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A COMPARISON OF STATE-OF-THE-ART CLASSIFICATION 
TECHNIQUES FOR EXPERT AUTOMOBILE INSURANCE CLAIM 
FRAUD DETECTION 

Stijn Viaene 
Richard A. Derrig 
Bart Baesens 
Guido Dedene 

ABSTRACT 

Several state-of-the-art binary classification techniques are experimentally 
evaluated in the context of expert automobile insurance claim fraud 
detection. The predictive power of logistic regression, C4.5 decision tree, 
k-nearest neighbor, Bayesian learning multilayer perceptron neural network, 
least-squares support vector machine, naive Bayes, and tree-augmented naive 
Bayes classification is contrasted. For most of these algorithm types, we report 
on several operationalizations using alternative hyperparameter or design 
choices. We compare these in terms of mean percentage correctly classified 
(PCC) and mean area under the receiver operating characteristic (AUROC) 
curve using a stratified, blocked, ten-fold cross-validation experiment. We 
also contrast algorithm type performance visually by means of the convex 
hull of the receiver operating characteristic (ROC) curves associated with 
the alternative operationalizations per algorithm type. The study is based 
on a data set of 1,399 personal injury protection claims from 1993 accidents 
collected by the Automobile Insurers Bureau of Massachusetts. To stay as 
close to real-life operating conditions as possible, we consider only predictors 
that are known relatively early in the life of a claim. Furthermore, based on 
the qualification of each available claim by both a verbal expert assessment 
of suspicion of fraud and a ten-point-scale expert suspicion score, we can 
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compare classification for different target/class encoding schemes. Finally, 
we also investigate the added value of systematically collecting nonflag pre- 
dictors for suspicion of fraud modeling purposes. From the observed results, 
we may state that: (1) independent of the target encoding scheme and the 
algorithm type, the inclusion of nonflag predictors allows us to significantly 
boost predictive performance; (2) for all the evaluated scenarios, the perfor- 
mance difference in terms of mean PCC and mean AUROC between many 
algorithm type operationalizations turns out to be rather small; visual com- 
parison of the algorithm type ROC curve convex hulls also shows limited 
difference in performance over the range of operating conditions; (3) rela- 
tively simple and efficient techniques such as linear logistic regression and 
linear kernel least-squares support vector machine classification show excel- 
lent overall predictive capabilities, and (smoothed) naive Bayes also performs 
well; and (4) the C4.5 decision tree operationalization results are rather disap- 
pointing; none of the tree operationalizations are capable of attaining mean 
AUROC performance in line with the best. Visual inspection of the evaluated 
scenarios reveals that the C4.5 algorithm type ROC curve convex hull is often 
dominated in large part by most of the other algorithm type hulls. 

INTRODUCTION 

Detection of fraudulent claims has blossomed into a high-priority and technology- 
laden problem for insurers. This was not always so. Until the early 1980s, the polite 
way to discuss underwriting and claims settlement fraud was to include it with other 
potential adverse actions by policy holders and claimants under the rubric of moral 
hazard.1 The common thread of all occurrences of moral hazard in insurance is that 
parties other than the insurer may hold unrevealed information that can materially 
affect the true size of the risk exposure or accidental loss. Policy holders may mis- 
inform the insurer ex ante about the expected level of care taken to minimize the 
exposure to specified insurable risks, while claimants may hold back ex post the true 
level of injury and/or medical treatment necessary and appropriate for the claimed 
injury. The adverse effects of moral hazard on insurers have been controlled histor- 
ically through contract design as well as information-gathering activities during the 
underwriting and claims settlement processes. 

Specific attention to fraudulent insurance transactions began to emerge in the United 
States with the designation of groups of experienced claims adjusters with specialized 
skills in the investigation of claims. The units came to be known generally as Special 
Investigation Units, or SIUs (Ghezzi, 1983), and are commonplace now in claims op- 
erations in the United States. Canadian and European insurers recognized the fraud 
problem as well and moved to adopt the SIU format for handling suspicious claims 
(Clarke, 1986,1990; Comite Europeen des Assurances, 1996; Dionne and Belhadji, 1996; 
Dionne, Gibbens, and St.-Michel, 1993; Insurance Bureau of Canada, 1994). By the late 
1990s, companies in the United States had developed extensive internal procedures 
to cope with fraud while individual state governments established fraud bureaus to 
investigate and prosecute perpetrators criminally (Insurance Research Council, 1997). 
Automobile insurance, and bodily injury coverage in particular, were examined sys- 
tematically in the 1990s for their claiming patterns, including fraud and excessive 
medical treatment known as buildup (Cummins and Tennyson, 1992, 1996; Derrig, 

For an up-to-date discussion of the full ramifications of moral hazard, see Doherty (2000). 
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Weisberg, and Chen, 1994; Dionne and Belhadji, 1996; Insurance Research Council, 
1996; Weisberg and Derrig, 1991). 

Operationally, company claims adjustment units identified those claims needing 
attention by noting the presence of one or more claim characteristics known as fraud 
indicators, or so-called red flags. Claims adjusters were trained to recognize (infor- 
mally) those claims that had combinations of red flags that experience showed were 
associated with suspicious claims. Typically, the assessment of the probability or sus- 
picion of fraud depended heavily on claims personnel to notice abnormalities in pa- 
per documents. Nowadays, the increasing systematic collection of data has made 
the use of pattern recognition techniques a valid and worthwhile endeavor (Derrig, 
1999). Formal relations between red flag combinations and suspicious claims were 
established in closed claims empirical studies using Massachusetts data with regres- 
sion techniques (Weisberg and Derrig, 1995, 1998), with fuzzy clustering (Derrig and 
Ostaszewski, 1995), and with unsupervised neural networks (Brockett, Xia, and Der- 
rig, 1998); using Canadian data with regression and probit models (Belhadji, Dionne, 
and Tarkhani, 2000); and using Spanish market data with regression models (Artis, 
Ayuso, and Guillen, 1999,2000). Four Massachusetts companies participated in a real- 
time experiment on a cohort of 1996 personal injury protection (no-fault) claims where 
claims were periodically scored using red flags and a regression scoring model to 
identify claims for investigation (Derrig and Weisberg, 1998). It needs no longer to be 
emphasized that using automated types of fraud detection should make it possible to 
reduce the investigative process lead time and allow for more optimal allocation of 
scarce investigative resources. 

This article builds on work published by the Automobile Insurers Bureau (AIB) of 
Massachusetts on personal injury protection (PIP) automobile insurance claim fraud 
detection. The data underlying our experiments were studied and documented by 
the AIB in (Weisberg and Derrig, 1991, 1995, 1998). Here, the claims handling process 
is conceptualized as a two-stage process. In the first stage, the claim is judged by a 
front-line adjuster, whose main task is to assess the exposure of the insurance compa- 
ny to payment of the claim. In the same effort, the claim is scanned for claim padding 
and fraud. Claims that are modest or appear to be legitimate are settled in a routine 
fashion. Claims that raise questions and involve a substantial payment are scheduled 
to pass a second reviewing phase. In case fraud is suspected, this might come down 
to a referral of the claim to an SIU. 

In line with the analyses using pattern recognition technology for developing models 
for first-stage claims screening, as discussed above, we set up a benchmarking study 
including several state-of-the-art binary classification techniques: logistic regression, 
C4.5 decision tree, k-nearest neighbor, Bayesian learning multilayer perceptron neural 
network, least-squares support vector machine, naive Bayes, and tree-augmented 
naive (TAN) Bayes classification. For most of these algorithm types we report on 
several operationalizations. We compare these on the basis of their ability to repro- 
duce human expert decisions to further investigate a claim or not. We build robust- 
ness analysis with regard to the target/class concept into the experimental plan by 
doing the same comparison experiment for different referral definition thresholds. 
This allows us to mimic different company policies or target concept drift. The lat- 
ter is possible by the qualification of each available claim by both a verbal expert 
assessment of suspicion of fraud and a ten-point-scale expert suspicion score 
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(Weisberg and Derrig, 1991, 1995, 1998). We compare the algorithms using a stratified, 
blocked, ten-fold cross-validation setup. We specify the performance of the algorithms 
in terms of mean percentage correctly classified and mean area under the receiver op- 
erating characteristic curve. We also contrast algorithm type performance visually by 
means of the convex hull of the receiver operating characteristic curves associated 
with the alternative operationalizations per algorithm type. 

