableH with identifierH.id and attributes{H.A1 . . .H.Al}. Each hyper-
edge connects multiple references. We use a mapping tableM = {hid, rid} to associate the referencerid to
the hyper-edgehid. For convenience, we use the notationr ∈ h to mean that a referencer ∈ R is associated
with a hyper-edgeh ∈ H: r ∈ h ⇐⇒ (r.id, h.id) ∈ M. Note that each reference may be associated with zero
or more hyper-edges.

Let us now look at a sample domain to see how it can representedin our framework. We consider as our

2



motivating example a database of academic publications similar to DBLP, CiteSeer or PubMed.1 We consider
the problem of resolving the authors of the publications. Each publication in the database has a set of author
names. For each author name, we have a referenceri in R andri.Name records the observed name of the
author in the publication. In addition, we can have attributesR.Affil andR.Email to record the affiliation and
email of each author reference if they are available in the paper. Additionally, each publication represents a
co-author relationship among the references in it. So we have an entryhi in the hyper-edge tableH for each
publication and an tuple(hi.id, rj .id) in the mapping tableM for each referencerj in a publicationhi. If a
publication also comes with additional information, such as title, these are represented as attributes (H.T itle)
of the hyper-edge tableH. While in general our representation allows each referenceto belong to zero or more
hyper-edges, in this domain each author-name in a paper is a distinct reference and therefore occurs in exactly
one hyper-edge.

As an example, consider the following four papers.

1. W. Wang, C. Chen, A. Ansari, “A mouse immunity model”

2. W. Wang, A. Ansari, “A better mouse immunity model”

3. L. Li, C. Chen, W. Wang, “Measuring protein-bound fluxetine”

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary cirrhosis”

These may be represented in our notation with 10 references{r1, . . . , r10} in the reference tableR, wherer1 is
(id 1; Name ‘Wang W’), etc. There are 4 entries{h1, . . . , h4} in the hyper-edge tableH for the four papers,
whereh1 is (id 1; T itle ‘The mouse immunity model’) and so on. The mapping tableM also has 10 entries,
one for each reference, to record which reference appears inwhich paper. For example, the entry(hid 1; rid 1)
records that referencer1 appears in hyper-edgeh1. This is represented pictorially in Figure 1(a).

2.2 Entity Resolution Problem in a Reference Database

Given the formulation of a reference database, the entity resolution task is to partition or cluster the references
according to their underlying entities. To illustrate thisfor our example, suppose we have six underlying entities,
which are shown in Figure 1(a) using six different shades. All references with name ‘A. Ansari’ are co-referent,
as are all the ‘L. Li’ references. However, the two ‘C. Chen’sare not co-referent and map to two different
entities. More interestingly, the four references with name ‘Wang’ map to two different entities. Referencesr1,
r4, andr9 are co-referent, whiler8 maps to a different entity.

A natural task in a reference database is to take all references with a given name and partition them according
to the entities to which they correspond. We refer to this as thedisambiguation task. Consider the name ‘W.
Wang’. In our example, there are three author references for‘W. Wang’: r1, r4, andr8. Our goal is to partition
these identically named references according to entities.Then the correct disambiguation for ‘W. Wang’ is
{{r1, r4}, {r8}} indicating thatr1 andr4 map to the same entity andr8 maps to a distinct entity. The complete
disambiguation for the database would cover the other references as well.

Observe that the disambiguation task handles one part of theresolution process. In our example, while it
finds the co-referent pairs with name ‘W. Wang’, it does not consider references whose names are not exact
matches. However, referencer9 from the fourth paper is co-referent withr1, even though it has a different
recorded name. So, ther9 reference from the fourth paper should be included in the same entity cluster as the
r1 reference. Therefore, in addition to disambiguation, we need to ‘identify’ coreferences with different names
as well. To handle this, we define theentity resolution task as a partitioningall references in the database

1However, this entity resolution framework is general enough to handle application domains such as customer relationship manage-
ment, personal information management and others that involve references, entities and complex relationships.

