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SECTION 4.1

THE SCALE-FREE PROPERTY

The World Wide Web is a network whose nodes are documents and the 
links are the uniform resource locators (URLs) that allow us to “surf” with 
a click from one web document to the other. With an estimated size of over 
one trillion documents (N≈1012), the Web is the largest network humanity 
has ever built. It exceeds in size even the human brain (N ≈ 1011 neurons).

It is difficult to overstate the importance of the World Wide Web in our 
daily life. Similarly, we cannot exaggerate the role the WWW played in the 
development of network theory: it facilitated the discovery of a number of 
fundamental network characteristics and became a standard testbed for 
most network measures. 

We can use a software called a crawler to map out the Web’s wiring di-
agram. A crawler can start from any web document, identifying the links 
(URLs) on it. Next it downloads the documents these links point to and 
identifies the links on these documents, and so on. This process iteratively 
returns a local map of the Web. Search engines like Google or Bing operate 
crawlers to find and index new documents and to maintain a detailed map 
of the WWW. 

The  first map of the WWW obtained with the explicit goal of under-
standing the structure of the network behind it was generated by Hawoong 
Jeong at University of Notre Dame. He mapped out the nd.edu domain [1], 
consisting of about 300,000 documents and 1.5 million links (Online Re-
source 4.1). The purpose of the map was to compare the properties of the 
Web graph to the random network model. Indeed, in 1998 there were rea-
sons to believe that the WWW could be well approximated by a random 
network. The content of each document reflects the personal and profes-
sional interests of its creator, from individuals to organizations. Given the 
diversity of these interests, the links on these documents might appear to 
point to randomly chosen documents.  

A quick look at the map in Figure 4.1  supports this view: There appears 
to be considerable randomness behind the Web’s wiring diagram. Yet, a 

INTRODUCTION

>

Online Resource 4.1

Watch an online video that zooms into the 
WWW sample that has lead to the discovery of 
the scale-free property [1]. This is the network 
featured in Table 2.1 and shown in Figure 4.1, 
whose characteristics are tested throughout 
this book.

Zooming into the World Wide Web

>
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Snapshots of the World Wide Web sample 
mapped out by Hawoong Jeong in 1998 [1]. 
The sequence of images show an increasing-
ly magnified local region of  the network. The 
first panel displays all 325,729 nodes, offer-
ing a global view of the full dataset. Nodes 
with more than 50 links are shown in red and 
nodes with more than 500 links in purple. The 
closeups reveal the presence of a few highly 
connected nodes, called hubs, that accompany 
scale-free networks. Courtesy of M. Martino. 

Figure 4.1
The Topology of the World Wide Web    

closer inspection reveals some puzzling differences between this map 
and a random network. Indeed, in a random network highly connected 
nodes, or hubs, are effectively forbidden. In contrast in Figure 4.1 numerous 
small-degree nodes coexist with a few hubs, nodes with an exceptionally 
large number of links. 

In this chapter we show that hubs are not unique to the Web, but we en-
counter them in most real networks. They represent a signature of a deeper 
organizing principle that we call the scale-free property. We therefore ex-
plore the degree distribution of real networks, which allows us to uncover 
and characterize scale-free network.  The analytical and empirical results 
discussed here represent the foundations of the modeling efforts the rest 
of this book is based on. Indeed, we will come to see that no matter what 
network property we are interested in, from communities to spreading 
processes, it must be inspected in the light of the network’s degree distri-
bution.
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If  the WWW were to be a random network, the degrees of the Web doc-
uments should follow a Poisson distribution. Yet, as Figure 4.2 indicates, the 
Poisson form offers a poor fit for the WWW’s degree distribution. Instead 
on a log-log scale the data points form an approximate straight line, sug-
gesting that the degree distribution of the WWW is well approximated with

Equation (4.1) is called a power law distribution and the exponent γ is its 
degree exponent (BOX 4.1). If we take a logarithm of (4.1), we obtain

If (4.1) holds, log pk is expected to depend linearly on log k, the slope of this 
line being the degree exponent γ (Figure 4.2).

POWER LAWS AND 
SCALE-FREE NETWORKS

SECTION 4.2

(4.1)

(4.2)

The incoming (a) and outgoing (b) degree dis-
tribution of the WWW sample mapped in the 
1999 study of Albert et al. [1]. The degree dis-
tribution is shown on double logarithmic axis 
(log-log plot), in which a power law follows a 
straight line. The symbols correspond to the 
empirical data and the line corresponds to the 
power-law fit, with degree exponents γin= 2.1 
and γout = 2.45. We also show as a green line 
the degree distribution predicted by a Poisson 
function with the average degree 〈kin〉 = 〈kout〉 = 
4.60 of the WWW sample.

Figure 4.2

The Degree Distribution of the WWW
(a) (b)
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The WWW is a directed network, hence each document is character-
ized by an out-degree kout, representing the number of links that point 
from the document to other documents, and an in-degree kin, representing 
the number of other documents that point to the selected document. We 
must therefore distinguish two degree distributions: the probability that a 
randomly chosen document points to kout web documents, or pkout

, and the 
probability that a randomly chosen node has kin web documents pointing 
to it, or  pkin

. In the case of the WWW both pkin
 and pkout

 can be approximated 
by a power law

where γin and γout are the degree exponents for the in- and out-degrees, re-
spectively (Figure 4.2). In general γin can differ from γout. For example, in 
Figure 4.1 we have γin ≈ 2.1 and γout ≈ 2.45. 

The empirical results shown in Figure 4.2 document the existence of 
a network whose degree distribution is quite different from the Poisson 
distribution characterizing random networks. We will call such networks 
scale-free, defined as [2]: 

A scale-free network is a network whose degree distribution follows a power 
law. 

As Figure 4.2 indicates, for the WWW the power law persists for almost 
four orders of magnitude, prompting us to call the Web graph scale-free 
network. In this case the scale-free property applies to both in and out-de-
grees. 

To better understand the scale-free property, we have to define the 
power-law distribution in more precise terms. Therefore next we discuss 
the discrete and the continuum formalisms used throughout this book.

Discrete Formalism
As node degrees are positive integers, k = 0, 1, 2, ..., the discrete formal-

ism provides the probability pk that a node has exactly k links

The constant C is determined by the normalization condition

Using (4.5) we obtain,                

(4.3)

(4.4)
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p k~kin
inγ−

p k~kout

outγ−

(4.5)p Ck .k =
γ−

(4.6)p 1.k
k 1
∑ =
=

∞

C k 1
k 1
∑ =γ−

=

∞

,

,

,



hence 

where ζ (γ) is the Riemann-zeta function. Thus for k  > 0 the discrete pow-
er-law distribution has the form

Note that (4.8) diverges at k=0. If needed, we can separately specify p0, 
representing the fraction of nodes that have no links to other nodes. In that 
case the calculation of C in (4.7) needs to incorporate p0.

Continuum Formalism
In  analytical calculations it is often convenient to assume that the de-

grees can have any positive real value. In this case we write the power-law 
degree distribution as

Using the normalization condition

we obtain

Therefore in the continuum formalism the degree distribution has the 
form

Here kmin is the smallest degree for which the power law (4.8) holds. 

Note that pk encountered in the discrete formalism has a precise mean-
ing: it is the probability that a randomly selected node has degree k. In con-
trast, only the integral of p(k) encountered in the continuum formalism 
has a physical interpretation:

is the probability that a randomly chosen node has degree between k1 and 
k2. 

In summary, networks whose degree distribution follows a power law 
are called scale-free networks. If a network is directed, the scale-free prop-
erty applies separately to the in- and the out-degrees. To mathematically 
study the properties of scale-free networks, we can use either the discrete 
or the continuum formalism. The scale-free property is independent of the 
formalism we use.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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p k Ck( ) .= γ−

p k dk( ) 1
kmin
∫ =
∞

p k k k( ) ( 1) ,min
1γ= − γ γ− − .

p(k)dk
k1

k2

∫

C= 1

k
kmin

min

dk
= ( 1)k 1

p
k

 
( )

.k ζ γ
=

γ−
(4.8)

C
k

 
1 1

( )
,

k 1
∑ ζ γ

= =
γ−

=

∞ (4.7)

.
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BOX 4.1
THE 80/20 RULE AND THE TOP ONE PERCENT

Vilfredo Pareto, a 19th century economist, noticed that in It-
aly a few wealthy individuals earned most of the money, while 
the majority of the population earned rather small amounts. He 
connected this disparity to the observation that incomes follow 
a power law, representing the first known report of a power-law 
distribution [3]. His finding entered the popular literature as the 
80/20 rule: Roughly 80 percent of money is earned by only 20 per-
cent of the population.

The  80/20 rule emerges in many areas. For example in manage-
ment it is often stated that 80 percent of profits are produced by 
only 20 percent of the employees. Similarly, 80 percent of deci-
sions are made during 20 percent of meeting time.  

The  80/20 rule is present in networks as well: 80 percent of links 
on the Web point to only 15 percent of webpages; 80 percent of 
citations go to only 38 percent of scientists; 80 percent of links in 
Hollywood are connected to 30 percent of actors [4]. Most quanti-
ties following a power law distribution obey the 80/20 rule.

During  the 2009 economic crisis power laws gained a new mean-
ing: The Occupy Wall Street Movement draw attention to the fact 
that in the US 1% of the population earns a disproportionate 15% 
of the total US income. This 1% phenomena, a signature of a pro-
found income disparity, is again a consequence of the power-law 
nature of the income distribution.

Italian economist, political scientist, and phi-
losopher, who had important contributions 
to our understanding of income distribution 
and to the analysis of individual choices. A 
number of fundamental principles are named 
after him, like Pareto efficiency, Pareto distri-
bution (another name for a power-law distri-
bution), the Pareto principle (or 80/20 law).

Figure 4.3

Vilfredo Federico Damaso Pareto (1848 – 1923)

POWER LAWS AND SCALE-FREE NETWORKS
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SECTION 4.3

HUBS

The main difference between a random and a scale-free network comes 
in the tail of the degree distribution, representing the high-k region of pk. 
To illustrate this, in Figure 4.4 we compare a power law with a Poisson func-
tion. We find that:

• For small k the power law is above the Poisson function, indicating 
that a scale-free network has a large number of small degree nodes, most 
of which are absent in a random network.

• For k in the vicinity of 〈k〉 the Poisson distribution is above the power 
law, indicating that in a random network there is an excess of nodes with 
degree k≈〈k〉.

• For large k the power law is again above the Poisson curve. The differ-
ence is particularly visible if we show pk on a log-log plot (Figure 4.4b), indi-
cating that the probability of observing a high-degree node, or hub, is sev-
eral orders of magnitude higher in a scale-free than in a random network.

Let us use the WWW to illustrate the magnitude of these differences. 
The probability to have a node with k=100 is about p100≈10−94 in a Poisson 
distribution while it is about p100≈4x10-4 if pk follows a power law. Conse-
quently, if the WWW were to be a random network with <k>=4.6 and size 
N≈1012, we would expect

                                

nodes with at least 100 links, or effectively none. In contrast, given the 
WWW’s power law degree distribution, with γin = 2.1 we have Nk≥100 = 4x109, 
i.e. more than four billion nodes with degree k ≥100.

(4.14)Nk≥100 = (4.6)k

k!k=100
e 4.6 10 821012
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Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (γ= 2.1) on a linear plot. 
Both distributions have ⟨k⟩=  11.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ⟨k⟩= 3 and N = 50, 
illustrating that most nodes have compara-

ble degree k≈⟨k⟩. 