Benchmarking different classification methods is not an easy task. As pointed out in 
previous research (Duin, 1996; Friedman, Geiger, and Goldsmidt, 1995; Michie, Spie- 
gelhalter, and Taylor, 1994), no classification method is universally better than any 
other. Moreover, benchmarking is not a one-dimensional problem. There are differ- 
ent bases to compare algorithms or algorithm types (for example, modeling power, 
speed of training, tuning, classifying, interpretability, and actionability of the model). 
In addition, comparisons are biased by the characteristics of the data (for example, 
the dimensionality of the data, the number of data instances, the predictor encoding), 
the application domain, and the skill of the researcher. It is important to define the 
application domain carefully beforehand and to make sure that the data underlying 
the study are representative of this domain. The above discussion should allow the 
reader to assess the scope and representativeness of our comparison. Furthermore, in 
order to remove undue bias due to the skill of the researcher, which a priori might 
favor some algorithms over others, we adhere to a strategy of minimally human 
expert tuned algorithms. Some of the discussed techniques require no tuning. Other 
techniques are characterized by hyperparameters that require tuning. As in the Stat- 
log project (Michie, Spiegelhalter, and Taylor, 1994), we attempt to apply minimal 
human expert tuning, so we rely on default-that is, widely accepted-hyperparame- 
ter settings as much as possible. Where this is not possible, we tune hyperparameters 
using the training data or we report on several operationalizations using alternative, 
a priori sensible design or hyperparameter choices. This ensures that the obtained 
results are largely independent of the human experts that perform the analyses. Notice 
that, although the results will probably be inferior to those that would have been 
obtained using human expert tuning, this way of working guarantees that the algo- 
rithms are compared apple to apple. 

An additional contribution of this work resides in the confrontation of models that 
have been trained using fraud indicator/flag predictors only and models that make 
use of a combination of fraud indicators and nonindicator predictors. This enables us 
to investigate the added value of systematically collecting nonflag predictors for suspi- 
cion of fraud modeling purposes. In our choice of predictors for this study we were led 
by previous work by the AIB on the timeliness of predictor availability within the life 
of a claim (Derrig and Weisberg, 1998). The timing of the arrival of the information on 
claims is crucial to its usefulness for the development of an early claims screening facil- 
ity. To stay as close to real-life operating condition requirements for early screening as 
possible, we only include predictors that are known relatively early in the life of a claim. 

The article is then organized as follows. The second section briefly covers the essen- 
tials of the data set that is used in the analyses. Details on how the performance of 
the various algorithms is measured are given in the third section. In the fourth section 
we elaborate on the essentials of the algorithms figuring in the benchmarking study. 
Results and discussion are found in the fifth section. The discussion is closed with a 
summary and conclusions. 
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PIP CLAIMS DATABASE 
This study is based on a data set of 1,399 PIP claims from 1993 accidents collected by 
the AIB. Details on the exact composition and semantics of the data set and the data 
collection process can be found in Weisberg and Derrig (1991, 1995, 1998). 

Guided by an analysis of the timing of claim information in Derrig and Weisberg 
(1998), we retained the binary fraud indicators/flags in Table 1 as predictors for the 
development of our first-stage claims screening models (Weisberg and Derrig, 1998). 
The listed fraud indicators may all be qualified as typically available relatively early 
in the life of a claim. The indicator names are identical to the ones used in previous 
work. Notice that no indicators related to the medical treatment are included in the 
data set. None of these fraud indicators are typically available early enough to be 
taken up into the data set (Derrig and Weisberg, 1998). In our selection of fraud indi- 
cators, we also imposed a pre-condition of having at least ten data instances in our 
data set where the flag was set-that is, where the fraud indicator fired. A similar 
selection operation was performed by Belhadji, Dionne, and Tarkhani (2000). This led 
us to drop ACC07, LW04, and LW07 from the initial list of early fraud indicators, since 
these fired for only five, four, and three data instances, respectively. We emphasize that 
this does not imply that these indicators are considered unimportant per se. Remem- 
ber, they are supposed to make sense to adjusters. Dropping infrequent indicators is 
motivated primarily by considerations pertaining to model convergence and stability 
during estimation. However, this should only be done after careful deliberation, pon- 
dering all the aspects of concern (for example, taking into account the aim of the study, 
the characteristics of the available data, the experimental setup, the characteristics of 
the classification and estimation techniques, and the domain specifics). Concerning 
the latter, Massachusetts insurers are denying about 1 percent of injury claims. That 
would amount to 14 claims in the data set. 

To evaluate the additional information content of nonflag predictors we also decided 
to consider the predictors in Table 2 for inclusion in the classification models. The 
selection of the predictors was steered by discussion with domain experts within the 
limits of what was available in the coded data. We thus emphasize that this is only 
an initial example of adding nonflag predictors, not an attempt at a complete or effi- 
cient model. Again, information regarding the retained predictors is usually obtained 
relatively early in the life of a claim. We discretized continuous predictors before their 

TABLE 1 
PIP Red Flag Predictors (0 = unset, 1 = set) Arriving Early in 
the Claims Process 

Subject Binary Fraud Indicators 

Accident ACC01, ACC04, ACCO9, ACC10, ACC1l, 

ACC14, ACC15, ACC16, ACC18, ACC19 

Claimant CLT02, CLT04, CLT07 

Injury INJ01, INJ02, INJ03, INJ05, INJ06, INJll 

Insured INS01, INS03, INS06, INS07 

Lost Wages LWO1, LW03 



TABLE 2 
PIP Nonflag Predictors Arriving Early in the Claims Process 

Predictor Description 
AGE Age of the claimant at the time of the accident (in years) 
POL-LAG Lag from the beginning of the (one year) policy 

to the accident (in days) 
REPT-LAG Lag from the accident to its reporting (in days) 

TRT-LAG1 Lag from the accident to medical provider 1 first outpatient 
treatment (in days); zero value meaning no outpatient medical 

treatment or only emergency treatment within first 48 hours 

TRT-LAG10?/ If TRT-LAG1 = 0, then TRT-LAG10?/ = 0, 

otherwise TRT-LAG1?/1 = 1 

TRT-LAG2 Lag from the accident to medical provider 2 first outpatient 
treatment (in days); zero value if not applicable 

TRT-LAG20/1 If TRT-LAG2 = 0, then TRT-LAG20?/1 = 0, 
otherwise TRT-LAG20/1 = 1 

AMBUL Ambulance charges amount (in US$) 

AMBUL0/1 If AMBUL = 0, then AMBUL?/0 = 0, 

otherwise AMBUL01/ = 1 

Values and Discretization 

20-year bins: {0-20,21-40,41-60,61-80,81+} 
variable bin width: {0-7,8-15,16-30,31-45, 

46-60,61-90,91-180,181-270,271+ } 
variable bin width: {0-7,8-15,16-30,31-45, 

46-60,61-90,91-180,181-270,271-360,361 +} 
variable bin width: {0-7,8-15,16-30,31-45, 

46-60,61-90,91-180,181-270,271-360,361 + } 

binary predictor: {0,1 } 

variable bin width: {0-7,8-15,16-30,31-45, 

46-60,61-90,91-180,181-270,271-360,361 + } 

binary predictor: {0,1} 

100-US$ bins: {0-100,101-200,201-300, 

301-400,401-500,501+} 

binary predictor: {0,1} 
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PART_DIS10?/ Was the claimant partially disabled due to the accident? 

The actual number of weeks the claimant was diagnosed 

partially disabled is a late predictor and therefore 

not included in the predictor set. 

TOT-DISl?/0 Was the claimant totally disabled due to the accident? 

The actual number of weeks the claimant was diagnosed 

totally disabled is a late predictor and therefore 

not included in the predictor set. 

SCLEGREP Was the claimant represented by an attorney? 
Note the difference with CLT05, a flag indicating whether a high-volume 

attorney was retained, but which was omitted from Table 1. 

binary predictor: {0 = no,l = yes} 

binary predictor: {0O = no,1 = yes} 

binary predictor: {0 = no,l = yes} 
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TABLE 3 
Semantics of the Alternative Target Encoding Schemes 

Encoding t = - t = + p(t = +) 

1+ suspicion rate < 1 suspicion rate > 1 42.96% 
4+ suspicion rate < 4 suspicion rate > 4 28.31% 
7+ suspicion rate < 7 suspicion rate > 7 8.79% 
vnl codel code2 up to code5 36.03% 
vop codel and code2 code3 up to code5 16.30% 

inclusion in the models by dividing up their continuous value ranges in bins and re- 
placing the actual value with the respective bin numbers 1, 2, 3, and so on. Although 
algorithmic means of discretization could have been applied at this stage, we relied on 
prior domain expertise and inspection of the distribution of the values within the con- 
tinuous value ranges. We statistically normalized all predictors by subtracting their 
mean over the data and dividing by their standard deviation before their inclusion in 
the models (Bishop, 1995). 