3



1h

A Ansari

1r 2r 3r

A Ansari

2h

5r

C Chen

3h

A Ansari

4h

9r 10r

4r

6r 7r 8r

A Mouse Immunity Model A Better Mouse Immunity Model

Measuring Protien−bound Fluxetine Autoimmunity in Biliary Cirrhosis

L Li W Wang

C ChenW Wang W Wang

W W Wang

(a)

Abdulla Ansari WeiWei Wang

Chih Chen

Wenyi Wang

Liyuan Li

Chien−Te Chen

"Measuring Protien−bound Fluxetine"
L Li, C Chen, W Wang

W Wang, C Chen, A Ansari,
"A Mouse Immunity Model"

"Autoimmunity in Biliary Cirrhosis"
W W Wang, A Ansari,

"A Better Mouse Immunity Model"
W Wang, A Ansari,

G1

G2

(b)

Figure 1: (a) Example papers represented as references connected by hyper-edges, with different entities shaded
differently (b) Two underlying groups of collaborating entities, with their generated papers listed alongside.

according to the entities to which they correspond. The entity resolution result for our example should return six
clusters:{{r1, r4, r9}, {r8}, {r2}, {r7}, {r3, r5, r10}, {r6}}. The first two clusters correspond to ‘Wang’, the
next two to ‘Chen’, the fifth to ‘Ansari’ and the last to ‘Li’.

2.3 Entity Resolution Approaches

Different approaches may be used to resolve the references in a database. Here we briefly look at the intuition
behind three of the prevalent ones.

1. Attribute-based Entity Resolution: This is the traditional approach where similarity is computed for each
pair of references based on their attributes and only those pairs that have similarity above some threshold are
considered to be co-referent. Many sophisticated and efficiently computable similarity measures have been
proposed for different types of attributes over the years. However, attributes alone often run into problems, as in
the case of the three ‘W. Wang’ references in our example.

2. Naive Relational Entity Resolution: When relations between references are available, this approach consid-
ers the attributes of the related references when computingsimilarity between pairs of references. In our running
example, when computing the similarity between ‘W. Wang’ and ‘W. W. Wang’, it would take into account that
both have co-authors with name ‘A. Ansari’.

3. Collective Entity Resolution: While the naive relational approach improves significantlyon the attribute-
based approach, it can be misled in domains where many entities have the same name and the relationship graph
is dense. In our example, the two ‘W. Wang’ referencesr1 andr8 are not co-referent, though they both have co-
authors with name ‘C. Chen’. The correct evidence to use hereis that the ‘Chen’s are not co-referent either. In
such a setting, in order to resolve the ‘W. Wang’ references,it is necessary toresolvethe ‘C. Chen’ references as
well, and not just consider them as attributes. This is the goal of collective entity resolution, where resolutions
are not made independently. Instead one resolution decision affects other resolutions via hyper-edges. This
increases the computational expense of the resolution process but improves accuracy significantly in ambiguous
domains.

For the first two approaches, all that is needed is a similarity measure between pairs of references. Given
such a similarity measure, the algorithm for resolving entities is straight-forward — those reference pairs that
have similarity above a given threshold are declared to be co-referent. However, collective entity resolution is
more involved. Specifically, the dependencies between the different resolution decisions need to be modeled.
Also, as we have already mentioned, the algorithm needs to make multiple passes over the references to capture
the dependencies. We next describe two approaches to collective entity resolution that we have developed.

4



3 Algorithms for Collective Resolution

We first describe a clustering approach to collective resolution and then briefly discuss a probabilistic generative
model for the same problem and how we can do inference in it.

3.1 Relational Clustering

Given that the goal of entity resolution is to cluster the database references according to their entities, we have
developed a relational clustering algorithm for entity resolution (RC-ER) [3]. Given a current set of reference
clustersC = {ci}, it iteratively merges the pair of clusters that are the mostsimilar. We associate a cluster label
r.C with each reference to denote its current cluster membership. Note that it is the similarity measure that
distinguishes the different entity resolution approaches. For the attribute-based approach, the similarity only
considers the attributes of references. For the naive relational approach, it additionally considers the attributes
of related references. The collective approach, in contrast, considers the cluster labels of the related references.

The similarity of two clustersci andcj is defined as

sim(ci, cj) = (1 − α) × simA(ci, cj)+ α × simR(ci, cj) 0 ≤ α ≤ 1 (1)

wheresimA() is the similarity of the attributes andsimR() is the relational similarity between the references
in the two clusters. The most important and interesting aspect of the collective approach is the dynamic nature
of the similarity. In contrast to attribute-based and naiverelational resolution, where the similarity between
two references is fixed, for collective resolution it depends on thecurrent cluster labels of the references and
therefore changes with the labels. In our example, the similarity of the two references ‘W. Wang’ and ‘W.
W. Wang’ increases once the Ansari references are given the same cluster label. Let us now see how the two
components of the similarity are computed.