(d) A scale-free network with γ=2.1 and ⟨k⟩= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs. The size of each node is proportional 
to its degree.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ≈ 
1012 nodes; the size of the social network is the Earth’s population, about N 
≈ 7 × 109. These numbers are huge, but finite. Other networks pale in com-
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about 
a thousand metabolites. This prompts us to ask: How does the network 
size affect the size of its hubs? To answer this we calculate the maximum 
degree, kmax, called the natural cutoff of the degree distribution pk. It rep-
resents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin the normalization  condition                    

provides C = λeλkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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The estimated degree of the largest node (nat-
ural cutoff) in scale-free and random net-
works with the same average degree ⟨k⟩= 3. 
For the scale-free network we chose γ = 2.5. 
For comparison, we also show the linear be-
havior, kmax ∼ N − 1, expected for a complete 
network. Overall, hubs in a scale-free network 
are several orders of magnitude larger than 
the biggest node in a random network with 
the same N and ⟨k⟩.

Figure 4.5
Hubs are Large in Scale-free Networks

(4.18)γ −k k N= .max min

1
1

Equation (4.16) yields

As lnN is a slow function of the system size, (4.17) tells us that the max-
imum degree will not be significantly different from kmin. For a Poisson 
degree distribution the calculation is a bit more involved, but the obtained 
dependence of kmax on N is even slower than the logarithmic dependence 
predicted by (4.17) (ADVANCED TOPICS 3.B).

For a scale-free network, according to (4.12) and (4.16), the  natural cutoff 
follows

Hence the larger a network, the larger is the degree of its biggest hub.
The polynomial dependence of kmax on N implies that in a large scale-free 
network there can be orders of magnitude differences in size between the 
smallest node, kmin, and the biggest hub, kmax (Figure 4.5).

To illustrate the difference in the maximum degree of an exponential 
and a scale-free network let us return to the WWW sample of Figure 4.1, 
consisting of N ≈ 3 × 105 nodes. As kmin = 1, if the degree distribution were 
to follow an exponential, (4.17) predicts that the maximum degree should 
be kmax ≈ 14 for λ=1. In a scale-free network of similar size and γ = 2.1, 
(4.18) predicts kmax ≈ 95,000, a remarkable difference. Note that the largest 
in-degree of the WWW map of Figure 4.1 is 10,721, which is comparable to 
kmax predicted by a scale-free network. This reinforces our conclusion that 
in a random network hubs are effectivelly forbidden, while in scale-free 
networks they are naturally present.

In summary the key difference between a random and a scale-free net-
work is rooted in the different shape of the Poisson and of the power-law 
function: In a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected 
in scale-free networks (Figure 4.6). Furthermore, the more nodes a scale-
free network has, the larger are its hubs. Indeed, the size of the hubs grows 
polynomially with network size, hence they can grow quite large in scale-
free networks. In contrast in a random network the size of the largest node 
grows logarithmically or slower with N, implying that hubs will be tiny 
even in a very large random network.

kmax

N
100

102 106104 108 1010 1012
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102
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104

105

107

108

109

1010

RANDOM NETWORK

SCALE-FREE
(N - 1)

kmax ~ InN

kmax ~ N
1

(җ��)kmax = kmin +
lnN
λ
. (4.17)
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(a) The degrees of a random network follow a 
Poisson distribution, rather similar to a bell 
curve. Therefore most nodes have comparable 
degrees and nodes with a large number of links 
are absent. 

(b) A random network looks a bit like the na-
tional highway network in which nodes are cit-
ies and links are the major highways. There are 
no cities with hundreds of highways and no 
city is disconnected from the highway system. 

(c) In a network with a power-law degree dis-
tribution most nodes have only a few links. 
These numerous small nodes are held togeth-
er by a few highly connected hubs. 

(d)  A scale-free network looks like the air-traf-
fic network, whose nodes are airports and 
links are the direct flights between them. Most 
airports are tiny, with only a few flights. Yet, 
we have a few very large airports, like Chicago 
or Los Angeles, that act as major hubs, con-
necting many smaller airports. 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities. On the air-
plane network, however, we can reach most 
destinations via a single hub, like Chicago. 
After [4].

Figure 4.6
Random vs. Scale-free Networks
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The term “scale-free” is rooted in a branch of statistical physics called 
the theory of phase transitions that extensively explored power laws in the 
1960s and 1970s (ADVANCED TOPICS 3.F). To best understand the meaning of 
the scale-free term, we need to familiarize ourselves with the moments of 
the degree distribution. 

The nth moment of the degree distribution is defined as

The lower moments have important interpretation:
• n=1: The first moment is the average degree, ⟨k⟩.
• n=2: The second moment, ⟨k2⟩, helps us calculate the variance σ2 = ⟨k2⟩ 

− ⟨k⟩2, measuring the spread in the degrees. Its square root, σ, is the 
standard deviation.

• n=3: The third moment, ⟨k3⟩, determines the skewness of a distribu-
tion, telling us how symmetric is pk around the average ⟨k⟩. 

For a scale-free network the nth moment of the degree distribution is

While typically kmin is fixed, the degree of the largest hub, kmax, increas-
es with the system size, following (4.18). Hence to understand the behavior 
of ⟨kn⟩ we need to take the asymptotic limit kmax → ∞ in (4.20), probing the 
properties of very large networks. In this limit (4.20) predicts that the value 
of ⟨kn⟩ depends on the interplay between n and γ:

• If n −γ + 1 ≤ 0 then the first term on the r.h.s. of (4.20), kmax      
n−γ+1, goes to 

zero as kmax increases. Therefore all moments that satisfy n ≤ γ−1 are 
finite.

• If n−γ+1 > 0 then ⟨kn⟩ goes to infinity as kmax→∞. Therefore all mo-

SECTION 4.4

THE MEANING OF 
SCALE-FREE

(4.19)

(4.20)

∑ ∫〈 〉 = ≈
∞ ∞k k p k p k dk( ) .n n

k
k

n
k

min
min

∫ γ
〈 〉 = = −

− +

γ γ− + − +

k k p k dk C k k
n( ) 1 .n n

k

k n n
max

1
min

1

min

max



ments larger than γ−1 diverge. 
For many scale-free networks the degree exponent γ is between 2 and 3 

(Table 4.1). Hence for these in the N → ∞ limit the first moment ⟨k⟩ is finite, 
but the second and higher moments, ⟨k2⟩, ⟨k3⟩, go to infinity. This diver-
gence helps us understand the origin of the “scale-free” term. Indeed, if  
the degrees follow a normal distribution, then the degree of a randomly 
chosen node is typically in the range

                .

Yet, the average degree <k> and the standard deviation σk have rather dif-
ferent magnitude in random and in scale-free networks:
 

• Random Networks Have a Scale
For a random network with a Poisson degree distribution σk = <k>1/2, 
which is always smaller than ⟨k⟩. Hence the network’s nodes have de-
grees in the range k = ⟨k⟩ ± ⟨k⟩1/2. In other words nodes in a random 
network have comparable degrees and the average degree ⟨k⟩ serves 
as the “scale” of a random network.

• Scale-free Networks Lack a Scale
For a network with a power-law degree distribution with γ < 3 the first 
moment is finite but the second moment is infinite. The divergence 
of ⟨k2⟩ (and of σk) for large N indicates that the fluctuations around 
the average can be arbitrary large. This means that when we random-
ly choose a node, we do not know what to expect: The selected node’s 
degree could be tiny or arbitrarily large. Hence networks with γ < 3 do 
not have a meaningful internal scale, but are “scale-free” (Figure 4.7). 

For example the average degree of the WWW sample is ⟨k⟩ = 4.60 (Ta-
ble 4.1). Given that γ ≈ 2.1, the second moment diverges, which means 
that our expectation for the in-degree of a randomly chosen WWW 
document is k=4.60 ± ∞ in the N → ∞ limit. That is, a randomly chosen 
web document could easily yield a document of degree one or two, as 
74.02% of nodes have in-degree less than ⟨k⟩. Yet, it could also yield a 
node with hundreds of millions of links, like google.com or facebook.
com.

Strictly speaking ⟨k2⟩ diverges only in the N → ∞ limit. Yet, the diver-
gence is relevant for finite networks as well. To illustrate this, Table 4.1 lists 
⟨k2⟩ and Figure 4.8 shows the standard deviation    for ten real networks. 
For most of these networks σ is significantly larger than ⟨k⟩, documenting 
large variations in node degrees. For example, the degree of a randomly 
chosen node in the WWW sample is kin = 4.60 ± 1546, indicating once again 
that the average is not informative. 

In summary, the scale-free name captures the lack of an internal scale, 
a consequence of the fact that nodes with widely different degrees coexist 
in the same network. This feature distinguishes scale-free networks from 
lattices, in which all nodes have exactly the same degree (σ = 0), or from 
random networks, whose degrees vary in a narrow range (σ = ⟨k⟩1/2). As we 

(4.21)
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For any exponentially bounded distribution, 
like a Poisson or a Gaussian, the degree of a 
randomly chosen node is in the vicinity of ⟨k⟩. 
Hence ⟨k⟩ serves as the network’s scale. For a 
power law distribution the second moment 
can diverge, and the degree of a randomly 
chosen node can be significantly different 
from ⟨k⟩. Hence ⟨k⟩ does not serve as an in-
trinsic scale. As a network with a power law 
degree distribution lacks an intrinsic scale, we 

Figure 4.7
Lack of an Internal Scale

k k kσ= ±

k k2 2σ = −

Random Network 
Randomly chosen node: 
Scale: ⟨k⟩

Scale-Free Network
Randomly chosen node: 
Scale: none

= ±k k k 1/2

= ±∞k k

pk

k

⟨k⟩
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For a random network the standard deviation 
follows σ = <k>1/2 shown as a green dashed 
line on the figure. The symbols show σ for 
nine of the  ten reference networks, calculated 
using the values shown in Table 4.1. The actor 
network has a very large ⟨k⟩ and σ, hence 
it omitted for clarity. For each network σ is 
larger than the value expected for a random 
network with the same ⟨k⟩. The only excep-
tion is the power grid, which is not scale-free. 
While the phone call network is scale-free, it 
has a large γ, hence it is well approximated by 
a random network.

The table shows the first 〈k〉 and the second 
moment ⟨k2⟩ (〈kin

2〉 and 〈kout
2 〉 for directed net-

works) for ten reference networks. For direct-
ed networks we list 〈k〉=〈kin〉=〈kout〉. We also list 
the estimated degree exponent, γ, for each 
network, determined using the procedure dis-
cussed in ADVANCED TOPICS 4.A. The stars next 
to the reported values indicate the confidence 
of the fit to the degree distribution. That is, * 
means that the fit shows statistical confidence 
for a power-law (k−γ); while ** marks statistical 
confidence for a fit (4.39) with an exponential 
cutoff. Note that the power grid is not scale-
free. For this network a degree distribution of 
the form e−λk offers a statistically significant 
fit, which is why we placed an “Exp” in the last 
column.