A senior claims manager reviewed each claim file on the basis of all available infor- 
mation (Weisberg and Derrig, 1995). This closed claims reviewing was summarized 
into a ten-point-scale expert assessment of suspicion of fraud, with zero standing for 
no suspicion of fraud. Claims were also categorized in terms of the following five- 
level verbal assessment hierarchy: probably legitimate (codel), excessive treatment 
(buildup) only (code2), suspected opportunistic fraud (2 types: code3 and code4), and 
suspected planned fraud (code5). 

Based on the qualification of each available claim by both a verbal expert assessment 
of fraud suspicion as well as a ten-point-scale suspicion score, we are able to compare 
classification for different fraud suspicion definition thresholds. It allows us to assess 
the robustness of the algorithms with regard to the target definition threshold under 
different detection policies. This gives rise to the alternative target encoding schemes 
in Table 3. Usually, 4+ target encoding is the operational domain expert choice. For 
that reason, specific attention should be attributed to the outcome and discussion of 
the comparison experiment for this target encoding scheme. Information on the target 
label t e {-,+} for the claims data is summarized by the data prior p(t = +) in the last 
column of Table 3.2 

EXPERIMENTAL SETUP 

In this section we give an overview of the experimental setup used for our bench- 
marking study. In the first part of this section we present the employed performance 
criteria for classification. In the second part of this section the evaluation procedure is 
detailed. The discussion is limited to the case of binary classification. 

2 In the rest of the article we will consistently use p as the notation for the estimate of p. 
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Performance Criteria for Classification 

The percentage correctly classified (PCC), or classification accuracy, an estimate of a 
classifier's probability of a correct response, is undoubtedly the most commonly used 
classifier performance evaluation and comparison basis. It is calculated as the pro- 
portion of correctly classified data instances for a (test) set of (unseen) labeled data 
{i, ti}iN1 representative of the studied population. Formally, it can be described as: 

1 N 
PCC = -i(y ti) (1) 

where yt is the predicted target for measurement vector xi, ti is its true target, and 8(.,.) 
is 1 if both arguments are equal, 0 otherwise. Instead of estimating a classifier's prob- 
ability of a correct response by means of its PCC on a separate test set of previously 
unseen data, one very often opts for a cross-validated estimate (see below). In what 
follows we will narrow the discussion down to the case of binary classification. 

In a number of circumstances, classification accuracy may not be the most appropri- 
ate performance criterion for comparing classifiers. For one, maximizing classification 
accuracy tacitly assumes equal misclassification costs for false positive and false neg- 
ative predictions (Bradley, 1997; Duda, Hart, and Stork, 2001; Hand, 1997; Provost and 
Fawcett, 2001; Provost, Fawcett, and Kohavi, 1998; Webb, 1999).3,4 This assumption 
is problematic, since for many real-life decision making situations it is most likely 
violated. Another implicit assumption of the use of classification accuracy as an eval- 
uation and comparison metric is that the class distribution is presumed constant over 
time and relatively balanced (Provost, Fawcett, and Kohavi, 1998). For example, in the 
case of binary classification, when confronted with a situation characterized by a nat- 
urally very skewed class distribution in which faulty predictions for the rare class are 
very costly, a model optimized on classification accuracy alone may very well always 
predict the most prevalent class and thus in terms of PCC yield relatively high perfor- 
mance. The performance of this majority model may be difficult to beat, although it 
presumably is unacceptable if a nontrivial solution is required. The evaluation of clas- 
sifiers based on classification accuracy then proves inappropriate. Class distributions 
and misclassification costs are rarely uniform. Furthermore, taking into account class 
distributions and misclassification costs for building and evaluating classifiers proves 
to be quite hard, since in practice they can rarely be specified precisely and are of- 
ten subject to change (Fawcett and Provost, 1997; Provost and Fawcett, 2001; Provost, 
Fawcett, and Kohavi, 1998). In spite of the above, comparisons based on classification 
accuracy often remain useful because they are indicative of a broader notion of good 
performance. 

3 This is under the assumption that misclassification costs have not been accounted for through 
distortions of the original data set-that is, by over- or undersampling the data instances ac- 
cording to their relative misclassification costs (Breiman, Friedman, Olshen, and Stone, 1994; 
Domingos, 1999). 

4 In a binary classification context, the class of most interest is often termed positive (+), the 
other negative (-). For this study, the positive target coincides with suspicion of fraud, as de- 
fined for each of the target encoding schemes in the third column of Table 3. For the numeric 
encoding of the classes, see the fourth section. 
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TABLE 4 

Confusion Matrix for Binary Classification 

Actual Target 

Predicted Target + 
+ True Positive (TP) False Positive (FP) 
- False Negative (FN) True Negative (TN) 

Descriptive statistics such as the false positives, false negatives, sensitivity, and spec- 
ificity can provide more meaningful results. Class-wise decomposition of the classifi- 
cation yields a confusion matrix, as specified in Table 4. The following performance 
measures can readily be distilled from Table 4. 

TP 
sensitivity= TP FN (2) 

TN 
specificity = P + TN (3) 

Thus, the sensitivity and specificity measure the proportion of + data instances that are 
predicted + and the proportion of - data instances that are predicted -, respectively. 
Using the notation of Table 4, we may formulate the PCC as: 

PCC= TP+FPTNFN (4) TP + FP + TN + FN 

All the above measures of performance are still characteristic of one particular 
operating point-that is, a specific set of operating conditions. Most classifier pre- 
dictive performance comparisons, by their use of the PCC as an evaluation measure, 
implicitly go for the operating point that minimizes error rate. The assumptions un- 
derlying this choice have been explained above. More generally, we want to choose 
an operating point that minimizes misclassification cost-that is, one that takes into 
account the cost of false positive and the cost of false negative predictions. However, 
since costs can rarely be specified unambiguously, and hence the exact operating con- 
ditions are often unknown, it would be helpful if we could somehow, without too 
much extra work, compare classification behavior under various alternative operat- 
ing conditions. This can be done as follows. 

Many classifiers naturally produce, or are capable of producing, a continuous output 
to which different classification or decision thresholds may be applied to predict class 
membership.5 Varying this classification threshold is a commonly adopted means for 
incorporating the relevant operating conditions into the classification model's con- 
struction process (Bradley, 1997; Duda, Hart, and Stork, 2001; Hand, 1997; Provost 

5 Depending on the context, the term classifier may thus refer to the continuous-output model 
or the actual classification model-that is, the continuous-output model to which a classifi- 
cation threshold has been applied to predict class membership. 
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and Fawcett, 2001; Provost, Fawcett, and Kohavi, 1998; Webb, 1999).6 The sensitivity, 
specificity, and PCC vary together as the classification threshold on a classifier's con- 
tinuous output is varied between its extremes. The receiver operating characteristic 
(ROC) curve is a two-dimensional visualization of the sensitivity-that is, the true 
alarm rate-on the y-axis versus 1-specificity-that is, the false alarm rate-on the 
y-axis for various values of the classification threshold. It basically illustrates the be- 
havior of a classifier in terms of ( FTN TP+FN ) pairs without regard to class distribution 
or error cost. So it effectively decouples classification performance from these factors 
(Swets, 1979; Swets and Pickett, 1982). For a good understanding, each point in ROC 
space corresponds to a particular (FP TNTP+FN) pair. It corresponds to a continuous- 
output classifier evaluated under one specific operating condition setting, defined 
by a specific classification threshold. Many classifiers are capable of producing an 
estimate of a data instance's posterior + class membership probability as a byproduct 
of the classification process. These can then be used for scoring the data instances, 
ranking them, and applying ROC curve analysis. Strictly speaking, however, for the 
application of ROC analysis we do not need exact or well-calibrated probability esti- 
mates. ROC analysis can be applied to any classifier that produces a continuous output 
to which different classification thresholds may be applied to predict class member- 
ship. ROC analysis has been used previously to assess the quality of red flag models 
(Weisberg and Derrig, 1995). 

