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Hierarchical structure and the prediction of missing
links in networks
Aaron Clauset1,3, Cristopher Moore1,2,3 & M. E. J. Newman3,4

Networks have in recent years emerged as an invaluable tool for
describing and quantifying complex systems in many branches of
science1–3. Recent studies suggest that networks often exhibit hier-
archical organization, in which vertices divide into groups that
further subdivide into groups of groups, and so forth over multiple
scales. In many cases the groups are found to correspond to known
functional units, such as ecological niches in food webs, modules
in biochemical networks (protein interaction networks, metabolic
networks or genetic regulatory networks) or communities in social
networks4–7. Here we present a general technique for inferring
hierarchical structure from network data and show that the exist-
ence of hierarchy can simultaneously explain and quantitatively
reproduce many commonly observed topological properties of
networks, such as right-skewed degree distributions, high cluster-
ing coefficients and short path lengths. We further show that
knowledge of hierarchical structure can be used to predict missing
connections in partly known networks with high accuracy, and for
more general network structures than competing techniques8.
Taken together, our results suggest that hierarchy is a central
organizing principle of complex networks, capable of offering
insight into many network phenomena.

Much recent work has been devoted to the study of clustering and
community structure in networks5,6,9–11. Hierarchical structure goes
beyond simple clustering, however, by explicitly including organiza-
tion at all scales in a network simultaneously. Conventionally, hier-
archical structure is represented by a tree, or dendrogram, in which
closely related pairs of vertices have lowest common ancestors that
are lower in the tree than those of more distantly related pairs (see
Fig. 1). We expect the probability of a connection between two ver-
tices to depend on their degree of relatedness. Structure of this type
can be modelled mathematically by using a probabilistic approach in
which we endow each internal node r of the dendrogram with a
probability pr and then connect each pair of vertices for which r is
the lowest common ancestor independently with probability pr

(Fig. 1).
This model, which we call a hierarchical random graph, is similar

in spirit to (although different in realization from) the tree-based
models used in some studies of network search and navigation12,13.
Like most work on community structure, it assumes that commu-
nities at each level of organization are disjoint. Overlapping com-
munities have occasionally been studied (see, for example, ref. 14)
and could be represented with a more elaborate probabilistic model;
however, as we discuss below, the present model already captures
many of the structural features of interest.

Given a dendrogram and a set of probabilities pr, the hierarchical
random graph model allows us to generate artificial networks with a
specified hierarchical structure, a procedure that might be useful in
certain situations. Our goal here, however, is a different one. We wish

to detect and analyse the hierarchical structure, if any, of networks in
the real world. We accomplish this by fitting the hierarchical model
to observed network data by using the tools of statistical inference,
combining a maximum-likelihood approach15 with a Monte Carlo
sampling algorithm16 on the space of all possible dendrograms. This
technique allows us to sample hierarchical random graphs with prob-
ability proportional to the likelihood that they generate the observed
network. To obtain the results described below we combine informa-
tion from a large number of such samples, each of which is a rea-
sonably likely model of the data.

The success of this approach relies on the flexible nature of our
hierarchical model, which allows us to fit a wide range of network
structures. The traditional picture of communities or modules in a
network, for example, corresponds to connections that are dense
within groups of vertices and sparse between them—a behaviour
called ‘assortativity’ in the literature17. The hierarchical random
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Figure 1 | A hierarchical network with structure on many scales, and the
corresponding hierarchical random graph. Each internal node r of the
dendrogram is associated with a probability pr that a pair of vertices in the
left and right subtrees of that node are connected. (The shades of the internal
nodes in the figure represent the probabilities.)
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graph can capture behaviour of this kind using probabilities pr that
decrease as we move higher up the tree. Conversely, probabilities that
increase as we move up the tree correspond to ‘disassortative’ struc-
tures in which vertices are less likely to be connected on small scales
than on large ones. By letting the pr values vary arbitrarily throughout
the dendrogram, the hierarchical random graph can capture both
assortative and disassortative structure, as well as arbitrary mixtures
of the two, at all scales and in all parts of the network.