Figure 4.8

Table 4.1

Standard Deviation is Large in Real Networks

Degree Fluctuations in Real Networks

NETWORK

Internet

WWW

Power Grid

Mobile Phone Calls

Email

Science Collaboration

Actor Network

Citation Network

E. Coli Metabolism

Protein Interactions

192,244

N L

325,729

4,941

36,595

57,194

23,133

702,388

449,673

1,039

2,018

609,066

1,497,134

6,594

91,826

103,731

93,439

29,397,908

4,689,479

5,802

2,930

6.34

4.60 

2.67

2.51

1.81

8.08

83.71

10.43

5.58

2.9 0
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-

12.0

-
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971.5
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-

-

482.41546.0

-

11.7

94.7 1163.9

-

-

198.8

396.7

-

240.1

-

10.3

-

-

178.2

47,353.7

-

-

32.3

-

2.31

-

4.69*

3.43*

-

-

3.03**

2.43*

-

-

2.00

-

5.01*

2.03*

-

-

4.00*
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-
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-

-
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-

-
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will see in the coming chapters, this divergence is the origin of some of the 
most intriguing properties of scale-free networks, from their robustness to 
random failures to the anomalous spread of viruses.
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SECTION 4.5

While the terms WWW and Internet are often used interchangeably in 
the media, they refer to different systems. The WWW is an information 
network, whose nodes are documents and links are URLs. In contrast the 
Internet is an infrastructural network, whose nodes are  computers called 
routers and whose links correspond to physical connections, like copper 
and optical cables or wireless links. 

This  difference has important consequences: The cost of linking a Bos-
ton-based web page to a document residing on the same computer or to 
one on a Budapest-based computer is the same. In contrast, establishing 
a direct Internet link between routers in Boston and Budapest would re-
quire us to lay a cable between North America and Europe, which is pro-
hibitively expensive. Despite these differences, the degree distribution of 
both networks is well approximated by a power law [1, 5, 6]. The signatures 
of the Internet’s scale-free nature are visible in Figure 4.9, showing that a 

Figure 4.9

The topology of the Internet

An iconic representation of the Internet to-
pology at the beginning of the 21st century. 
The image was produced by CAIDA, an orga-
nization based at University of California in 
San Diego, devoted to collect, analyze, and vi-
sualize Internet data. The map illustrates the 
Internet’s scale-free nature: A few highly con-
nected hubs hold together numerous small 
nodes.



few high-degree routers hold together a large number of routers with only 
a few links.

In the past decade many real networks of major scientific, technologi-
cal and societal importance were found to display the scale-free property.
This is illustrated in Figure 4.10, where we show the degree distribution of 
an infrastructural network (Internet), a biological network (protein inter-
actions), a communication network (emails) and a network characterizing 
scientific communications (citations). For each network the degree distri-
bution significantly deviates from a Poisson distribution, being better ap-
proximated with a power law.

 The diversity of the systems that share the scale-free property is re-
markable (BOX 4.2). Indeed, the WWW is a man-made network with a histo-
ry of little more than two decades, while the protein interaction network 
is the product of four billion years of evolution. In some of these networks 
the nodes are molecules, in others they are computers. It is this diversity 
that prompts us to call the scale-free property a universal network charac-
teristic. 

From the perspective of a researcher, a crucial question is the follow-
ing: How do we know if a network is scale-free? On one end, a quick look at 
the degree distribution will immediately reveal whether the network could 
be scale-free: In scale-free networks the degrees of the smallest and the 
largest nodes are widely different, often spanning several orders of mag-
nitude. In contrast, these nodes have comparable degrees in a random net-
work. As the value of the degree exponent plays an important role in pre-
dicting various network properties, we need tools to fit the pk distribution 
and to estimate γ. This prompts us to address several issues pertaining to 
plotting and fitting power laws:

Plotting the Degree Distribution
The degree distributions shown in this chapter are plotted on a double 
logarithmic scale, often called a log-log plot. The main reason is that 
when we have nodes with widely different degrees, a linear plot is un-
able to display them all. To obtain the clean-looking degree distributions 
shown throughout this book we use logarithmic binning, ensuring that 
each datapoint has sufficient number of observations behind it. The 
practical tips for plotting a network’s degree distribution are discussed 
in ADVANCED TOPICS 4.B.

Measuring the Degree Exponent
A quick estimate of the degree exponent can be obtained by fitting a 
straight line to pk on a log-log plot.Yet, this approach can be affected by 
systematic biases, resulting in an incorrect γ. The statistical tools avail-
able to estimate γ are discussed in ADVANCED TOPICS 4.C.

The Shape of pk for Real Networks
Many degree distributions observed in real networks deviate from a 
pure power law. These deviations can be attributed to data incomplete-

THE SCALE FREE PROPERTY UNIVERSALITY17
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ness or data collection biases, but can also carry important information 
about processes that contribute to the emergence of a particular net-
work. In ADVANCED TOPICS 4.B we discuss some of these deviations and 
in CHAPTER 6  we explore their origins.

In summary, since the 1999 discovery of the scale-free nature of the 
WWW, a large number of real networks of scientific and technological in-
terest have been found to be scale-free, from biological to social and lin-
guistic networks (BOX 4.2). This does not mean that all networks are scale-
free. Indeed, many important networks, from the power grid to networks 
observed in materials science, do not display the scale-free property (BOX 
4.3).  

Figure 4.10

Many Real Networks are Scale-free

The  degree distribution of four networks list-
ed in Table 4.1.

(a) Internet at the router level.

(b) Protein-protein interaction network.

(c) Email network.

(d) Citation network.

In each panel the green dotted line shows 
the Poisson distribution with the same 〈k〉 as 
the real network, illustrating that the ran-
dom network model cannot account for the 
observed pk. For directed networks we show 
separately the incoming and outgoing degree 
distributions.
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BOX 4.3
NOT ALL NETWORK ARE SCALE-FREE

The ubiquity of the scale-free property does not mean that all real 
networks are scale-free. To the contrary, several important net-
works do not share this property:

• Networks appearing in material science, describing the bonds 
between the atoms in crystalline or amorphous materials. In 
these networks each node has exactly the same degree, deter-
mined by chemistry (Figure 4.11).

• The neural network of the C. elegans worm [28].

• The power grid, consisting of generators and switches connect-
ed by transmission lines.

For the scale-free property to emerge the nodes need to have the 
capacity to link to an arbitrary number of other nodes. These links 
do not need to be concurrent: We do not constantly chat with each 
of our acquaintances and a protein in the cell does not simultane-
ously bind to each of its potential interaction partners. The scale-
free property is absent in systems that limit the number of links 
a node can have, effectively restricting the maximum size of the 
hubs. Such limitations are common in materials (Figure 4.11), ex-
plaining why they cannot develop a scale-free topology.

Figure 4.11
The Material Network

A carbon atom can share only four electrons 
with other atoms, hence no matter how we 
arrange these atoms relative to each other, 
in the resulting network a node can never 
have more than four links. Hence, hubs are 
forbidden and the scale-free property cannot 
emerge.  The figure shows several carbon allo-
tropes, i.e. materials made of carbon that dif-
fer in the structure of the network the carbon 
atoms arrange themselves in. This different 
arrangement results in materials with widely 
different physical and electronic characteris-
tics, like (a) diamond; (b) graphite; (c) lonsda-
leite; (d) C60 (buckminsterfullerene); (e) C540 
(a fullerene) (f) C70 (another fullerene); (g) 
amorphous carbon; (h) single-walled carbon 
nanotube. 
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ULTRA-SMALL WORLD PROPERTY
SECTION 4.6

The  presence of hubs in scale-free networks raises an interesting ques-
tion: Do hubs affect the small world property? Figure 4.4  suggests that they 
do: Airlines build hubs precisely to decrease the number of hops between 
two airports. The calculations support this expectation, finding that dis-
tances in a scale-free network are smaller than the distances observed in an 
equivalent random network. 

The dependence of the average distance ⟨d⟩ on the system size N and 
the degree exponent γ are captured by the formula [29, 30] 

Next we discuss the behavior of ⟨d⟩ in the four regimes predicted by 
(4.22), as summarized in Figure 4.12:

Anomalous Regime (γ = 2)
According to (4.18) for γ = 2 the degree of the biggest hub grows linearly 
with the system size, i.e. kmax ∼ N. This forces the network into a hub and 
spoke configuration in which all nodes are close to each other because 
they all connect to the same central hub. In this regime the average 
path length does not depend on N.

Ultra-Small World (2  <  γ <  3)
Equation (4.22) predicts that in this regime the average distance increas-
es as lnlnN, a significantly slower growth than the lnN derived for ran-
dom networks. We call networks in this regime ultra-small, as the hubs 
radically reduce the path length [29]. They do so by linking to a large 
number of small-degree nodes, creating short distances between them. 

(4.22)
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To see the implication of the ultra-small world property consider again 
the world’s social network with N ≈ 7x109. If the society is described by 
a  random network, the N-dependent term is lnN = 22.66. In contrast for 
a scale-free network the N-dependent term is lnlnN = 3.12, indicating 
that the hubs radically shrink the distance between the nodes.

Critical Point (γ = 3)
This value is of particular theoretical interest, as the second moment 
of the degree distribution does not diverge any longer. We therefore 
call γ = 3 the critical point. At this critical point the lnN dependence en-
countered for random networks returns. Yet, the calculations indicate 
the presence of a double logarithmic correction lnlnN [29, 31], which 
shrinks the distances compared to a random network of similar size.

Small World (γ > 3)
In this regime ⟨k2⟩ is finite and the average distance follows the small 
world result derived for random networks. While hubs continue to be 
present, for γ > 3 they are not sufficiently large and numerous to have a 
significant impact on the distance between the nodes.

Taken together, (4.22) indicates that the more pronounced the hubs are, 
the more effectively they shrink the distances between nodes. This con-
clusion is supported by Figure 4.12a, which shows the scaling of the average 
path length for scale-free networks with different γ.  The figure indicates 
that while for small N the distances in the four regimes are comparable, 
for large N we observe remarkable differences. 

Further support is provided by the path length distribution for scale-

THE SCALE FREE PROPERTY ULTRA-SMALL PROPERTY22

(a) The scaling of the average path length in 
the four scaling regimes characterizing a 
scale-free network:  constant (γ = 2), 
lnlnN (2 < γ< 3), lnN/lnlnN (γ = 3), lnN 
(γ > 3 and random networks). The dotted 
lines mark the approximate size of several 
real   networks. Given their modest size, in 
biological networks, like the human pro-
tein-protein interaction network (PPI), the 
differences in the node-to-node distances 
are relatively small in the four regimes. The 
differences in ⟨d⟩ is quite significant for 
networks of the size of the social network 
or the WWW. For these the small-world 
formula significantly underestimates the 
real ⟨d⟩.

(b) (c) (d)
Distance distribution for networks of size 
N = 102, 104, 106, illustrating that while 
for small networks (N = 102) the distance 
distributions are not too sensitive to γ, for 
large networks (N = 106) pd and ⟨d⟩ change 
visibly with γ. 

The networks were generated using the 
static model [32] with ⟨k⟩ = 3.

Distances in Scale-free Networks

Figure 4.12
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BOX 4.4
WE ARE ALWAYS CLOSE TO THE HUBS

Frigyes  Karinthy in his 1929 short story [33] that first described 
the small world concept cautions that “it’s always easier to find 
someone who knows a famous or popular figure than some run-
the-mill, insignificant person”. In other words, we are typically 
closer to hubs than to less connected nodes. This effect is particu-
larly pronounced in scale-free networks (Figure 4.13). 

The implications are obvious: There are always short paths link-
ing us to famous individuals like well known scientists or the 
president of the United States, as they are hubs with an excep-
tional number of acquaintances. It also means that many of the 
shortest paths go through these hubs. 