Figure 1 provides an example of several ROCs. Each curve passes through the corner 
points (0,0) and (1,1). The former point represents the situation whereby the classifi- 
cation threshold exceeds the highest output value of the classifier for any of the data 
instances to be classified, meaning all data instances are classified as -. For the latter 
point in ROC space the classification threshold is lower than the lowest output val- 
ue, meaning all data instances are classified as +. A straight line through the corner 
points (0,0) and (1,1) represents a classifier with poor discriminative power, since the 
sensitivity always equals 1 - specificity for all possible values of the classification 
threshold (curve A). Informally, the more the ROC approaches the (0,1) point, the bet- 
ter the classifier will discriminate under various operating conditions (for example, 
curve D dominates curves A, B, and C). ROCs for different classifiers may, howev- 
er, intersect, making a general performance comparison less obvious (for example, 
curves B and C). To overcome this problem, one often calculates the area under the 
ROC (AUROC) curve (Bradley, 1997; Hand, 1997; Hanley and McNeil, 1982, 1983). 

6 Varying the classification threshold is by no means the only way of accounting for different 
operating conditions or misclassification costs. Costs may also be incorporated through dis- 
tortions of the original data set-that is, by over- or undersampling data instances according 
to their relative misclassification costs (Breiman, Friedman, Olshen, and Stone, 1984; Domin- 
gos, 1999). Alternatively, cost considerations may be included in the actual model construc- 
tion phase by using cost-sensitive optimization during learning (see, for example, Breiman, 
Friedman, Olshen, and Stone, 1984; Knoll, Nakhaeizadeh, and Tausend, 1994; Verrelst, Mo- 
reau, Vandewalle, and Timmerman, 1997). MetaCost, a generic wrapper or meta-learning 
method from Domingos (1999), is yet another method of making cost-sensitive classification 
decisions. A more elaborate and comprehensive discussion of cost-sensitive learning and 
decision making is beyond the purposes of this study. See Turney (1996) for an up-to-date 
bibliography. 
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FIGURE 1 
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It should be clear that a comparison of classifiers based on this whole-curve, sin- 
gle-figure AUROC measure is only appropriate for cases in which specific operating 
conditions are unknown or vague and more general comparison over a range of oper- 
ating conditions is appropriate. The AUROC then provides a simple figure of merit for 
the classifier's classification performance across a wide range of operating conditions. 
Moreover, the AUROC is equivalent to the non-parametric Wilcoxon-Mann-Whitney 
statistic, which provides an estimate of the probability that a randomly chosen positive 
data instance is correctly rated or ranked higher than a randomly selected negative 
data instance (Hand, 1997; Hanley and McNeil, 1982, 1983). This equivalence implies 
that the AUROC can be used as an estimate of the relative quality, be it in general 
terms, of the posterior class membership probability estimates produced by a classi- 
fier (Provost and Domingos, 2000). 

Two comments are in order. First, under specific operating conditions, a classifier 
with higher AUROC may well be worse than a classifier with lower AUROC, since 
then we are to compare points in ROC space, not whole curves. Second, AUROC 
is based solely on the relative ranking of data instances-specifically, according to 
the continuous output of a classifier. Any monotonic increasing transformation of the 
classifier's continuous output would produce the same ranking and would lead to the 
same ROC and AUROC. Thus, the AUROC analysis does not allow us to assess wheth- 
er posterior class membership probability estimates are well-calibrated. However, in 
case calibration implies fitting a monotonic increasing function to the uncalibrated 
output to produce well-calibrated probabilities, then the AUROC analysis may well 
be assumed to give an assessment of the inherent ability of a classifier to produce good 
probability estimates. An example of the latter can be found in Platt (2000), where the 
continuous output of the uncalibrated support vector machine classifier is assumed 
to be proportional to the log odds of a positive data instance, and consequently a 
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parameterized sigmoid is fitted to the data to obtain better-calibrated posterior class 
membership probability estimates. 

The algorithm used for generating a ROC from a set of ranked data instances is 
described in Provost and Fawcett (2001). As in Provost, Fawcett, and Kohavi (1998), 
the curve is treated as a function-that is, we use linear interpolation between the 
generated points in ROC space-and sampled at 100 points regularly spaced along 
the x-axis. The AUROC is calculated using a trapezoidal approach. It has been stated 
that the trapezoidal calculation underestimates the AUROC. However, the underes- 
timation is systematic and, provided there are a reasonable number of points on the 
ROC, the underestimation should not be too severe (Bradley, 1997). 

Experimental Evaluation 

We present our results in terms of mean PCC and mean AUROC using a stratified, 
blocked, ten-fold cross-validation experiment. We assess algorithm performance 
differences using a two-way ANOVA and Duncan's multiple range test. 

In our experiments, we use a stratified, ten-fold cross-validation procedure to esti- 
mate expected algorithm performance. The data set is randomly split into ten mutually 
exclusive subsets or folds of comparable size, while approximately respecting the class 
proportions of the initial data set-that is, the folds are stratified. Ten-fold cross-val- 
idation is a resampling technique in which ten classifiers are trained each time using 
only nine folds of the data and the remaining fold is used for testing. As a result, 
all observations are used for training and each observation is used exactly once for 
testing. The ten-fold cross-validation performance estimates are averaged to obtain 
an estimate of the classification rule's true performance. Ten-fold cross-validation has 
been extensively studied and has been shown to provide good point estimates of the 
true performance of classification algorithms using a limited set of data (Bradley, 1997; 
Kohavi, 1995; Lim, Loh, and Shih, 2000; Webb, 1999). 

For comparing the performance of the classification algorithms, we make use of a 
two-way ANOVA analysis and Duncan's multiple range test. The chosen methodol- 
ogy for comparing algorithm performance was proposed and discussed in Bradley 
(1997). A blocked experimental design is realized by using exactly the same training 
and test set folds for all the classification algorithms. To test which of the means are 
significantly different from which others, we apply Duncan's multiple range test to 
the ten-fold cross-validation mean performance criteria using the training and test set 
partitioning as a blocking factor. The latter separates the variance due to the different 
learning algorithms from the variance due to the training and test set partitions. This 
results in a linear model that relates a performance criterion-specifically, the PCC 
or AUROC-to both the algorithm effects and the training and test set partitioning 
effects. When the ANOVA test on the performance measure provides evidence that 
not all of the means are equal, due to different algorithms and different training 
and test set partitions,7 we use Duncan's multiple range test to separate significantly 
different algorithm means into subsets of homogeneous means. We stress that this is 
an approximate statistical test for comparing the performance of algorithms using 

7 This is a test that simultaneously tests two hypotheses: All means are equal due to different 
training and test set partitions, and all means are equal due to different learning algorithms 
(Bradley, 1997). In this case, we are actually only interested in the latter hypothesis. 
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ten-fold cross-validation. A more elaborate discussion on the topic of statistical algo- 
rithm performance comparison using a single small data set is beyond the scope of 
this article. See Dietterich (1998), for a position statement. The ANOVA analyses were 
carried out using PROC GLM in SAS for Windows V8. 

Alternatively, we can plot ROCs to visually compare ten-fold cross-validated mod- 
el performance in function of alternative operating conditions. In this work, we 
obtain a cross-validated model's ROC by averaging the ROCs over the ten sub-exper- 
iments of the ten-fold cross-validation, as described in Provost, Fawcett, and Kohavi 
(1998). 

ALGORITHMIC ESSENTIALS 

In this section we give an overview of the essentials of the classification techniques 
that are taken up in our benchmarking study. Since we are unable to cover all of the 
technical details in this article, we refer to the relevant literature where needed. The 
algorithm types we discuss are logistic regression, k-nearest neighbor, C4.5 decision 
tree, Bayesian learning multilayer perceptron neural network, least-squares support 
vector machine, naive Bayes, and tree-augmented naive Bayes classification. The dis- 
cussion is limited to the case of binary classification. 