To demonstrate our method we have used it to construct hierarch-
ical decompositions of three example networks drawn from disparate
fields: the metabolic network of the spirochaete Treponema palli-
dum18, a network of associations between terrorists19, and a food
web of grassland species20. To test whether these decompositions
accurately capture the important structural features of the networks,
we use the sampled dendrograms to generate new networks, different
in detail from the originals but, by definition, having similar hier-
archical structure (see Supplementary Information for more details).
We find that these ‘resampled’ networks match the statistical pro-
perties of the originals closely, including their degree distributions,
clustering coefficients, and distributions of shortest path lengths
between pairs of vertices, despite the fact that none of these properties
is explicitly represented in the hierarchical random graph (Table 1,
and Supplementary Fig. 3). It therefore seems that a network’s hier-
archical structure is capable of explaining a wide variety of other
network features as well.

The dendrograms produced by our method are also of interest in
themselves, as a graphical representation and summary of the hier-
archical structure of the observed network. As discussed above, our
method can generate not just a single dendrogram but a set of den-
drograms, each of which is a good fit to the data. From this set we can,
by using techniques from phylogeny reconstruction21, create a single
consensus dendrogram, which captures the topological features that
appear consistently across all or a large fraction of the dendrograms
and typically is a better summary of the network’s structure than any
individual dendrogram. Figure 2a shows such a consensus dendro-
gram for the grassland species network, which clearly reveals com-
munities and subcommunities of plants, herbivores, parasitoids and
hyperparasitoids.

Another application of the hierarchical decomposition is the pre-
diction of missing interactions in networks. In many settings, the
discovery of interactions in a network requires significant experi-
mental effort in the laboratory or the field. As a result, our current
pictures of many networks are substantially incomplete22–28. An
alternative to checking exhaustively for a connection between every
pair of vertices in a network is to try to predict, in advance and on the
basis of the connections already observed, which vertices are most
likely to be connected, so that scarce experimental resources can be
focused on testing for those interactions. If our predictions are good,
we can in this way substantially reduce the effort required to establish
the network’s topology.

The hierarchical decomposition can be used as the basis for an
effective method of predicting missing interactions as follows.
Given an observed but incomplete network, we generate, as described
above, a set of hierarchical random graphs—dendrograms and the
associated probabilities pr—that fit that network. Then we look for
pairs of vertices that have a high average probability of connection
within these hierarchical random graphs but are unconnected in the

observed network. These pairs we consider the most likely candidates
for missing connections. (Technical details of the procedure are given
in Supplementary Information.)

We demonstrate the method by using our three example networks
again. For each network we remove a subset of connections chosen
uniformly at random and then attempt to predict, on the basis of the
remaining connections, which have been removed. A standard metric
for quantifying the accuracy of prediction algorithms, commonly
used in the medical and machine learning communities, is the
AUC statistic, which is equivalent to the area under the receiver
operating characteristic (ROC) curve29. In the present context, the
AUC statistic can be interpreted as the probability that a randomly
chosen missing connection (a true positive) is given a higher score by
our method than a randomly chosen pair of unconnected vertices (a
true negative). Thus, the degree to which the AUC exceeds 0.5 indi-
cates how much better our predictions are than chance. Figure 2
shows the AUC statistic for the three networks as a function of the
fraction of the connections known to the algorithm. For all three
networks our algorithm does far better than chance, indicating that
hierarchy is a strong general predictor of missing structure. It is also
instructive to compare the performance of our method with that of
other methods for link prediction8. Previously proposed methods
include assuming that vertices are likely to be connected if they have
many common neighbours, if there are short paths between them, or
if the product of their degrees is large. These approaches work well
for strongly assortative networks such as collaboration and citation