In contrast to this expectation, measurements aiming to replicate 
the six degrees concept in the online world find that individuals 
involved in chains that reached their target were less likely to 
send a message to a hub than individuals involved in incomplete 
chains [34]. The reason may be self-imposed: We perceive hubs as 
being busy, so we contact them only in real need. We therefore 
avoid them in online experiments of no perceived value to them.

Figure 4.13
Closing on the hubs

The distance ⟨dtarget⟩ of a node with degree 
k ≈ ⟨k⟩ to a target node with degree ktarget 
in a random and a scale-free network. In 
scale-free networks we are closer to the 
hubs than in random networks. The figure 
also illustrates that in a random network 
the largest-degree nodes are considerably 
smaller and hence the path lengths are 
visibly longer than in a scale-free network. 
Both networks have ⟨k⟩ = 2 and N = 1,000 
and for the scale-free network we choose 
γ = 2.5.

free networks with different γ and N (Figure 4.12b-d). For N = 102 the path 
length distributions overlap, indicating that at this size differences in γ re-
sult in undetectable differences in the path length. For N = 106, however, pd 
observed for different γ are well separated. Figure 4.12d also shows that the 
larger the degree exponent, the larger are the distances between the nodes. 

In summary the scale-free property has several effects on network dis-
tances: 

• Shrinks the average path lengths. Therefore most scale-free networks 
of practical interest are not only “small”, but are “ultra-small”. This 
is a consequence of the hubs, that act as bridges between many small 
degree nodes. 

• Changes the dependence of ⟨d⟩ on the system size, as predicted
by (4.22).  The smaller is γ, the shorter are the distances between
the nodes.

• Only for γ > 3 we recover the ln N dependence,  the signature of the 
small-world property characterizing random networks (Figure 4.12).
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THE ROLE OF THE
DEGREE EXPONENT

SECTION 4.7

Many properties of a scale-free network depend on the value of the de-
gree exponent γ. A close inspection of Table 4.1 indicates that:

• γ varies from system to system, prompting us to explore how the 
properties of a network change with γ.

• For  most real systems the degree exponent is above 2, making us won-
der: Why don’t we see networks with γ < 2? 

To address these questions next we discuss how the properties of a 
scale-free network change with γ (BOX 4.5).

Anomalous Regime (γf 2)
For γ< 2 the exponent 1/(γ− 1) in (4.18) is larger than one, hence the 
number of links connected to the largest hub grows faster than the size 
of the network. This means that for sufficiently large N the degree of 
the largest hub must exceed the total number of nodes in the network, 
hence it will run out of nodes to connect to. Similarly, for γ < 2 the av-
erage degree ⟨k⟩ diverges in the N → ∞ limit. These odd predictions are 
only two of the many anomalous features of scale-free networks in this 
regime. They are signatures of a deeper problem: Large scale-free net-
work with γ < 2, that lack multi-links, cannot exist (BOX 4.6). 

Scale-Free Regime (2 < γ< 3)
In this regime the first moment of the degree distribution is finite but 
the second and higher moments diverge as N →∞. Consequently scale-
free networks in this regime are ultra-small (SECTION 4.6). Equation (4.18) 
predicts that kmax grows with the size of the network with exponent 1/
(γ - 1), which is smaller than one. Hence the market share of the largest 
hub, kmax /N, representing the fraction of nodes that connect to it, de-
creases as kmax /N ∼ N-(γ-2)/(γ-1). 

As we will see in the coming chapters, many interesting features of 
scale-free networks, from their robustness to anomalous spreading 
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phenomena, are linked to this regime. 

Random Network Regime (γ > 3)
According to (4.20) for γ > 3 both the first and the second moments are 
finite. For all practical purposes the properties of a scale-free network 
in this regime are difficult to distinguish from the properties a random 
network of similar size. For example (4.22) indicates that the average 
distance between the nodes converges to the small-world formula de-
rived for random networks. The reason is that for large γ the degree 
distribution pk decays sufficiently fast to make the hubs small and less 
numerous. 

Note that scale-free networks with large γ are hard to distinguish from 
a random network. Indeed, to document the presence of a power-law 
degree distribution we ideally need 2-3 orders of magnitude of scaling, 
which means that kmax should be at least 102 - 103 times larger than kmin. 
By inverting (4.18) we can estimate the network size necessary to ob-
serve the desired scaling regime, finding
 

For example, if we wish to document the scale-free nature of a network 
with γ = 5 and require scaling that spans at least two orders of magni-
tudes (e.g. kmin ∼ 1 and kmax ≃ 102), according to (4.23) the size of the net-
work must exceed N > 108. There are very few network maps of this size. 
Therefore, there may be many networks with large degree exponent. 
Given, however, their limited size, it is difficult to obtain convincing 
evidence of their scale-free nature. 

In summary, we find that the behavior of scale-free networks is sensi-
tive to the value of the degree exponent γ. Theoretically the most interest-
ing regime is 2 < γ < 3, where ⟨k2⟩ diverges, making scale-free networks 
ultra-small. Interestingly, many networks of practical interest, from the 
WWW to protein interaction networks, are in this regime.

(4.23)
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BOX 4.6
WHY SCALE-FREE NETWORKS WITH γ < 2 DO NOT EXIST

To see why networks with γ < 2 are problematic, we need to at-
tempt to build one. A degree sequence that can be turned into 
simple graph (i.e. a graph lacking multi-links or self-loops) is 
called graphical [35]. Yet, not all degree sequences are graphical: 
For example, if the number of stubs is odd, then we will always 
have an unmatched stub (Figure 4.14b). 

The graphicality of a degree sequence can be tested with an algo-
rithm proposed by Erdős and Gallai [35, 36, 37, 38, 39]. If we apply 
the algorithm to scale-free networks we find that the number of 
graphical degree sequences drops to zero for γ < 2 (Figure 4.14c). 
Hence degree distributions with γ < 2 cannot be turned into sim-
ple networks. Indeed, for networks in this regime the largest hub 
grows faster than N. If we do not allow self-loops and multi-links, 
then the largest hub will run out of nodes to connect to once its 
degree exceeds N − 1.

THE ROLE OF THE DEGREE EXPONENT

(a-b) Degree distributions and the cor-
responding degree sequences for two 
small networks. The difference be-
tween them is in the degree of a single 
node. While we can build a simple net-
work using the degree distribution (a), 
it is impossible to build one using (b), as 
one stub always remains unmatched.  
Hence (a) is graphical, while (b) is not.

(c) Fraction of networks, g, for a given γ 
that are graphical. A large number of 
degree sequences with degree exponent 
γ and N = 105 were generated, testing 
the graphicality of each network. The 
figure indicates that while virtually all 
networks with γ > 2 are graphical, it is 
impossible to find graphical networks 
in the 0 < γ < 2 range. After [39]. 

Figure 4.14

Networks With γ < 2 are Not Graphical
(a) Graphical (b) Not Graphical (c)
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GENERATING NETWORKS
WITH ARBITRARY
DEGREE DISTRIBUTION

SECTION 4.8

Networks generated by the Erdős-Rényi model have a Poisson degree 
distribution. The empirical results discussed in this chapter indicate, how-
ever, that the degree distribution of real networks significantly deviates 
from a Poisson form, raising an important question: How do we generate 
networks with an arbitrary pk? In this section we discuss three frequently 
used algorithms designed for this purpose.

Configuration Model
The configuration model, described in Figure 4.15, helps us build a network 
with a pre-defined degree sequence. In the network generated by the 
model each node has a pre-defined degree ki, but otherwise the network is 
wired randomly. Consequently the network is often called a random net-
work with a pre-defined degree sequence. By repeatedly applying this pro-
cedure to the same degree sequence we can generate different networks 
with the same pk (Figure 4.15b-d). There are a couple of caveats to consider:

• The probability to have a link between nodes of degree ki and kj is

                                                                                    .

   Indeed, a stub starting from node i can connect to 2L - 1 other stubs. Of 
these, kj are attached to node j. So the probability that a particular stub 
is connected to a stub of node j is kj /(2L - 1). As node i has ki stubs, it has 
kj attempts to link to j, resulting in (4.24).

• The obtained network contains self-loops and multi-links, as there is 
nothing in the algorithm to forbid a node connecting to itself, or to 
generate multiple links between two nodes. We can choose to reject 
stub pairs that lead to these, but if we do so, we may not be able to 
complete the network. Rejecting self-loops or multi-links also means 
that not all possible matchings appear with equal probability. Hence 
(4.24) will not be valid, making analytical calculations difficult. Yet, the 
number of self-loops and multi-links remain negligible, as the num-
ber of choices to connect to increases with N, so typically we do not 
need to exclude them [42]. 

Figure 4.15

The Configuration Model

(4.24)

The configuration model builds a network 
whose nodes have pre-defined degrees [40, 41]. 
The algorithm consists of the following steps:

(a) Degree Sequence
Assign a degree to each node, represented 
as stubs or half-links. The degree sequence 
is either generated analytically from a 
preselected pk distribution (BOX 4.7), or it is 
extracted from the adjacency matrix of a 
real network. We must start from an even 
number of stubs, otherwise we are left with 
unpaired stubs.

(b, c, d) Network Assembly
Randomly select a stub pair and connect 
them. Then randomly choose another pair 
from the remaining 2L - 2 stubs and con-
nect them. This procedure is repeated until 
all stubs are paired up. Depending on the 
order in which the stubs were chosen, we 
obtain different networks. Some networks 
include cycles (b), others self-loops (c) or 
multi-links (d). Yet, the expected number 
of self-loops and multi-links goes to zero in 
the N → ∞ limit.

(a)

(b)

(c)

(d)
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=
−

p k k
L2 1ij
i j



THE SCALE-FREE PROPERTY 29 GENERATING NETWORKS WITH A PRE-DEFINED
DEGREE DISTRIBUTION
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BOX 4.7
GENERATING A DEGREE SEQUENCE WITH POWER-LAW  DISTRIBUTION

The degree sequence of an undirected network is a sequence of 
node degrees. For example, the degree sequence of each of the 
networks shown in Figure 4.15a is {3, 2, 2, 1}. As Figure 4.15a illus-
trates, the degree sequence does not uniquely identify a graph, as 
there are multiple ways we can pair up the stubs. 

To generate a degree sequence from a pre-defined degree distri-
bution we start from an analytically pre-defined degree distribu-
tion, like pk∼k-γ, shown in Figure 4.16a. Our goal is to generate a 
degree sequence {k1, k2, ..., kN} that follow the distribution pk. We 
start by calculating the function

shown in Figure 4.16b. D(k) is between 0 and 1, and the step size at 
any k equals pk. To generate a sequence of N degrees following pk, 
we generate N random numbers ri, i = 1, ..., N, chosen uniformly 
from the (0, 1) interval. For each ri we use the plot in (b) to assign 
a degree ki. The obtained ki = D-1(ri) set of numbers follows the de-
sired pk distribution. Note that the degree sequence assigned to 
a pk is not unique - we can generate multiple sets of {k1, ..., kN} se-
quences compatible with the same pk.

Figure 4.16
Generating a Degree Sequence

(4.25)D k p( ) ,k
k k

'
'
∑=
≥

(a) The power law degree distribution of 
the degree sequence we wish to generate.

(b) The function (4.25), that allows us to 
assign degrees k to uniformly distributed 
random numbers r.
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• The configuration model is frequently used in calculations, as (4.24) and 
its inherently random character helps us analytically calculate numerous 
network measures.