Logistic Regression Classifiers 

Many empirical studies have used logistic regression as a benchmark (Agresti, 1990; 
Duda, Hart, and Stork, 2001; Sharma, 1996; Webb, 1999). Logistic regression makes the 
assumption that the difference between the natural logarithms of the class-conditional 
data density functions is linear in the inputs/predictors as follows. Given a training 
set D = {xi,ti}N1 with input vectors xi = (x),... ,x))T E R and target labels ti E {0,1}, 
logistic regression assumes that: 

ln p(Xlt ) b + wT, (5) 
Ip(xlt=l0) 

where p(xlt = 1) and p(xlt = 0) represent the class-conditional data density functions, 
w represents the weight or coefficient vector, and b the intercept bias. The posterior 
class membership probabilities p(tlx) underlying classification can easily be obtained 
from the model in Equation (5). This gives: 

exp(b' + wTx) 
p(t=lix) 

=I+exp(b +wTx) 

1 
(6) 

p(t = Ox) = 1 + exp(b' + wTx) 

where b' = b + ln ((t =)), with p(t = 1) and p(t = 0) the class priors. We can use this 

posterior class membership probability specification to obtain maximum likelihood 
estimates for w and b'. We assume that the prior class proportions in the data are 
representative of the true class priors. 
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Discrimination between the two classes is governed by the ratio p(t =lx) It can easily 

be shown that it is determined solely by the linear function b' + wTx. In brief, logistic 
discrimination uses a linear discriminant function with the additional assumption in 
Equation (5), which underlies maximum likelihood estimation. Besides the assump- 
tion in Equation (5), logistic regression does not make any distributional assumptions 
for the inputs and has been shown to work well in practice for data that depart signif- 
icantly from conventional normality assumptions (see, for example, Michie, Spiegel- 
halter, and Taylor (1994)). The analyses were carried out using PROC LOGISTIC in SAS 
for Windows V8 with the default hyperparameter settings at TECHNIQUE=FISHER 
and RIDGING=RELATIVE. 

k-Nearest Neighbor Classifiers 

Nearest neighbor methods estimate the probability that a data instance with mea- 
surement vector xi = (x ... ,xn))T E R belongs to class t e {0,1}, that is, p(tlx), by 
the proportion of points in the training set D = {xi, ti}N 1 in the neighborhood of x that 
belong to that class. The concept of neighborhood is then defined by the distance from 
x to the kth nearest point in the training set. Here k fulfills the role of smoothing hyper- 
parameter: A larger k will mean less variance in the probability estimates, but at the 
risk of introducing more bias. Essentially, nearest neighbor methods estimate average 
probabilities over a local neighborhood. Only if 

p(tlx) = N p(tlz)p(z)dz, (7) 

where p(z) is the prior density over the input data and the integral is taken over the 
k-nearest neighborhood Nx centered around x, will the estimate be unbiased (Hand, 
1997). 

The most commonly used metric for evaluating the distance between two measure- 
ment vectors xl and x2 is 2-norm distance-that is, the Euclidean distance: 

dist(xl,x2) = lx - x2112 = /(l - X2)T(Xl - X2). (8) 

Notice that, since all inputs are to be treated equally if no prior information is avail- 
able stating otherwise, it is important to normalize the input values to ensure that 
the k-nearest neighbor rule is independent of the measurement units. In this case, as 
stated in the second section, we statistically normalize all inputs to zero mean and 
unit variance before their inclusion in the models. 

The version of k-nearest neighbor that was implemented for this study was chosen 
because it is especially appropriate for handling discrete data (Webb, 1999). The prob- 
lem with discrete data is that several training data instances may be at the same dis- 
tance from a test data instance x as the kth nearest neighbor, giving rise to a nonunique 
set of k-nearest neighbors. The k-nearest neighbor classification rule then works as 
follows. Let the number of training data instances at the distance of the kth nearest 
neighbor be nk, with nkl data instances in class t = 1 and nko data instances in class 
t = 0. Let the total number of training data instances within, but excluding, this dis- 
tance be Nk, with Nkl data instances in class t = 1 and Nko data instances in class t = 0. 
Classify a test data instance in class t = 1 if 
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k - Nk k - Nk 
Nkl + nkl > Nko + nkO, (9) 

nk nk 

where Nk < k < Nk + nk. Now all training data instances at the distance of the kth 
nearest neighbor are used for classification, although on a proportional basis. 

C4.5 Decision Tree Classifiers 

CART (Breiman, Friedman, Olshen, and Stone, 1984), CHAID (Kass, 1980), and C4.5 
(Quinlan, 1993) are among the best-known tree-based classification algorithms. The 
main differences between the algorithms stem from the differences in the rules for 
splitting nodes when growing the tree and the tree pruning strategy. For this study, 
we report on the use of C4.5 due to Quinlan (1993). We used C4.5 Release 8 for all 
analyses.8 A full tree is grown following a divide-and-conquer approach based on 
greedy predictor choice using the Gain ratio node partitioning rule (see below). To 
avoid near-trivial partitioning, C4.5 imposes the additional stopping condition that 
at least two of the subsets created by partitioning a node must contain a minimum 
default of two training data instances. 

The Gain ratio is an information-based measure for partitioning a data set D = {xi, ti }N1 
corresponding to a node in the tree, with input vector xi = (xl), ... ,x))T E and 
target labels ti E {0,1}. The rationale underlying C4.5's data partitioning is that the 
information conveyed by a message depends on its probability and can be measured 
in bits as the natural logarithm of that probability. One can then express the residual 
information about the class to which a data instance in D belongs (a.k.a., entropy)- 
that is, the average amount of information needed to identify its class label-as: 

1 

Info(D) = - p(D, t) ln(p(D, t)), (10) 
t=O 

where p(D,t) is the proportion of data instances in D that are labeled t (Quinlan, 1993). 

By dividing D into non-overlapping subsets Daj, where Daj contains those data 
instances in D that have predictor x(m) set to value aj, with predictor value index 
j e {1, ... ,v} and v representing the number of different values for the splitting pre- 
dictor x(m), the information gained is specified as: 

Gain(D,x(m) = Info(D)- I-Da Info(Daj),1) 
j_'=1 ID 

where I stands for the number of instances in the data set used as its argument 
(Quinlan, 1993). 

We normalize the Gain measure using the Split information associated with a partic- 
ular partitioning defined as: 

Split(D,x(m)) E I ln ( ) (12) 
j=1 DI IDn 

8 The source code can be obtained at http://www.cse.unsw.edu.au/-quinlan/. 
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Using Gain as a splitting criterion would favor partitioning based on discrete predic- 
tors having many values. Normalizing by the Split information specifies the desirabil- 
ity of a particular partitioning as the ratio of Gain and Split. Define the Gain ratio as 
(Quinlan, 1993): 

Gain ratio(D,x(m)) -Gain(D,x(m)) 
Split(D,x(m)) (13) 

We then assess the Gain ratio of every possible partitioning-specifically, based on a 
single discrete predictor-and among those with at least average Gain one can select 
the partitioning with the maximum Gain ratio (Quinlan, 1993). By recursively parti- 
tioning the training data at the leaf nodes until the stopping conditions are fulfilled, a 
full tree is grown. 

To avoid the tree from overfitting the training data-that is, fitting the idiosyncracies of 
the training data that are not representative of the population-the full tree is pruned 
using C4.5's error-based pruning (see below) with the default confidence factor a = 

twenty-five percent (Quinlan, 1993). Pruning is performed by identifying subtrees that 
contribute little to the predictive accuracy and replacing each by a leaf or one of the 
branches. Of course, training error at a node-that is, estimating the true error by the 
number of wrongly classified training data instances at the node-is not an appro- 
priate error estimate for making that evaluation. Since the tree is biased toward the 
training data that underlie its construction, training error is usually too optimistic an 
estimate of the true error. Instead, C4.5 goes for a more pessimistic estimate. Suppose 
a leaf covers N training data instances, E of which are misclassified. Then C4.5 equates 
the predicted error rate at a node with the upper bound of an a percent confidence 
interval assuming a binomial (N, E ) distribution at each node. This is known as C4.5's 
pessimistic error rate estimation. A subtree will then be pruned if the predicted error 
rate multiplied by the number of training data instances covered by the subtree's root 
node exceeds the weighted sum of error estimates for all its direct descendants. For 
details, see Quinlan (1993). 

One can use decision trees to estimate probabilities of the form p(tjx). These can then 
be used for constructing the ROC and calculating the AUROC. Such trees have been 
called class probability trees (Breiman, Friedman, Olshen, and Stone, 1984) or prob- 
ability estimation trees (PETs) (Provost and Domingos, 2000). The simplest method 
that has been proposed to obtain estimates p(t = 1 ix) uses the training data instance 
frequencies at the leaves-that is, a test data instance gets assigned the raw frequency 
ratio p = k at the leaf node to which it belongs, where k and I stand for the number 
of positive training data instances and the total number of training data instances at 
the leaf, respectively. However, since the tree was built to separate the classes and to 
make the leaves as homogeneous as possible, the raw estimates p systematically tend 
to be too extreme at the leaves-that is, they are systematically shifted toward 0 or 1. 
Furthermore, when the number of training data instances associated with the leaf is 
small, frequency counts provide unreliable probability estimates.9 

Several methods have been proposed to overcome this, including applying simple 
Laplace correction and m-estimation smoothing (Buntine, 1992; Cussens, 1993; Oliver 

9 In principle, pruning and stopping conditions requiring a minimum number of training data 
instances at the tree leaves counter this. 