Attribute Similarity: For each reference attribute, we assume the existence some basic similarity measure that
takes two reference attributes and returns a value between0 and1 that indicates the degree of similarity between
them. In addition, if the hyper-edges have attributes, thenthe attribute similarity of two references can also take
into account the attributes of the hyper-edges with which they are associated. Several sophisticated similarity
measures have been developed for names, and popular TF-IDF schemes may be used for other textual attributes
such as keywords. The measure that works best for each attribute may be plugged in. Finally, a weighted
combination of the similarities over the different attributes yields the combined attribute similarity between two
reference clusters.

Relational Similarity: For collective entity resolution, relational similarity considers the cluster labels of the
references that each cluster is connected to via the hyper-edges. There are many possible ways to define this
similarity; here we discuss one of measures that we have proposed [3, 5].

The hyper-edges relevant for a cluster are the hyper-edges for all references in it. Recall that each reference
r is associated with one or more hyper-edges in the hyper-edgetableH. Therefore, the hyper-edge setc.H for
a clusterc of references is defined as

c.H =
⋃

r∈R∧r.C=c

{hid | (hid, rid) ∈ M ∧ r.id = rid} (2)

This set defines the hyper-edges that connect a clusterc to other clusters, and are the ones that relational similarity
needs to consider. For instance, when all the references in our running example have been correctly clustered as
in Figure 1(b), the edge-set for the larger ‘W. Wang’ clusteris {h1, h2, h4}, which are the hyper-edges associated
with the referencesr1, r4 andr9 in that cluster.

The different clusters to which any clusterc of references is connected via its hyper-edge set is called the
neighborhoodNbr(c) of clusterc.

Nbr(ci) =
⋃

h∈c.H,r∈h

{cj | cj = r.C} (3)

5



Returning to our example, the neighborhood of the ‘W. Wang’ cluster mentioned above consists of the ‘Ansari’
and the ‘Chen’ clusters, which are connected by its edge-set. Now, for the relational similarity measure between
two clusters, their neighborhoods are compared using set similarity such as Jaccard similarity:

simR(ci, cj) = Jaccard(Nbr(ci), Nbr(cj)) (4)

Recall that for two setsA andB, their Jaccard similarity is defined asJaccard(A,B) =
|A

⋂
B|

|A
⋃

B|
. The similarity

can be computed and updated efficiently, in time that is linear in the average number of neighbors per cluster.

Clustering Algorithm: Given the similarity measure for a pair of clusters, a greedyagglomerative clustering
algorithm is used for collective entity resolution. The algorithm bootstraps the clusters, identifies the candidate
set of potential duplicates and iterates over the followingsteps. At each step, it identifies the current ‘closest
pair’ of clusters (ci, cj) from the candidate set and merges them to create a new cluster cij . It identifies new can-
didate pairs and updates the similarity measures for the ‘related’ cluster pairs. All of these tasks are performed
efficiently using an indexed priority queue. The algorithm terminates when the similarity for the closest pair
falls below a threshold.

3.2 Probabilistic Group Model

In addition to the relational clustering algorithm, we havealso developed a probabilistic generative model for
collective entity resolution [6], which we call the Latent Dirichlet Allocation model for Entity Resolution, or
LDA-ER for short. It describes how the author references in any paper might be generated. Instead of modeling
pair-wise collaboration relations between author entities, the novelty of the model is that it uses the notion of
collaboratinggroups of entities. For our example, the six relevant entities belong to two different groups, as
shown in Figure 1(b). The generative process for each paper first selects one or more groups that collaborate to
write the paper. Then each author for the paper is chosen fromone of these selected groups. The true name of
an author entity determines what the reference name in a paper might be. In the example, papers 1, 2 and 4 are
generated by collaborating entities from group G1, while paper 3 is written by entities from group G2. Note that
for the author entity with true name “WeiWei Wang”, the reference name is “W. Wang” in two of the papers and
“W. W. Wang” in another.

We have developed a Gibbs Sampling algorithm for doing inference in this model. Starting from an initial
assignment of groups and entities for the references, the algorithm repeatedly samples the group and entity for
each reference given those for the others until a stationarydistribution is reached. In our example, the algorithm
is expected to predict that the ‘Wang’ references in papers 1, 2 and 4 are likely belong to the same group, and
therefore they are more likely to map to the same entity. The other ‘Wang’ reference in paper 3 maps to a
different entity, since most probably it belongs to a different group. Also, one interesting aspect of our inference
algorithm is that number of entities does not need to specified as a parameter — it automatically determines
the most likely number of entities given the reference database. Another important aspect is that the inference
algorithm is completely unsupervised. This is significant given the scarcity of training data for this problem.