Degree-Preserving Randomization
As we explore the properties of a real network, we often need to ask if 

a certain network property is predicted by its degree distribution alone, or 
if it represents some additional property not contained in pk. To answer 
this question we need to generate networks that are wired randomly, but 
whose pk is identical to the original network. This can be achieved through 
degree-preserving randomization [43] described in Figure 4.17b. The idea be-
hind the algorithm is simple: We randomly select two links and swap them, 
if the swap does not lead to multi-links. Hence the degree of each of the 
four involved nodes in the swap remains unchanged. Consequently, hubs 
stay hubs and small-degree nodes retain their small degree, but the wiring 
diagram of the generated network is randomized. Note that degree-pre-
serving randomization is different from full randomization, where we 
swap links without preserving the node degrees (Figure 4.17a). Full random-
ization turns any network into an Erdős-Rényi network with a Poisson de-
gree distribution that is independent of the original pk. 
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Figure 4.17
Degree Preserving Randomization

Two algorithms can generate a randomized 
version of a given network [43], with different 
outcomes. 

(a) Full Randomization 
This algorithm generates a random (Erdős–
Rényi) network with the same N and L as 
the original network. We select randomly 
a source node (S1) and two target nodes, 
where the first target (T1) is linked direct-
ly to the source node and the second target 
(T2) is not. We rewire the S1-T1 link, turning 
it into an S1-T2 link. As a result the degree 
of the target nodes T1 and T2 changes. We 
perform this procedure once for each link 
in the network.

(b) Degree-Preserving Randomization 
This algorithm generates a network in 
which each node has exactly the same de-
gree as in the original network, but the 
network’s wiring diagram has been ran-
domized. We select two source (S1, S2) and 
two target nodes (T1, T2), such that initially 
there is a link between S1 and T1, and a link 
between S2 and T2. We then swap the two 
links, creating an S1-T2 and an S2-T1 link. 
The swap leaves the degree of each node 
unchanged.We repeat this procedure until 
we rewire each link at least once.

Bottom Panels: Starting from a scale-free 
network (middle), full randomization elim-
inates the hubs and turns the network 
into a random network (left). In contrast, 
degree-preserving randomization leaves 
the hubs in place and the network remains 
scale-free (right).

(a)

FULL
  RANDOMIZATION

(b) 

DEGREE-PRESERVING
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ORIGINAL NETWORK
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T1

S1

T2

T1

S1 S2



Hidden Parameter Model
The configuration model generates self-loops and multi-links, features 

that are absent in many real networks. We can use the hidden parameter 
model (Figure 4.18) to generate networks with a pre-defined pk but without 
multi-links and self-loops [44, 45, 46]. 

We start from N isolated nodes and assign each node i a hidden parame-
ter ηi, chosen from a distribution ρ(η). The nature of the generated network 
depends on the selection of the {ηi} hidden parameter sequence. There are 
two ways to generate the appropriate hidden parameters:

• ηi can be a sequence of N random numbers chosen from a pre-defined 
ρ(η) distribution. The degree distribution of the obtained network is

• ηi can come from a deterministic sequence {η1, η2, ..., ηN}. The degree 
distribution of the obtained network is

The hidden parameter model offers a particularly simple method to 
generate a scale-free network. Indeed, using

as the sequence of hidden parameters, according to (4.27) the obtained net-
work will have the degree distribution

for large k. Hence by choosing the appropriate α we can tune γ=1+1/α. We 
can also use ⟨η⟩ to tune ⟨k⟩ as (4.26) and (4.27) imply that ⟨k⟩ = ⟨η⟩. 

In summary, the configuration model, degree-preserving randomiza-
tion and the hidden parameter model can generate networks with a pre-de-
fined degree distribution and help us analytically calculate key network 
characteristics. We will turn to these algorithms each time we explore 
whether  a certain network property is a consequence of the network’s de-
gree distribution, or if it represents some emergent property (BOX 4.8). As 
we use these algorithms, we must be aware of their limitations:

•  The algorithms do not tell us why a network has a certain degree distri-
bution. Understanding the origin of the observed pk will be the subject 
of CHAPTERS 6 and 7.

• Several  important network characteristics, from clustering (CHAPTER 
9) to degree correlations (CHAPTER 7), are lost during randomization.

(4.26)

(4.27)

(4.28)

(4.29)
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Figure 4.18
Hidden Parameter Model

(a) We start with N isolated nodes and assign 
to each node a hidden parameter ηi, which is 
either selected from a ρ(η) distribution or it is 
provided by a sequence {ηi}. We connect each 
node pair with probability

The figure shows the probability to connect 
nodes (1,3) and (3,4). 

(b, c) After  connecting the nodes, we obtain 
the networks shown in (b) or (c), representing 
two independent realizations generated by the 
same hidden parameter sequence (a). 

The expected number of links in the network 
generated by the model  is

Similar to the random network model, L will 
vary from network to network, following an 
exponentially bounded distribution. If we wish 
to control the average degree ⟨k⟩ we can add L 
links to the network one by one. The end points 
i and j of each link are then chosen randomly 
with a probability proportional to ηi and ηj. In 
this case we connect i and j only if they were 
not connected previously.
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BOX 4.8
TESTING THE SMALL-WORD PROPERTY

In the literature the distances observed in a real network are 
often compared to the small-world formula (3.19). Yet, (3.19) was 
derived for random networks, while real networks do not have 
a Poisson degree distribution. If the network is scale-free, then 
(4.22) offers the appropriate formula. Yet, (4.22) provides only the 
scaling of the distance with N, and not its absolute value. Instead 
of fitting the average distance, we often ask: Are the distances ob-
served in a real network comparable with the distances observed 
in a randomized network with the same degree distribution? De-
gree preserving randomization helps answer this question. We 
illustrate the procedure on the protein interaction network.

(i)  Original Network 
We start by measuring the distance distribution pd of the 
original network, obtaining ⟨d⟩= 5.61 (Figure 4.19).

(ii)  Full Randomization 
We generate a random network with the same N and L as the 
original network. The obtained pd visibly shifts to the right, 
providing ⟨d⟩ = 7.13, much larger than the original ⟨d⟩ = 5.61. 
It is tempting to conclude that the protein interaction net-
work is affected by some unknown organizing principle that 
keeps the distances shorter. This would be a flawed conclu-
sion, however, as the bulk of the difference is due to the fact 
that full randomization changed the degree distribution.

(iii) Degree-Preserving Randomization 
As the original network is scale-free, the proper random 
reference should maintain the original degree distribution. 
Hence we determine pd after degree-preserving randomiza-
tion, finding that it is comparable to the original pd.

In summary, a random network overestimates the distances be-
tween the nodes, as it is missing the hubs. The network obtained 
by degree preserving randomization retains the hubs, so the dis-
tances of the randomized network are comparable to the original 
network. This example illustrates the importance of choosing the 
proper randomization procedure when exploring networks.

The distance distribution pd between each 
node pair in the protein-protein interaction 
network (Table 4.1). The green line provides the 
path-length distribution obtained under full 
randomization, which turns the network into 
an Erdős-Rényi network, while keeping N and 
L unchanged (Figure 4.17).

The light purple curve correspond to pd of the 
network obtained after degree-preserving ran-
domization, which keeps the degree of each 
node unchanged. 

We have: ⟨d⟩=5.61±1.64 (original), ⟨d⟩=7.13 ± 
1.62 (full randomization), ⟨d⟩=5.08 ± 1.34 (de-
gree-preserving randomization).

Figure 4.19
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The choice of the appropriate generative al-
gorithm depends on several factors. If we 
start from a real network or a known degree 
sequence, we can use degree-preserving ran-
domization, which guarantees that the ob-
tained networks are simple and have the de-
gree sequence of the original network. The 
model allows us to forbid multi-links or self-
loops, while maintaining the degree sequence 
of the original network.

If we wish to generate a network with given 
pre-defined degree distribution pk, we have 
two options. If pk is known, the configuration 
model offers a convenient algorithm for net-
work generation. For example, the model al-
lows us generate a networks with a pure pow-
er law degree distribution pk=Ck–γ for k≥ kmin. 

However, tuning the average degree 〈k〉 of a 
scale-free network within the configuration 
model is a tedious task, because the only avail-
able free parameter is kmin. Therefore, if we 
wish to alter 〈k〉, it is more convenient to use 
the hidden parameter model with parameter 
sequence (4.28). This way the tail of the degree 
distribution follows ~k-γ and by changing the 
number of links L we can  to control 〈k〉. 

Figure 4.20

Choosing a Generative Algorithm

Hence, the networks generated by these algorithms are a bit like a pho-
tograph of a painting: at first look they appear to be the same as the orig-
inal. Upon closer inspection we realize, however, that many details, from 
the texture of the canvas to the brush strokes, are lost.

The three algorithms discussed above raise the following question: How 
do we decide which one to use? Our choice depends on whether we start 
from a degree sequence {ki} or a degree distribution pk and whether we can 
tolerate self-loops and multi-links between two nodes. The decision tree in-
volved in this choice is provided in Figure 4.20.
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SECTION 4.9

The scale-free property has played an important role in the develop-
ment of network science for two main reasons:  

• Many networks of scientific and practical interest, from the WWW to 
the subcellular networks, are scale-free. This universality made the 
scale-free property an unavoidable issue in many disciplines.

• Once the hubs are present, they fundamentally change the system’s be-
havior. The ultra-small property offers a first hint of their impact on 
a network’s properties; we will encounter many more examples in the 
coming chapters.

As we continue to explore the consequences of the scale-free proper-
ty, we must keep in mind that the power-law form (4.1) is rarely seen in 
this pure form in real systems. The reason is that a host of processes affect 
the topology of each network, which also influence the shape of the degree 
distribution. We will discuss these processes in the coming chapters. The 
diversity of these processes and the complexity of the resulting pk confuses 
those who approach these networks through the narrow perspective of the 
quality of fit to a pure power law. Instead the scale-free property tells us 
that we must distinguish two rather different classes of networks:

Exponentially Bounded Networks 
We call a network exponentially bounded if its degree distribution de-
crease exponentially or faster for high k. As a consequence <k2> is 
smaller than <k>, implying that we lack significant degree variations. 
Examples of pk in this class include the Poisson, Gaussian, or the sim-
ple exponential distribution (Table 4.2). Erdős-Rényi and Watts-Strogatz 
networks are the best known models network belonging to this class. Ex-
ponentially bounded networks lack outliers, consequently most nodes 
have comparable degrees. Real networks in this class include highway 
networks and the power grid.

Fat Tailed Networks 
We call a network fat tailed if its degree distribution has a power law 
tail in the high-k region. As a consequence <k2> is much larger than <k>, 
resulting in considerable degree variations. Scale-free networks with 
a power-law degree distribution (4.1) offer the best known example of 
networks belonging to this class. Outliers, or exceptionally high-degree 

SUMMARY
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BOX 4.9
AT A GLANCE:
SCALE-FREE NETWORKS

DEGREE DISTRIBUTION
Discrete form:

SUMMARY

Continuous form: 

SIZE OF THE LARGEST HUB

MOMENTS OF pk for N → ∞
2 <  γ ≤ 3: 〈k〉 finite, 〈k2〉 
diverges.

γ > 3: 〈k〉 and 〈k2〉 finite.
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nodes, are not only allowed but are expected in these networks. Net-
works in this class include the WWW, the Internet, protein interaction 
networks, and most social and online networks. 