390 THE JOURNAL OF RISK AND INSURANCE 

and Hand, 1995; Simonoff, 1998; Zadrozny and Elkan, 2001a). For two-class problems, 
simple Laplace correction replaces p by p' = k+. This smoothes the data instance score 
toward 0.5, making it less extreme depending on the number of training data instances 
at the leaf. This approach has been applied successfully (see, for example, Provost and 
Domingos (2000); Zadrozny and Elkan (2001a)). However, from a Bayesian perspec- 
tive, conditional probability estimates should be smoothed toward the corresponding 
unconditional probability-that is, the prior or base rate (Zadrozny and Elkan, 2001a). 
This can be done using m-estimation smoothing instead of Laplace correction. m-esti- 
mation replaces p by p' = k+b, where b is the base rate estimate p(t = 1)-specifically, 
we assume that the prior class proportions in the data are representative of the true 
class priors- and m is a hyperparameter that controls how much the raw score is shift- 
ed toward b. Given a base rate estimate b, we can follow the suggestion by Zadrozny 
and Elkan (2001a) and specify m such that bm = 5, approximately. This heuristic is 
motivated by its similarity to the rule of thumb that says that a chi-squared goodness- 
of-fit test is reliable if the number of data instances in each cell of the contingency table 
is at least five. 

Bayesian Learning Multilayer Perceptron Neural Network Classifiers 

For binary classification, one commonly opts for a feed-forward multilayer percep- 
tron (MLP) neural network with one hidden layer consisting of nn neurons-that is, 
processing units accepting signals from the previous layer and transforming them into 
a single output signal-and an output layer consisting of one neuron (Bishop, 1995). 
Given a training set D = {xi,ti}Nl with input vectors xi = (xil), ... x)T e Rn and target 
labels ti e {0,1}, the MLP classifier then performs the following function mapping. The 
output of hidden neuron j, that is, h(J)(x), and the output of the output layer, that is, 
y(x), are computed as: 

Hidden Layer: h()(x) = i (b() - U uk)x(k)) 
k=l (14) 

Output Layer: y(x) = f2 (b2 - v(k)h(k) (x) 
k=l 

where b(j) is the bias corresponding to hidden neuron j,u(j'k) denotes the weight con- 
necting input x(k) to hidden neuron j, b2 is the output bias, and v(k) denotes the weight 
connecting hidden neuron k to the output neuron. The biases-that is, the bias vector bl 
and bias b2-and weights-that is, the weight matrix u and weight vector v-together 
make up weight vector w. fA and f2 are transfer functions and essentially allow the 
network to perform complex nonlinear function mappings. In the hidden layer, we 
use hyperbolic tangent transfer functions. Logistic transfer function is used in the out- 
put layer.10 The latter allows the MLP's output y(x) to be interpreted as an estimated 
probability of the form p(t = 1 Ix) (Bishop, 1995). We randomly initialize and iteratively 
adjust w so as to minimize a cross-entropy objective function G defined as (Bishop, 
1995): 

N 
G = - >(ti ln(yi) + (1 - ti) ln(l - yi)). (15) 

i=1 

10 The transfer functions in the hidden and output layer are standard choices. 
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We may avoid overfitting the training data by adding automatic relevance determina- 
tion (ARD) weight regularization to the objective function as (Bishop, 1995; MacKay, 
1992a, 1992b): 

F(w) = G + L 
amEw(m). (16) 

m 

where EW(m) = Z(w('))2, with j running over all weights of weight class W(m). The 
formulation in (16) considers n + 3 weight classes within weight vector w, each asso- 
ciated with one weight decay hyperparameter am: one weight decay hyperparameter 
equation is associated with each group of weights corresponding to the connections 
from an input x(m) to the hidden layer; one hyperparameter is associated with the 
hidden layer biases; one hyperparameter is associated with the connections from the 
hidden layer neurons to the output neuron; and one hyperparameter is associated with 
the output bias. The ARD specification allows us to control the size of the weights asso- 
ciated with the connections out of each input. This setup is considered the right thing 
to do when some inputs may be less relevant than others. One of the main advantages 
of ARD is that it allows us to include a large number of potentially relevant inputs 
without damaging effects (Bishop, 1995; MacKay, 1992a, 1992b; Neal, 1998). 

The Bayesian learning paradigm has been suggested for dealing with the above setup 
in a systematic way during MLP training (Bishop, 1995; MacKay, 1992a, 1992b). Basi- 
cally, all prior assumptions are made explicit, and the weights and hyperparameters 
are determined by applying Bayes' theorem to map the prior assumptions into poste- 
rior knowledge after having observed the training data. For this study we adopt the 
evidence framework due to MacKay (1992a, 1992b) as an example implementation of 
Bayesian MLP learning. The MLP analyses were carried out using the Netlab toolbox 
for Matlab implemented by Bishop (1995) and Nabney (2001).1 

Let p(wla,H) be the prior probability density over the weights w given the MLP's 
architecture or functional form H and the hyperparameter vector a, the vector of all 
hyperparameters am. When we observe the training data D, we adjust the prior density 
to a posterior density using Bayes' theorem (level-I inference). This gives: 

p(wD,a ,H) = p(DJw,H)p(wJa,H) 
p(Doa,H) (17) 

In the above expression, p(DIw,H) is the likelihood function-that is, the probability 
of the data D occurring given the weights w and the MLP's functional form H. In 
Equation (17) p(DIa,H) is the evidence for ca that guarantees that the righthand side 
of the equation integrates to one over the weight space. 

Obtaining good predictive models is dependent on the use of the right priors. MacKay 
(1992a, 1992b) uses Gaussian priors. One can then choose the most probable weights 
wMP given the current a so as to maximize the posterior density p(wJD,a,H). It can be 
shown that the weights wMP, given the current setting of a, are found by minimizing 
the objective function F(w) in Equation (16) (MacKay, 1992a, 1992b). One can use stan- 
dard optimization methods to perform this task. We used a scaled conjugate gradient 
method to optimize the regularized cross-entropy objective function F(w) (Bishop, 
1995). 

n The source code can be obtained at http://www.ncrg.aston.ac.uk/netlab/. 
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The hyperparameter vector a can also be optimized by applying Bayes' theorem 
(level-2 inference). This yields: 

p(aID,H) = p(Dla,H)p(aIH) (18) 
p(DIH) ( 

Assume that all weights of weight class W(m) are distributed according to a Gaussian 
prior with mean 0 and variance a2m = I. This is consistent with the rationale that inputs 
associated with large hyperparameter values are less relevant to the network. Start- 
ing from Equation (18) and assuming a uniform (uninformative) prior p(aIH), we 
obtain the most probable hyperparameters aMP by maximizing the likelihood func- 
tion p(DIa,H). Optimization is discussed in detail in (Bishop, 1995; MacKay, 1992a, 
1992b). Basically, the a hyperparameter vector is randomly initialized and the net- 
work is then trained in the usual manner, with the novelty that training is periodically 
halted for the weight decay hyperparameters to be updated (Bishop, 1995; MacKay, 
1992a, 1992b). 

MacKay argues in favor of moderating the output of the most probable network in 
relation to the error bars around wMP, so that these point estimates may better rep- 
resent posterior probabilities of class membership given the data D. The moderated 
output is similar to the most probable output in regions where the data are dense. 
Where the data are more sparse, moderation smoothes the most probable output 
toward a less extreme value-specifically, 0.5-12 reflecting the uncertainty in sparse 
data regions. We will not go into the details of the approximation to the moderated 
probability proposed by MacKay. For details, see MacKay (1992a, 1992b). 

One can is also choose between network architectures in a Bayesian way, using the 
evidence p(DIH) attributed to an architecture H (MacKay, 1992a, 1992b) (level-3 in- 
ference). Models can be ranked according to their evidence. However, Roberts and 
Penny (1999) empirically show that for larger data sets, the training error is as good a 
measure for model selection as is the evidence. For further details on Bayesian MLP 
learning, see Bishop (1995) and MacKay (1992a, 1992b). 