Table 1 | Comparison of original and resampled networks

Network Ækæreal Ækæsamp Creal Csamp dreal dsamp

T. pallidum 4.8 3.7(1) 0.0625 0.0444(2) 3.690 3.940(6)
Terrorists 4.9 5.1(2) 0.361 0.352(1) 2.575 2.794(7)
Grassland 3.0 2.9(1) 0.174 0.168(1) 3.29 3.69(2)

Statistics are shown for the three example networks studied and for new networks generated by
resampling from our hierarchical model. The generated networks closely match the average
degree Ækæ, clustering coefficient C and average vertex–vertex distance d in each case,
suggesting that they capture much of the structure of the real networks. Parenthetical values
indicate standard errors on the final digits.

b

a

Figure 2 | Application of the hierarchical decomposition to the network of
grassland species interactions. a, Consensus dendrogram reconstructed
from the sampled hierarchical models. b, A visualization of the network in
which the upper few levels of the consensus dendrogram are shown as boxes
around species (plants, herbivores, parasitoids, hyperparasitoids and hyper-
hyperparasitoids are shown as circles, boxes, down triangles, up triangles
and diamonds, respectively). Note that in several cases a set of parasitoids is
grouped into a disassortative community by the algorithm, not because they
prey on each other but because they prey on the same herbivore.
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networks8 and for the metabolic and terrorist networks studied here
(Fig. 3a, b). Indeed, for the metabolic network the shortest-path
heuristic performs better than our algorithm.

However, these simple methods can be misleading for networks
that exhibit more general types of structure. In food webs, for
instance, pairs of predators often share prey species but rarely
prey on each other. In such situations a common-neighbour or
shortest-path-based method would predict connections between
predators where none exists. The hierarchical model, by contrast, is
capable of expressing both assortative and disassortative structure
and, as Fig. 3c shows, gives substantially better predictions for the
grassland network. (Indeed, in Fig. 2b there are several groups of
parasitoids that our algorithm has grouped together in a disassorta-
tive community, in which they prey on the same herbivore but not on
each other.) The hierarchical method thus makes accurate predic-
tions for a wider range of network structures than the previous
methods.

In the applications above, we have assumed for simplicity that
there are no false positives in our network data; that is, that every
observed edge corresponds to a real interaction. In networks in which
false positives may be present, however, they too could be predicted
by using the same approach: we would simply look for pairs of
vertices that have a low average probability of connection within
the hierarchical random graph but are connected in the observed
network.

The method described here could also be extended to incorporate
domain-specific information, such as species’ morphological or
behavioural traits for food webs28 or phylogenetic or binding-domain
data for biochemical networks23, by adjusting the probabilities of
edges accordingly. As the results above show, however, we can obtain
good predictions even in the absence of such information, indicating
that topology alone can provide rich insights.

In closing, we note that our approach differs crucially from
previous work on hierarchical structure in networks1,4–7,9,11,30 in that
it acknowledges explicitly that most real-world networks have many
plausible hierarchical representations of roughly equal likelihood.
Previous work, by contrast, has typically sought a single hierarchical
representation for a given network. By sampling an ensemble of
dendrograms, our approach avoids over-fitting the data and allows
us to explain many common topological features, to generate
resampled networks with similar structure to the original, to derive
a clear and concise summary of a network’s structure by means of
its consensus dendrogram, and to accurately predict missing connec-
tions in a wide variety of situations.

METHODS SUMMARY

Computer code implementing many of the analysis methods described in this

paper can be found online at http://www.santafe.edu/,aaronc/randomgraphs/.
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Figure 3 | Comparison of link prediction methods. Average AUC statistic—
that is, the probability of ranking a true positive over a true negative—as a
function of the fraction of connections known to the algorithm, for the link

prediction method presented here and a variety of previously published
methods. a, Terrorist association network; b, T. pallidum metabolic
network; c, grassland species network.
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