 While it would be desirable to statistically validate the precise form of 
the degree distribution, often it is sufficient to decide if a given network 
has an exponentially bounded or a fat tailed degree distribution (see AD-
VANCED TOPICS 4.A). If the degree distribution is exponentially bounded, the 
random network model offers a reasonable starting point to understand 
its topology. If the degree distribution is fat tailed, a scale-free network 
offers a better approximation. We will also see in the coming chapters that 
the key signature of the fat tailed behavior is the magniture of 〈k2〉: If 〈k2〉 is 
large, systems behave like scale-free networks; if 〈k2〉 is small, being com-
parable to 〈k〉(〈t〉+1), systems are well approximated by random networks. 

In  summary, to understand the properties of real networks, it is of-
ten sufficient to remember that in scale-free networks a few highly con-
nected hubs coexist with a large number of small nodes. The presence of 
these hubs plays an important role in the system’s behavior. In this chapter 
we explored the basic characteristics of scale-free networks. We are left, 
therefore, with an important question: Why are so many real networks 
scale-free? The next chapter provides the answer. 
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SECTION 4.10

HOMEWORK

4.1. Hubs

Calculate the expected maximum degree kmax for the undirected net-
works listed in Table 4.1.

4.2. Friendship Paradox

The degree distribution pk expresses the probability that a randomly 
selected node has k neighbors. However, if we randomly select a link, the 
probability that a node at one of its ends has degree k is qk = Akpk, where A 
is a normalization factor.

(a) Find the normalization factor A, assuming that the network has 
a power law degree distribution with 2 < Ƣ�< 3, with minimum 
degree kmin and maximum degree kmax.

(b) In the configuration model qk is also the probability that a ran-
domly chosen node has a neighbor with degree k. What is the av-
erage degree of the neighbors of a randomly chosen node?

(c) Calculate the average degree of the neighbors of a randomly cho-
sen node in a network with N = 104, Ƣ= 2.3, kmin= 1 and kmax= 1, 000. 
Compare the result with the average degree of the network, 〈k〉.

(d) How can you explain the "paradox" of (c), that is a node's friends 
have more friends than the node itself?

4.3. Generating Scale-Free Networks

Write a computer code to generate networks of size N with a power-law 
degree distribution with degree exponent Ƣ. Refer to SECTION 4.9 for the pro-
cedure. Generate three networks with Ƣ�= 2.2 and with N = 103, N = 104 and 
N = 105 nodes, respectively. What is the percentage of multi-link and self-
loops in each network? Generate more networks to plot this percentage in 
function of N. Do the same for networks with Ƣ = 3.

4.4. Mastering Distributions

Use a software which includes a statistics package, like Matlab, Math-
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ematica or Numpy in Python, to generate three synthetic datasets, each 
containing 10,000 integers that follow a power-law distribution with Ƣ = 
2.2, Ƣ = 2.5 and Ƣ = 3. Use kmin = 1. Apply the techniques described in AD-
VANCED TOPICS 4.C to fit the three distributions.
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Power laws have a convoluted history in natural and social sciences, be-
ing interchangeably (and occasionally incorrectly) called fat-tailed, heavy-
tailed, long-tailed, Pareto, or Bradford distributions. They also have a series 
of close relatives, like log-normal, Weibull, or Lévy distributions. In this sec-
tion we discuss some of the most frequently encountered distributions in 
network science and their relationship to power laws.

Exponentially Bounded Distributions
Many quantities in nature, from the height of humans to the probabil-
ity of being in a car accident, follow bounded distributions. A common 
property of these is that px decays either exponentially (e-x), or faster 
than exponentially (e-x2/σ2) for high x. Consequently the largest expect-
ed x is bounded by some upper value xmax that is not too different from 
⟨x⟩. Indeed, the expected largest x obtained after we draw N numbers 
from a bounded px grows as xmax ∼ log N or slower. This means that out-
liers, representing unusually high x-values, are rare. They are so rare 
that they are effectively forbidden, meaning that they do not occur 
with any meaningful probability. Instead, most events drawn from a 
bounded distribution are in the vicinity of ⟨x⟩. 

The high-x regime is called the tail of a distribution. Given the absence 
of numerous events in the tail, these distributions are also called thin 
tailed. 

Analytically the simplest bounded distribution is the exponential dis-
tribution e-λx. Within network science the most frequently encoun-
tered bounded distribution is the Poisson distribution (or its parent, 
the binomial distribution), which describes the degree distribution of a 
random network. Outside network science the most frequently encoun-
tered member of this class is the normal (Gaussian) distribution (Table 
4.2).

Fat Tailed Distributions
The terms fat tailed, heavy tailed, or long tailed refer to px whose decay 

ADVANCED TOPICS 4.A
POWER LAWS

SECTION 4.11
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at large x is slower than exponential. In these distributions we often en-
counter events characterized by very large x values, usually called out-
liers or rare events. The power-law distribution (4.1) represents the best 
known example of a fat tailed distribution. An instantly recognizable 
feature of an fat tailed distribution is that the magnitude of the events 
x drawn from it can span several orders of magnitude. Indeed, in these 
distributions the size of the largest event after N trials scales as xmax ∼ 
Nζ where ζ is determined by the exponent γ characterizing the tail of 
the px distribution. As Nζ grows fast, rare events or outliers occur with 
a noticeable frequency, often dominating the properties of the system.

The relevance of fat tailed distributions to networks is provided by sev-
eral factors:
 
• Many quantities occurring in network science, like degrees, link 
weights and betweenness centrality, follow a power-law distribution in 
both real and model networks.

• The power-law form is analytically predicted by appropriate network 
models (CHAPTER 5).

Crossover Distribution (Log-Normal, Stretched Exponential)
When an empirically observed distribution appears to be between a 
power law and exponential, crossover distributions are often used to fit 
the data. These  distributions may be exponentially bounded (power law 
with exponential cutoff), or not bounded but decay faster than a power 
law (log-normal or stretched exponential). Next we discuss the proper-
ties of several frequently encountered crossover distributions. 

Power law with exponential cut-off is often used to fit the degree distri-
bution of real networks. Its density function has the form:

where x > 0 and γ > 0 and�Ɗ(s,y)�denotes the upper incomplete gamma 
function. The analytical form (4.30) directly captures its crossover na-
ture: it combines a power-law term, a key component of fat tailed dis-
tributions, with an exponential term, responsible for its exponentially 
bounded tail. To highlight its crossover characteristics we take the log-
arithm of (4.30),

For x ≪ 1/λ the second term on the r.h.s dominates, suggesting that the 
distribution follows a power law with exponent γ. Once x ≫ 1/λ, the λx 
term overcomes the ln x term, resulting in an exponential cutoff for 
high x.

(4.30)

(4.31)

(4.32)

p C(x) x e x= γ λ− −

λ
γ λ

=
Γ −

γ−

C x(1 , )
1

min

p C(x) x xln ln ln .γ λ= − −

,

,
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Stretched exponential (Weibull distribution) is formally similar to (4.30) 
except that there is a fractional power law in the exponential. Its name 
comes from the fact that its cumulative distribution function is one 
minus a stretched exponential function P(x) = e-(λx)β (4.32) which leads to 
density function

In most applications x varies between 0 and +∞. In (4.32) β is the stretch-
ing exponent, determining the properties of p(x):

• For β = 1 we recover a simple exponential function.

• If β is between 0 and 1, the graph of log p(x) versus x is “stretched”, 
meaning that it spans several orders of magnitude in x. This is the re-
gime where a stretched exponential is difficult to distinguish from a 
pure power law. The closer β is to 0, the more similar is p(x) to the power 
law x-1.

• If β > 1 we have a “compressed” exponential function, meaning that x 
varies in a very narrow range.

• For β = 2 (4.33) reduces to the Rayleigh distribution.

As we will see in CHAPTERS 5  and 6, several network models predict a 
streched exponential degree distribution.

A log-normal distribution (Galton or Gibrat distribution) emerges if ln x 
follows a normal distribution. Typically a variable follows a log-normal 
distribution if it is the product of many independent positive random 
numbers. We encounter log-normal distributions in finance, repre-
senting the compound return from a sequence of trades. 

The probability density function of a log-normal distribution is

Hence a log-normal is like a normal distribution except that its variable 
in the exponential term is not x, but ln x. 

To understand why a log-normal is occasionally used to fit a power law 
distribution, we note that

captures the typical variation of the order of magnitude of x. Therefore 
now ln x follows a normal distribution, which means that x can vary 
rather widely. Depending on the value of σ the log-normal distribution 

(4.35)
(ln )ƫp(x)=

x
x1

2
exp

2 2

2

= β λ− − βP x Cx e'( ) x1 ( )

βλ= βC .

(4.33)

(4.34)

,

.

σ 2 = (ln x)2 − ln x 2                                    (4.36)



THE SCALE-FREE PROPERTY 41 4.A POWER LAWS

may resemble a power law for several orders of magnitude. This is also 
illustrated in Table 4.2, that shows that ⟨x2⟩ grows exponentially with σ, 
hence it can be very large. 

In summary, in most areas where we encounter fat-tailed distribu-
tions, there is an ongoing debate asking which distribution offers the best 
fit to the data. Frequently encountered candidates include a power law, a 
stretched exponential, or a log-normal function. In many systems empir-
ical data is not sufficient to distinguish these distributions. Hence as long 
as there is empirical data to be fitted, the debate surrounding the best fit 
will never die out.

The debate is resolved by accurate mechanistic models, which analyt-
ically predict the expected degree distribution.We will see in the coming 
chapters that in the context of networks the models predict Poisson, sim-
ple exponential, stretched exponential, and power law distributions. The 
remaining distributions in Table 4.2 are occasionally used to fit the degrees 
of some networks, despite the fact that we lack theoretical basis for their 
relevance for networks.
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The table lists frequently encountered distri-
butions in network science. For each distribu-
tion we show the density function px, the ap-
propriate normalization constant C such that               

for the continuous case or                    

for the discrete case. Given that ⟨x⟩ and ⟨x2⟩ 
play an important role in network theory, we 
show the analytical form of these two quan-
tities for each distribution. As some of these 
distributions diverge at x = 0, for most of 
them ⟨x⟩ and ⟨x2⟩ are calculated assuming 
that there is a small cutoff xmin in the system. 
In networks xmin often corresponds to the 
smallest degree, kmin, or the smallest degree 
for which the appropriate distribution offers 
a good fit.

Distributions in Network Science
Table 4.2

∫ =
=

∞

Cf x dx( ) 1
x xmin

∑ =
=

∞

Cf x( ) 1
x xmin

px/p(x) ⟨x⟩ ⟨x2⟩

e−µµx
/
x! µ µ(1 + µ)

(1− e−λ)e−λx 1
/
(eλ − 1) (eλ + 1)

/
(eλ − 1)2

λe−λx 1
/
λ 2

/
λ2

x−α
/
ζ(α)

{
ζ(α− 2)

/
ζ(α), α > 2

∞, α ≤ 1

{
ζ(α− 1)

/
ζ(α), α > 1

∞, α ≤ 2

αx−α

{
α
/
(α− 1), α > 2

∞, α ≤ 1

{
α
/
(α− 2), α > 1

∞, α ≤ 2

λ1−α

Γ(1−α)x
−αe−λx λ−1 Γ(2−α)

Γ(1−α) λ−2 Γ(3−α)
Γ(1−α)

βλβxβ−1e−(λx)β λ−1Γ(1 + β−1) λ−2Γ(1 + 2β−1)

1
x
√
2πσ2

e−(lnx−µ)2
/
(2σ2) eµ+σ2

/
2 e2(µ+σ2)

1√
2πσ2

e−(x−µ)2
/
(2σ2) µ µ2 + σ2

NAME

4SMWWSR�
(discrete)

E\TSRIRXMEP
(discrete)

E\TSRIRXMEP�
(continuous)

4S[IV�PE[�
�HMWGVIXI�

4S[IV�PE[
(continuous)

4S[IV�PE[�[itL�GYXSJJ 
(continuous)

7XVIXGLIH�I\TSRIRXMEP
(continuous)

0SK�RSVQEP
(continuous)

NSVQEP
(continuous)
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Linear and the log-log plots for the most fre-
quently encountered distributions in network 
science. For definitions see Table 4.2.