Least-Squares Support Vector Machine Classifiers 

Given a training set D = {Xi, ti}iN1 with input vectors xi = (x(1i, ... /x) e R and target 
labels ti e {-1, + 1}, the support vector machine (SVM) classifier, according to Vapnik's 
original formulation (Cristianini and Shawe-Taylor, 2000; Vapnik, 1995,1998), satisfies 
the following conditions: 

'wT p(xi) + b > +1, if ti = +1 

{wTp(xi) + b < -1, if ti =1 (19) 

which is equivalent to: 

ti [w T((Xi) + b] > 1, i = 1, ... ,N, (20) 

12 As for the simple Laplace correction proposed in the context of decision trees, the original 
posterior class membership probability estimates are smoothed toward 0.5. As stated in the 
third part of this section, from a Bayesian point of view, it is better to smooth the estimates 
toward the corresponding prior. However, the approximation to the moderated posterior 
probability proposed by MacKay is not readily adaptable to this requirement. 
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Where w represents the weight vector and b the bias. The nonlinear function p(.): 
RI --* Rnh maps the input or measurement space to a high-dimensional, and possibly 
infinite-dimensional, feature space. Equation (20) then comes down to the construction 
of two parallel bounding hyperplanes at opposite sides of a separating hyperplane 
wTOp(x) + b = 0 in the feature space, with the margin width between both hyperplanes 
equal to -I2. In primal weight space, the classifier then takes the form: 

yt(x) = sign(wUTp(x) + b), (21) 

but, on the other hand, it is never evaluated in this form. 

One defines the optimization problem as: 

1 N 
min J(w,) = - w + c (22) 
w,b, 2 

subject to: 

t (wT(xi) + b) > 1 - i, i- 1, ...,N 

tUi >_ 0, i- 1,...,N' 

The variables (i are slack variables needed to allow misclassifications in the set of 
inequalities. c e R+ is a tuning hyperparameter, weighting the importance of classi- 
fication errors vis-a-vis the margin width. The solution of the optimization problem 
is obtained after constructing the Lagrangian. From the conditions of optimality, one 
obtains a quadratic programming (QP) problem in the Lagrange multipliers ai (Vap- 
nik, 1995, 1998). A multiplier ai exists for each training data instance. Data instances 
corresponding to non-zero ai are called support vectors. 

As is typical for SVMs, we never calculate w or (p(x). This is made possible due to 
Mercer's condition, which relates the mapping function (p(-) to a kernel function K(.,) 
as follows (Cristianini and Shawe-Taylor, 2000; Vapnik, 1995, 1998): 

K(xi,xj) = (p(xi)T p(xj). (24) 

For the kernel function K(., ) one typically has several design choices, such as 
K (xi,Xj) = xTXj (linear kernel), K(x,,Xj) = (xTxj + 1)d (polynomial kernel of degree d), 

and K(xi,Xj) = exp { IX2xjll } (radial basis function (RBF) kernel), where d E N and 
ca R+ are constants. Then construct the SVM classifier as: 

yt(x) = sign ( oitiK(x,xi) + b. (25) 

Optimization is discussed in Cristianini and Shawe-Taylor (2000) and Vapnik (1995, 
1998). 
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Vapnik's SVM classifier formulation was modified by Suykens and Vandewalle (1999) 
into the following least-squares or LS-SVM formulation: 

1 T 1 N 
min J(w,e) = -w w + y- E e2, (26) 
w,b,e 2 2i= 

subject to the following equality constraints: 

ti(wT (xi) + b) = 1 - e, i = 1, ... ,N. (27) 

This formulation now consists of equality instead of inequality constraints and takes 
into account a squared error with a regularization term similar to ridge regression. The 
solution is obtained after constructing the Lagrangian. The formulation as it stands 
results in a linear system instead of a QP problem (Suykens and Vandewalle, 1999). 
Again, one has several choices for the kernel function. For this study, we report on 
LS-SVM classification using K(x,xi) = xTxi (linear kernel), K(x,xi) = (xTxi + 1)d (poly- 
nomial kernel of degree d = 2 and d = 3), and K(x,xi) = exp { -x-x'l } (RBF kernel). U2 

Notice that Mercer's condition holds for all a e R+ and d e N values in the RBF and 
polynomial cases. The LS-SVM classifier is constructed as in Equation (25). Optimi- 
zation is discussed in Suykens, Lukas, Van Dooren, De Moor, and Vandewalle (1999). 
The objective function hyperparameter y and the RBF kernel hyperparameter a are 
tuned automatically using the training data by means of the grid search mechanism 
described in Van Gestel, Suykens, Baesens, Viaene, Vanthienen, Dedene, De Moor, 
and Vandewalle (2000). The output of the LS-SVM classifier before applying the sign 
operator is used for ROC analysis. 13 

Naive Bayes and Tree-Augmented Naive Bayes Classifiers 

A Bayesian network represents a joint probability function over a set of variables. 
It is a probabilistic white-box model consisting of a qualitative part specifying the 
conditional independencies between the variables and a quantitative part specifying 
conditional probabilities on the set of variables (Friedman, Geiger, and Goldszmidt 
1997; Pearl, 1998). A Bayesian network is visualized as a directed acyclic graph between 
nodes (variables) whereby each directed edge represents a probabilistic dependency 
from a parent node to a probabilistically dependent child node. Bayesian networks 
use Bayes' theorem to compute the probability of one node having a particular value 
given values assigned to the other nodes. Hence, one may adopt Bayesian networks 
as classifiers by computing the posterior probability of a class node given the values 
of the predictor nodes. In this configuration, the class node acts as a parent to all the 

13 We will not discuss the issue of producing well-calibrated posterior class membership prob- 
ability estimates for SVM classifiers. Having exact estimates of the latter is not strictly neces- 
sary for ROC analysis. In Platt (2000), a method is presented for fitting a monotone sigmoid 
transformation to the output of the SVM classifier before applying the sign operator. The 
SVM+sigmoid combination proves capable of producing posterior class membership prob- 
ability estimates that are of comparable quality to a regularized likelihood kernel method. 
Note that, since these probability estimates are a monotonic increasing transformation of 
the continuous SVM classifier output, we would obtain the same ROC with or without this 
transformation. 
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predictor nodes. The two major tasks in learning a Bayesian network are structure 
learning, the qualitative part, and parameter learning, the quantitative part. All ana- 
lyses were carried out using the Bayes Net toolbox for Matlab by Murphy (2001).14 In 
the rest of this section we will focus on naive Bayes and TAN Bayes classification. 

The simplest form of Bayesian network classifier is known as the naive, or simple, 
Bayes classifier (Domingos and Pazzani, 1997; Duda, Hart, and Stork, 2001; Fried- 
man, Geiger, and Goldszmidt, 1997; Hand, 1992; Webb 1999). Given a training set 
D = {xi,ti}N with input vectorsxi = (xl, ... ,x ))T e R and target labelsti E {0,1}, the 

simplifying structural assumption underlying the naive Bayes classifier (and avoiding 
structure learning) is the conditional independence of predictors x(m) given the class 
label t. It follows that: 

p(xlt) = p(x(m)It). (28) 
m=l 

We estimate the probabilities on the righthand side of Equation (28) using the training 
data. For discrete data we specify these conditional density estimates as conditional 
probability tables-that is, we specify them using frequency counts on the training set 
(with continuous predictors discretized as specified in the second section) (Domingos 
and Pazzani, 1997; Duda, Hart, and Stork, 2001; Friedman, Geiger, and Goldszmidt, 
1997; Hand, 1992; Webb 1999). One can then easily compute the posterior class mem- 
bership probability estimates p(tlx) used for classification by using Bayes' theorem: 

p(tl) P(t)p(xlt) (29) 
p(x) 

We estimate p(t) from the data-that is, we assume that the prior class proportions 
in the data are representative of the true class priors. Instead of computing p(x) in 
Equation (29), we normalize the numerator on the righthand side of Equation (29) by 
demanding that El=o (tjx) = 1. The naive Bayes classifier coincides with the Bayes op- 
timal classifier only if all predictors are in fact independent given the class. However, 
even in domains where this model bias is a priori considered inappropriate, the naive 
Bayes classifier often outperforms more powerful classifiers (Domingos and Pazzani, 
1997; Duda, Hart, and Stork, 2001; Friedman, Geiger, and Goldszmidt, 1997; Hand, 
1992; Webb 1999). 

More complex interactions between predictors may be represented by augmented 
naive Bayes networks by allowing directed edges (probabilistic dependencies) 
between predictors, dispensing with the strong independence assumption of naive 
Bayes. Friedman Geiger, and Goldszmidt (1997) propose TAN networks, which are 
characterized by the structural restriction that the class node has no parents and each 
predictor has as its parents the class node and at most one other predictor. This gives: 

p(xt) = H p(x(m)1r(m)) (30) 
m=l 

where 7(m) is the set of parents of the node corresponding to predictor x(m). The proce- 
dure for learning the TAN structure from the training data is based on a method due 
to Chow and Liu (Pearl, 1988; Webb 1999). 