4 Experimental Results

We have evaluated our collective entity resolution algorithms [3, 4, 5, 6] for the task of author resolution in
synthetic as well real-world citation databases such as CiteSeer (2,892 author references from Machine Learn-
ing), arXiv (58,515 author references from High Energy Physics) and BioBase (831,991 author references from
Biology). Here we present an overview of our results. The first baseline (A) that we compare against uses only
attributes of the references for resolution, while the second (A+N) additionally uses attributes of neighboring or
related references. We also consider the variantsA* andA+N* that take transitive closures over the pair-wise

6



decisions made inA and A* respectively. For evaluating entity resolution performance, we use the popular
F1-measure (the harmonic mean of precision and recall) of the pair-wise decisions over all references.

In Table 1, we show the performance of our relational clustering algorithm algorithmRC-ER against the
baselines in the three datasets. The best performance for each dataset is shown in bold. We can see thatRC-ER
outperforms the baselines in all cases. Also, the improvement over the baselines increases as we move from
CiteSeer to arXiv and then to BioBase. The improvement usingcollective resolution depends on how densely
the references are related to each other and also on what fraction of the references names are ambiguous, or
in other words, are shared by more than one entity. The results confirm this since both the density of relations
and ambiguity of reference attributes in highest for BioBase and lowest for CiteSeer, which explains the dif-
ference in performance. We experimented with different attribute similarity measures and we observed similar
improvements with all of them. Performance using our probabilistic model LDA-ER is very similar to that of
RC-ER.

Table 1: Entity resolution performance (F1-measure) of fivealgorithms on three datasets. Results are for the
entire CiteSeer and arXiv datasets and for the 100 most frequent names in BioBase.

A A* A+N A+N* RC-ER

CiteSeer 0.980 0.990 0.973 0.984 0.995
arXiv 0.974 0.967 0.938 0.934 0.985
BioBase 0.701 0.687 0.710 0.753 0.818

While Table 1 records improvements over the entire CiteSeerand arXiv datasets, the strength of collective
resolution clearly stands out when we look at specific instances of ambiguous names. When a name or its
abbreviation is shared between multiple entities, it is hard to resolve different references having that name using
attributes alone. In Table 2, we show some examples of ambiguous names from arXiv and the performance of
the attribute baselines and ourLDA-ER model only over references that have this abbreviated name.We can
see that for all such cases collective resolution out-performs the baselines by very large margins.

Table 2: Entity resolution performance (F1-measure) for the LDA-ER model and the best baseline performance
for some example ambiguous names from the arXiv dataset.

Cho H Davis A Sarkar S Sato H Shin H Veselov A Yamamoto K Yang Z Zhang R Zhu H

Best of A/A* 0.80 0.67 0.67 0.82 0.69 0.78 0.29 0.77 0.83 0.57
LDA-ER 1.00 0.89 1.00 0.97 1.00 1.00 1.00 0.97 1.00 1.00

We have done extensive evaluations of the different aspectsof our models and algorithms. Figure 2 shows
some sample plots. Figure 2(a) shows how performance changes with the combination weightα between at-
tribute and relational similarity for arXiv. We also experimented with synthetic data to see how different struc-
tural properties in the data affect the algorithms. Figure 2(b) plots one of the trends, which shows that expected
improvements usingLDA-ER are higher when each relation covers more references on average. Finally, Fig-
ure 2(c) shows howRC-ER scales with data size once the potential duplicate pairs have been identified. We can
see that it takes longer than the attribute baseline, but thegrowth is still linear.

7



 0.98

 0.975

 0.97

 0.965

 0  0.2  0.4  0.6  0.8  1

be
st

 F
1

alpha

RC-ER
A
A*

(a)

 0.05

 0.04

 0.03
 3 2.5 2 1.5

F
1 

im
pr

ov
em

en
t

Avg. num. refs per relation
(b)

 250

 200

 150

 100

 50

 0
 60 50 40 30 20 10 0

C
P

U
 ti

m
e 

(s
ec

s)

Number of References (in Thousands)

A*
RC-ER

(c)

Figure 2: (a) Entity resolution performance usingRC-ER versus combination weightα for arXiv. (b) Improve-
ment overA* using LDA-ER against average number of references in each relation. (c) Execution time of
RC-ER andA* for increasing number of references in the data.