Distributions Visualized
Figure 4.21
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SECTION 4.12

ADVANCED TOPICS 4.B
PLOTTING POWER-LAWS

Plotting the degree distribution is an integral part of analyzing the 
properties of a network. The process starts with obtaining Nk, the number 
of nodes with degree k. This can be provided by direct measurement or by 
a model. From Nk we calculate pk = Nk /N. The question is, how to plot pk to 
best extract its properties.

Use a Log-Log Plot
In a scale-free network numerous nodes with one or two links coexist 
with a few hubs, representing nodes with thousands or even millions 
of links. Using a linear k-axis compresses the numerous small degree 
nodes in the small-k region, rendering them invisible. Similarly, as 
there can be orders of magnitude differences in pk for k = 1 and for large 
k, if  we plot pk on a linear vertical axis, its value for large k will appear 
to be zero (Figure 4.22a). The use of a log-log plot avoids these problems. 
We can either use logarithmic axes, with powers of 10 (used throughout 
this book, Figure 4.22b) or we can plot log pk in function of log k (equally 
correct, but slightly harder to read). Note that points with pk =0 or k=0 
are not shown on a log-log plot as log 0=-∞.

Avoid Linear Binning
The most flawed method (yet frequently seen in the literature) is to 
simply plot pk = Nk/N on a log-log plot (Figure 4.22b). This is called linear 
binning, as each bin has the same size ∆k = 1. For a scale-free network 
linear binning results in an instantly recognizable plateau at large k, 
consisting of numerous data points that form a horizontal line (Figure 
4.22b). This plateau has a simple explanation: Typically we have only one 
copy of each high degree node, hence in the high-k region we either 
have Nk=0 (no node with degree k) or Nk=1 (a single node with degree k). 
Consequently linear binning will either provide pk=0, not shown on a 
log-log plot, or pk = 1/N, which applies to all hubs, generating a plateau 
at pk = 1/N. 

This plateau affects our ability to estimate the degree exponent γ. For 
example, if we attempt to fit a power law to the data shown in Figure 
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4.22b using linear binning, the obtained γ is quite different from the 
real value γ=2.5. The reason is that under linear binning we have a large 
number of nodes in small k bins, allowing us to confidently fit pk in this 
regime. In the large-k bins we have too few nodes for a proper statistical 
estimate of pk. Instead the emerging plateau biases our fit. Yet, it is pre-
cisely this high-k regime that plays a key role in determining γ. Increas-
ing the bin size will not solve this problem. It is therefore recommended 
to avoid linear binning for fat tailed distributions.

Use Logarithmic Binning
Logarithmic binning corrects the non-uniform sampling of linear bin-
ning. For log-binning we let the bin sizes increase with the degree, mak-
ing sure that each bin has a comparable number of nodes. For example, 
we can choose the bin sizes to be multiples of 2, so that the first bin has 
size b0=1, containing all nodes with k=1; the second has size b1=2, con-
taining nodes with degrees k=2, 3; the third bin has size b2=4 containing 
nodes with degrees k=4, 5, 6, 7. By induction the nth bin has size 2n-1 and 
contains all nodes with degrees  k=2n-1, 2n-1+1, ..., 2n-1-1. Note that the 
bin size can increase with arbitrary increments, bn = cn, where c > 1. The 
degree distribution is given by p⟨kn⟩

=Nn/bn, where Nn is the number of 
nodes found in the bin n of size bn and ⟨kn⟩ is the average degree of the 
nodes in bin bn. 

The logarithmically binned pk is shown in Figure 4.22c. Note that now the 
scaling extends into the high-k plateau, invisible under linear binning. 
Therefore logarithmic binning extracts useful information from the 

Plotting a Degree Distributions

(a)

(c)

(b)

(d)

Figure 4.22

A degree distribution of the form 
pk ∼ (k + k0)-γ, with k0=10 and γ=2.5, plotted us-
ing the four procedures described in the text:

(a) Linear Scale, Linear Binning.
It is impossible to see the distribution on 
a lin-lin scale. This is the reason why we 
always use log-log plot for scale-free net-
works.

(b) Log-Log Scale, Linear Binning. 
Now the tail of the distribution is visible 
but there is a plateau in the high-k re-
gime, a consequence of linear binning. 

(c) Log-Log Scale, Log-Binning. 
With log-binning the plateau dissappears 
and the scaling extends into the high-k 
regime. For reference we show as light 
grey the data of (b) with linear binning. 

(d) Log-Log Scale, Cumulative. 
The cumulative degree distribution 
shown on a log-log plot.
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rare high degree nodes as well (BOX 4.10). 

Use Cumulative Distribution
Another way to extract information from the tail of pk is to plot the 
complementary cumulative distribution 

which again enhances the statistical significance the high-degree re-
gion. If pk follows the power law (4.1), then the cumulative distribution 
scales as

The cumulative distribution again eliminates the plateau observed for 
linear binning and leads to an extended scaling region (Figure 4.22d), al-
lowing for a more accurate estimate of the degree exponent.

In summary, plotting the degree distribution to extract its features re-
quires special attention. Mastering the appropriate tools can help us better 
explore the properties of real networks (BOX 4.10).

(4.38)Pk ∼ k
−γ +1.

Pk = p ,q
q=k+1

(4.37)
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BOX 4.10
DEGREE DISTRIBUTION OF REAL NETWORKS

In real systems we rarely observe a degree distribution that fol-
lows a pure power law. Instead, for most real systems pk has the 
shape shown in Figure 4.23a, with some recurring features:

• Low-degree saturation is a common deviation from the pow-
er-law behavior. Its signature is a flattened pk for k < ksat. This 
indicates that we have fewer small degree nodes than expect-
ed for a pure power law. The origin of the saturation will be 
explained in CHAPTER 6.

• High-degree cutoff appears as a rapid drop in pk for k > kcut, 
indicating that we have fewer high-degree nodes than expect-
ed in a pure power law. This limits the size of the largest hub, 
making it smaller than predicted by (4.18). High-degree cut-
offs emerge if there are inherent limitations in the number 
of links a node can have. For example, in social networks indi-
viduals have difficulty maintaining meaningful relationships 
with an exceptionally large number of acquaintances. 

Given  the widespread presence of such cutoffs the degree distri-
bution is occasionally fitted to

where ksat accounts for degree saturation, and the exponential 
term accounts for high-k cutoff. To extract the full extent of the 
scaling we plot

in function of  k = k + ksat.  According to (4.40) p ~ k -γ, correcting for 
the two cutoffs, as seen in Figure 4.23b. 

It is occasionally claimed that the presence of low-degree or 
high-degree cutoffs implies that the network is not scale-free. 
This is a misunderstanding of the scale-free property: Virtually 
all properties of scale-free networks are insensitive to the low-de-
gree saturation. Only the high-degree cutoff affects the system’s 
properties by limiting the divergence of the second moment, ⟨k2⟩. 
The presence of such cutoffs indicates the presence of additional 
phenomena that need to be understood.

(4.39)

(4.40) Rescaling the Degree Distribution
Figure 4.23

(a) In real networks the degree distribu-
tion frequently deviates from a pure pow-
er law by showing a low degree saturation 
and high degree cutoff.

(b) By plotting the rescaled    in function 
of (k + ksat),  as suggested by (4.40), the de-
gree distribution follows a power law for 
all degrees.

px = a(k + ksat )
−γ exp − k
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As the properties of scale-free networks depend on the degree expo-
nent (SECTION 4.7), we need to determine the value of γ. We face several 
difficulties, however, when we try to fit a power law to real data. The most 
important is the fact that the scaling is rarely valid for the full range of 
the degree distribution.  Rather we observe small- and high- degree cut-
offs (BOX 4.10), denoted in this section with  Kmin and Kmax, within which we 
have a clear scaling region. Note that Kmin and Kmax are different from kmin 
and kmax, the latter corresponding to the smallest and largest degrees in a 
network.  They can be the same as ksat and kcut discussed in BOX 4.10. Here we 
focus on estimating the small degree cutoff Kmin, as the high degree cutoff 
can be determined in a similar fashion. The reader is advised to consult 
the discussion on systematic problems provided at the end of this section 
before implementing this procedure. 

Fitting Procedure
As the degree distribution is typically provided as a list of positive in-

tegers kmin , ..., kmax, we aim to estimate γ from a discrete set of data points  
[47]. We use the citation network to illustrate the procedure. The network 
consists of N=384,362 nodes, each node representing a research paper 
published between 1890 and 2009 in journals published by the American 
Physical Society. The network has L = 2,353,984 links, each representing a 
citation from a published research paper to some other publication in the 
dataset (outside citations are ignored). For no particular reason, this is not 
the citation dataset listed in Table 4.1. See [48] for an overall characteriza-
tion of this data. The steps of the fitting process are [47]:

1. Choose a value of Kmin between kmin and kmax. Estimate the value of 
the degree exponent corresponding to this Kmin using

SECTION 4.13

ADVANCED TOPICS 4.C
ESTIMATING THE DEGREE
EXPONENT

(4.41)γ = 1+ N ln
i=1

N

∑ ki
Kmin −

1
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1

.

Online Resource 4.2
Fitting power-law

The algorithmic tools to perform the fit-
ting procedure described in this section 
are available at http://tuvalu.santafe.
edu/~aaronc/powerlaws/.>
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2. With the obtained (γ, Kmin) parameter pair assume that the degree 
distribution has the form

hence the associated cumulative distribution function (CDF) is

3. Use the Kormogorov-Smirnov test to determine the maximum dis-
tance D between the CDF of the data S(k) and the fitted model pro-
vided by (4.43) with the selected (γ, kmin) parameter pair,

Equation (4.44) identifies the degree for which the difference D be-
tween the empirical distribution S(k) and the fitted distribution 
(4.43) is the largest.

4. Repeat steps (1-3) by scanning the whole Kmin range from kmin to kmax.
We aim to identify the Kmin value for which D provided by (4.44) is 
minimal. To illustrate the procedure, we plot D as a function of Kmin 
for the citation network (Figure 4.24b). The plot indicates that D is 
minimal for Kmin= 49, and the corresponding γ estimated by (4.41), 
representing the optimal fit, is γ=2.79. The standard error for the ob-
tained degree exponent is

which implies that the best fit is γ ± σγ. For the citation network we 
obtain σγ=0.003, hence γ=2.79(3). 

Note that in order to estimate γ datasets smaller than N=50 should be 
treated with caution.

Goodness-of-fit
Just because we obtained a (γ, Kmin) pair that represents an optimal fit 

to our dataset, does not mean that the power law itself is a good model for 
the studied distribution.We therefore need to use a goodness-of-fit test, 
which generates a p-value that quantifies the plausibility of the power law 
hypothesis. The most often used procedure consists of the following steps:

1. Use the cumulative distribution (4.43) to estimate the KS distance be-
tween the real data and the best fit, that we denote by Dreal. This is 
step 3 above, taking the value of D for Kmin that offered the best fit 
to the data. For the citation data we obtain Dreal  = 0.01158 for Kmin= 
49 (Figure 4.24c).