5 Related Work

The entity resolution problem has been studied in many different areas under different names — deduplication,
record linkage, co-reference resolution, reference reconciliation etc. Most of the work has focused on traditional
attribute-based entity resolution. Extensive research has been done on defining approximate string similarity
measures [15, 7, 8] that may be used for unsupervised entity resolution. The other approach is to use adaptive
supervised algorithms that learn similarity measures fromlabeled data [18]. The WHIRL system [9] has been
proposed for data integration using similarity join queries over textual attributes. Swoosh [2] is generic entity
resolution framework that minimizes the number of record-level and feature-level operations when resolving
and merging duplicates. Probabilistic techniques have been proposed for quick similarity computation between
tuples for fast text-joins [12] and for efficiently looking up candidate matches for incoming tuples [8].

Many recent approaches take relations into account for dataintegration [1, 3, 5, 14, 11, 16, 17]. Ananthakr-
ishna et al. [1] introduce relational deduplication in datawarehouse applications where there is a dimensional
hierarchy over the relations. Neville et al. [16] have shownhow relations may be combined with attributes for
clustering. Kalashnikov et al. [14] enhance attribute similarity between an ambiguous reference and the many
entity choices for it with relationship analysis between the entities, such as affiliation and co-authorship. Dong et
al. [11] collectively resolve entities of multiple types bypropagating relational evidences in a dependency graph,
and demonstrate the benefits of collective resolution in real datasets. Singla et al. [17] propose a probabilistic
model based on conditional random fields that exploits similar dependencies.

6 Conclusion and Future Directions

Entity resolution is an area that has been attracting growing attention to address the influx of structured and
semi-structured data from a multitude of heterogeneous sources. Accurate resolution is important for a variety
of reasons ranging from cost-effectiveness and reducing redundancy in data to accurate analysis for critical
applications. We have found collective entity resolution to be a powerful and promising technique that combines
attribute similarity with relational evidence and significantly improves performance over traditional approaches.
The improvements using relations are more dramatic in databases where names are more likely to be ambiguous.
While collective resolution is more expensive than attribute-based resolution, the computational cost is not
prohibitive. As future directions, we are interested in localized entity resolution, incremental updates and in
challenging and important domains such as geo-spatial databases and others with unstructured context as in
email archives.

8



References

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data warehouses. In
VLDB, 2002.

[2] O. Benjelloun, H. Garcia-Molina, Q. Su, and J. Widom. Swoosh: A generic approach to entity resolution.
Technical Report, Stanford University, March 2005.

[3] I. Bhattacharya and L. Getoor. Iterative record linkagefor cleaning and integration. InSIGMOD Workshop
on Research Issues on Data Mining and Knowledge Discovery (DMKD), June 2004.

[4] I. Bhattacharya and L. Getoor. Relational clustering for multi-type entity resolution. InKDD Workshop on
Multi-Relational Data Mining (MRDM), 2005.

[5] I. Bhattacharya and L. Getoor.Entity Resolution in Graphs, Chapter in Mining Graph Data (Lawrence B.
Holder and Diane J. Cook, eds.). Wiley, 2006.

[6] I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised entity resolution. InSIAM
Conference on Data Mining (SIAM-SDM), 2006.

[7] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg. Adaptive name matching in information
integration.IEEE Intelligent Systems, 18(5):16–23, 2003.

[8] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robustand efficient fuzzy match for online data
cleaning. InSIGMOD, 2003.

[9] W. Cohen. Integration of heterogeneous databases without common domains using queries based on textual
similarity. In SIGMOD, 1998.

[10] W. Cohen. Data integration using similarity joins and aword-based information representation language.
ACM Transactions on Information Systems, 18:288–321, 2000.

[11] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex information spaces. InSIG-
MOD, 2005.

[12] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava.Text joins for data cleansing and integration in an
rdbms. InIEEE International Conference on Data Engineering (ICDE), 2003.

[13] M. Hernández and S. Stolfo. The merge/purge problem for large databases. InSIGMOD, 1995.

[14] D. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for domain-independent data cleaning.
In SIAM Conference on Data Mining (SIAM SDM), 2005.

[15] A. Monge and C. Elkan. The field matching problem: Algorithms and applications. InSIGKDD, 1996.

[16] J. Neville, M. Adler, and D. Jensen. Clustering relational data using attribute and link information. InText
Mining and Link Analysis Workshop, IJCAI, 2003.

[17] P. Singla and P. Domingos. Multi-relational record linkage. InSIGKDD Workshop on Multi-Relational
Data Mining (MRDM), 2004.

[18] S. Tejada, C. Knoblock, and S. Minton. Learning object identification rules for information integration.
Information Systems Journal, 26(8):635–656, 2001.

9