(4.42)

(4.43)

(4.44)

(4.45)

Maximum Likelihood Estimation
Figure 4.24

(a) The degree distribution pk of the citation 
network, where the straight purple line 
represents the best fit based on the model 
(4.39).

(b) The values of Kormogorov-Smirnov test vs. 
Kmin for the citation network.

(c) p(Dsynthetic) for M=10,000 synthetic datasets, 
where the grey line corresponds to the Dreal 
value extracted for the citation network.
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2. Use (4.42) to generate a degree sequence of N degrees (i.e. the same 
number of random numbers as the number of nodes in the original 
dataset) and substitute the obtained degree sequence for the empiri-
cal data, determining Dsynthetic for this hypothetical degree sequence. 
Hence Dsynthetic represents the distance between a synthetically gen-
erated degree sequence, consistent with our degree distribution, 
and the real data.

  3.  The goal is to see if the obtained Dsynthetic is comparable to Dreal. For this 
we repeat step (2) M times (M ≫ 1), and each time we generate a new 
degree sequence and determine the corresponding Dsynthetic, eventu-
ally obtaining the p(Dsynthetic) distribution. Plot p(Dsynthetic) and show 
as a vertical bar Dreal (Figure 4.24c).  If Dreal is within the p(Dsynthetic) dis-
tribution, it means that the distance between the model providing 
the best fit and the empirical data is comparable with the distance 
expected from random degree samples chosen from the best fit dis-
tribution. Hence the power law is a reasonable model for the data. 
If, however, Dreal falls outside the p(Dsynthetic) distribution, then the 
power law is not a good model - some other function is expected to 
describe the original pk better.

While the distribution shown in Figure 4.24c may be in some cases useful 
to illustrate the statistical significance of the fit, in general it is better to 
assign a p-number to the fit, given by

The closer p is to 1, the more likely that the difference between the 
empirical data and the model can be attributed to statistical fluctuations 
alone. If p is very small, the model is not a plausible fit to the data.

Typically, the model is accepted if p > 1%. For the citation network we 
obtain p < 10-4, indicating that a pure power law is not a suitable model 
for the original degree distribution. This outcome is somewhat surprising, 
as the power-law nature of citation data has been documented repeatedly 
since 1960s [7, 8]. This failure indicates the limitation of the blind fitting 
to a power law, without an analytical understanding of the underlying dis-
tribution. 

Fitting Real Distributions
To correct the problem, we note that the fitting model (4.44) eliminates 
all the data points with k < Kmin. As the citation network is fat tailed, 
choosing Kmin = 49 forces us to discard over 96% of the data points. Yet, 
there is statistically useful information in the k < Kmin regime, that is 
ignored by the previous fit. We must introduce an alternate model that 
resolves this problem.

As  we discussed in BOX 4.10, the degree distribution of many real net-
works, like the citation network, does not follow a pure power law. It 
often has low degree saturations and high degree cutoffs, described by 
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(4.46)p = P Dsynthetic( )
D

∞

∫ dDsynthetic .
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the form

and the associated CDF is 

where ksat and kcut correspond to low-k saturation and the large-k cutoff, 
respectively. The difference between our earlier procedure and (4.47) is 
that we now do not discard the points that deviate from a pure power 
law, but instead use a function that offers a better fit to the whole de-
gree distribution, from kmin to kmax.

Our goal is to find the fitting parameters ksat, kcut, and γ of the model 
(4.47), which we achieve through the following steps (Figure 4.25):

1. Pick a value for ksat and kcut between Kmin and Kmax. Estimate the val-
ue of the degree exponent γ using the steepest descend method that 
maximizes the log-likelihood function

That is, for fixed (ksat, kcut) we vary γ until we find the maximum of 
(4.49).

2.  With the obtained γ(ksat, kcut) assume that the degree distribution has 
the form (4.47). Calculate the Kormogorov Smirnov parameter D be-
tween the cumulative degree distribution (CDF) of the original data 
and the fitted model provided by (4.47).

3. Change ksat and kcut, and repeat steps (1-3), scanning with ksat from 
kmin= 0 to kmax and scanning with kcut from kmin= k0 to kmax. The goal is 
to identify ksat and kcut values for which D is minimal. We illustrate 
this by plotting D in function of ksat for several kcut values in Figure 
4.25a for our citation network. The (ksat, kcut) for which D is minimal, 
and the corresponding γ is provided by (4.41), represent the optimal 
parameters of the fit. For our dataset the optimal fit is obtained for 
ksat= 12 and kcut= 5,691, providing the degree exponent γ= 3.028. We 
find that now D for the real data is within the generated p(D) distri-
bution (Figure 4.25c), and the associated p-value is 69%.

Systematic Fitting Issues
The   procedure described above may offer the impression that deter-
mining the degree exponent is a cumbersome but straightforward pro-
cess. In reality these fitting methods have some well known limitations:

1. A pure power law is an idealized distribution that emerges in its 

(4.49)
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(a) The Kormogorov-Smirnov parameter D vs. 
ksat for  kcut = 3,000,  6,000,  9,000, respec-
tively. The curve indicates that ksat= 12 cor-
responds to the minimal D. Inset: D vs. kcut 
for ksat= 12, indicating that kcut =5,691 min-
imizes D. 

(b) Degree distribution pk where the straight 
line represents the best estimate from (a). 
Now the fit accurately captures the whole 
curve, not only its tail, or it did in Figure 
4.24a. 

(c) p(Dsynthetic) for M = 10,000 synthetic data-
sets. The grey line corresponds to the Dreal 
value from the citation network.
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form (4.1) only in simple models (CHAPTER 5). In reality, a whole range 
of processes contribute to the topology of real networks, affecting 
the precise shape of the degree distribution. These processes will be 
discussed in CHAPTER 6. If pk does not follow a pure power law, the 
methods described above, designed to fit a power law to the data, 
will inevitably fail to detect statistical significance. While this find-
ing can mean that the network is not scale-free, it most often means 
that we have not yet gained a proper understanding of the precise 
form of the degree distribution. Hence we are fitting the wrong 
functional form of pk to the dataset.

2. The statistical tools used above to test the goodness-of-fit rely on 
the Kolmogorov-Smirnov criteria, which measures the maximum 
distance between the fitted model and the dataset. If almost all data 
points follow a perfect power law, but a single point for some rea-
son deviates from the curve, we will loose the fit’s statistical signif-
icance. In real systems there are numerous reasons for such local 
deviations that have little impact on the system’s overall behavior. 
Yet, removing these “outliers” could be seen as data manipulation; 
if kept, however, one cannot detect the statistical significance of the 
power law fit. 

A good example is provided by the actor network, whose degree dis-
tribution follows a power law for most degrees. There is, however, a 
prominent outlier at k = 1,287, thanks to the 1956 movie Around the 
World in Eighty Days. This is the only movie where imdb.com the 
source of the actor network, lists all the normally uncredited extras 
in the cast. Hence the movie appears to have 1,288 actors. The second 
largest movie in the dataset has only 340 actors. Since each extra 
has links only to the 1,287 extras that played in the same movie, we 
have a local peak in pk at k=1,287. Thanks to this peak, the degree dis-
tribution, fitted to a power law, fails to pass the Kolmogorov-Smirn-
ov criteria. Indeed, as indicated in Table 4.3, neither the pure power 
law fit, nor a power law with high-degree cutoff offers a statistical-
ly significant fit. Yet, ultimately this single point does not alter the 
power law nature of the degreee distribution.

4. As a result of the issues discussed above, the methodology described 
to fit a power law distribution often predicts a small scaling regime, 
forcing us to remove a huge fraction of the nodes (often as many as 

ESTIMATING THE DEGREE EXPONENT

For the power grid a power law degree distri-
bution does not offer a statistically signifi-
cant fit. Indeed, we will encounter numerous 
evidence that the underlying network is not 
scale-free. We used the fitting procedure de-
scribed in this section to fit the exponential 

function e-λk to the degree distribution of the 
power grid, obtaining a statistically signif-
icant fit. The table shows the obtained λ pa-
rameters, the kmin over which the fit is valid, 
the obtained p-value, and the percentage of 
data points included in the fit.

Table 4.3
Exponential Fitting

  
P-VALUE PERCENTAGE

Power Grid 0.5174 0.91 12%

kmin

Power Grid 0.517 4 0.91 12%

99%, see Table 4.4) to obtain a statistically significant fit. Once plotted 
next to the original dataset, the obtained fit can be at times ridicu-
lous, even if the method predits statistical significance. 
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In summary, estimating the degree exponent is still not yet an exact 
science. We continue to lack methods that would estimate the statistical 
significance in a manner that would be acceptable to a practitioner. The 
blind application of the tools describe above often leads to either fits that 
obviously do not capture the trends in the data, or to a false rejection of the 
power-law hypothesis. An important improvement is our ability to derive 
the expected form of the degree distribution, a problem discussed in CHAP-
TER 6.

The estimated degree exponents and the ap-
propriate fit parameters for the reference 
networks studied in this book. We implement 
two fitting strategies, the first aiming to fit a 
pure power law in the region (Kmin, ∞) and the 
second fits a power law with saturation and 
exponential cutoff to the whole dataset. In the 
table we show the obtained γ exponent and 
Kmin for the fit with the best statistical sig-
nificance, the p-value for the best fit and the 
percentage of the data included in the fit. In 
the second case we again show the exponent 
γ, the two fit parameters, ksat and kcut, and the 
p-value of the obtained fit. Note that p > 0.01 
is considered to be statistically significant.

Table 4.4
Fitting Parameters for Real Networks

K
min

k
sat

k
cut

                                                                          

P-VALUE PERCENT P-VALUE

INTERNET 3.42 72 0.13 0.6% 3.55 8 8500 0.00

WWW (IN) 2.00 1 0.00 100% 1.97 0 660 0.00

WWW (OUT) 2.31 7 0.00 15% 2.82 8 8500 0.00

POWER GRID 4.00 5 0.00 12% 8.56 19 14 0.00

MOBILE PHONE CALLS 
(IN)

4.69 9 0.34 2.6% 6.95 15 10 0.00

MOBILE PHONE CALLS 
(OUT)

5.01 11 0.77 1.7% 7.23 15 10 0.00

EMAIL-PRE (IN) 3.43 88 0.11 0.2% 2.27 0 8500 0.00

EMAIL-PRE (OUT) 2.03 3 0.00 1.2% 2.55 0 8500 0.00

SCIENCE COLLABORATION 3.35 25 0.0001 5.4% 1.50 17 12 0.00

ACTOR NETWORK 2.12 54 0.00 33% - - - 0.00

CITATION NETWORK (IN) 2.79 51 0.00 3.0% 3.03 12 5691 0.69

CITATION NETWORK 
(OUT)

4.00 19 0.00 14% -0.16 5 10 0.00

E.COLI METABOLISM 
(IN)

2.43 3 0.00 57% 3.85 19 12 0.00

E.COLI METABOLISM 
(OUT)

2.90 5 0.00 34% 2.56 15 10 0.00

YEAST PROTEIN 
INTERACTIONS

2.89 7 0.67 8.3% 2.95 2 90 0.52

K ;[Kmin, ] (

(

k + ksat e k/kcut
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