14 The source code can be obtained at http://www.cs.berkeley.edu/ -murphyk/Bayes/. 
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Probability estimates p(x(m) 17Tm)) based on raw frequency counts after partitioning the 

training data according to all possible (discrete) values of 7(m) may be unreliable in 
sparsely populated partitions. Therefore, one can apply an additional smoothing 
operation based on uniform Dirichlet prior smoothing with confidence factor NO 
(Friedman, Geiger, and Goldsmidt, 1997)-that is, for a data partition consisting of 
c data instances and for a predictor x(m) having v discrete values, compute smoothed 
estimates as: 

c NO 1 

s(x(m)lr(m)) = c ( 1 + ) +N (31) 

The smoothed model has the same qualitative structure as the original model but 
has different numerical parameters. See Friedman, Geiger, and Goldszmidt (1997) for 
details. 

RESULTS AND DISCUSSION 

An overview of the results of our benchmarking study are presented in this section. 
In the first part of this section we look at the performance assessment tools. In the 
second part of the section we discuss the results in detail. 

Performance Assessment Tools 

We can evaluate and contrast the predictive power of the algorithms in several ways. 
Within the framework of this article we report on algorithm performance, looking at 
the following complementary assessment tools: 

* The absolute difference in performance point estimates using ten-fold cross-valida- 
tion 

One way of comparing algorithm performance is by simply contrasting estimated 
single-figure predictive performance indicators for the algorithms using ten-fold cross- 
validation. Table 5 reports the mean PCC performance for the benchmarked algorithms 
using the ten-fold cross-validation setup described in the second part of the third sec- 
tion for the alternative target encoding schemes of the second section-that is, 1+, 
4+, 7+, vnl and vop. Table 6 does the same for the mean AUROC performance. Each 
algorithm in the leftmost column is evaluated on the indicator predictors only (that 
is, indicator models) as well as on the extended predictor set containing both indica- 
tor and non indicator predictors (that is, extended predictor models). For several of 
the algorithm types discussed in the fourth section we chose to report and comment 
on alternative operationalizations. The Majority classifier assigns the majority class 
in the training set to all data instances in the test set. This plurality rule ignores the 
information in the predictors and stands for the benchmark classification of minimal 
work. The highest performance per evaluation scenario (per column) is boldface. 

* A comparison of algorithm differences using Duncan's multiple range test 

We can use an approximate statistical test that explicitly makes use of the blocked 
nature of the ten-fold cross-validation resampling discussed in the second part of the 
third section for comparing the performance of the classification algorithms-specif- 
ically, we use a two-way ANOVA and Duncan's multiple range test. In order not to 
blur the general picture, we do not include the complete algorithm subgroup specifi- 
cation produced by Duncan's multiple range test for each of the evaluation scenarios, 
but rather underline those algorithm means that do not significantly differ from the 
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algorithm with the highest performance for that evaluation scenario according to 
Duncan's multiple range test using a 5 percent significance level. 

In addition, we include two extra columns and two extra rows in Tables 5 and 6 sum- 
marizing the information from Duncan's multiple range test: R, Rg, C, and Cg. Let R be 
a summary measure per algorithm (per row) that stands for the ratio of, in the numer- 
ator, the number of times the algorithm's performance is not significantly different 
from the boldface one and, in the denominator, the number of reference evaluation 
scenarios. Let Rg be a summary ratio per algorithm type, specifically, the algorithm 
types are separated by a blank horizontal line. This summary measure reflects the 
ratio of, in the numerator, the number of evaluation scenarios for which at least one 
operationalization can attain performance statistically similar to the highest accord- 
ing to Duncan's multiple range test and, in the denominator, the number of reference 
evaluation scenarios. The meaning of the rows labeled C and Cg is similar, but now we 
summarize performance per evaluation scenario-that is, per column. Let C stand for 
the cardinality of Duncan's algorithm subgroup with the highest performance over 
the total number of nontrivial algorithms in the comparison-that is, excluding the 
Majority classifier. Let Cg be the ratio of, in the numerator, the number of algorithm 
types for which at least one operationalization can attain performance statistically sim- 
ilar to the highest according to Duncan's multiple range test and, in the denominator, 
the number of algorithm types in the comparison. 

* A comparison of algorithm type ROC convex hulls 

The ROC provides an interesting visual tool for assessing the classification perfor- 
mance of the algorithms in function of a range of operating conditions (Bradley, 1997; 
Provost and Fawcett, 2001; Provost, Fawcett, and Kohavi, 1998). As noted in the first 
part of the third section, a potential criticism of the comparison and evaluation of 
algorithms on the basis of the AUROC is that a whole-curve, single-number mea- 
sure is optimized. Under specific operating conditions, an algorithm with maximum 
AUROC may well be suboptimal. Thus, in addition to considering the results in 
Tables 5 and 6, it may be interesting to look at the ROCs themselves. For the purposes 
of this article we have aggregated the ROCs per algorithm type (for each of the target 
encoding schemes and for both indicator models and extended predictor models) by 
constructing the convex hull (Provost and Fawcett, 2001) of all cross-validated model 
ROCs (see the second part of the third section) of the algorithm type's operational- 
izations. This allows us to compare algorithm types visually by means of their ROC 
convex hull.15 The convex hull clearly embodies information about algorithm type 
performance that is not available from the results in Table 6, where we are comparing 
the mean AUROC for separate algorithm type operationalizations. By constructing 
the convex hull per algorithm type, we identify a subset of points from among the 
ROC points of its operationalizations that are potentially optimal. The area under the 
convex hull is then, per definition, greater than or equal to the AUROC performance 

15 Notice that the use of the ROC convex hull semantics for model comparison and selection 
implies an assumption of potential optimality of points on the convex hull as articulated in 
Provost and Fawcett (2001). Provost and Fawcett (2001) show that the ROC convex hull visual 
semantics are robust under a wide variety of realistic optimization measures, including the 
minimum expected cost and the Neyman-Pearson criterion. 



TABLE 5 
Mean PCC Using Ten-Fold Cross-Validation 

Indicator Models Extended Predictor Models 

1+ 4+ 7+ vnl vop 1+ 4+ 7+ vnl vop R Rg 

logit 68.12 76.34 90.99 70.77 84.92 79.49 79.20 90.71 79.70 83.35 10/10 10/10 

83.70 76.13 76.98 91.21 77.70 

83.70 71.77 73.62 91.21 73.70 

83.70 74.70 75.91 91.21 75.70 

80.77 70.19 75.55 87.56 73.20 

83.56 75.27 77.27 91.42 77.70 

83.70 77.84 75.91 91.21 77.63 

83.70 67.55 71.69 91.21 65.90 

84.92 79.27 78.41 91.21 79.84 

84.56 78.99 78.06 91.07 79.77 

84.56 78.41 78.77 90.71 79.34 
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TAN 66.91 73.91 88.71 69.48 81.92 75.27 76.56 82.63 77.84 78.48 3/10 5/10 
TANs 66.98 74.20 88.99 70.12 82.49 76.41 77.84 86.85 78.27 81.20 4/10 
TANs 67.19 74.48 89.92 70.34 82.92 76.98 77.63 87.35 78.70 81.49 5/10 
TANs0 67.41 74.34 89.99 70.26 83.13 77.20 77.70 87.92 79.13 81.63 4/10 

C 15/23 11/23 12/23 17/23 12/23 10/23 14/23 12/23 17/23 12/23 
Cg 6/7 5/7 5/7 7/7 5/7 5/7 7/7 5/7 7/7 5/7 

Majority 57.04 71.69 91.21 63.97 83.70 57.04 71.69 91.21 63.97 83.70 

Classification algorithms: logistic regression (logit); m-estimation smoothed C4.5 (C4.5s), m-estimation smoothed 
and unpruned C4.5 (C4.5s), m-estimation smoothed and curtailed C4.5 (C4.5s); 1-nearest neighbor (1NN), 10-nearest 
neighbor (1ONN), 100-nearest neighbor (1 OONN), 500-nearest neighbor (500NN); MLP having one output neuron and 
one hidden layer with up to three hidden layer neurons (MLP1,MLP2,MLP3); linear kernel LS-SVM (Lin-LS-SVM), 
polynomial kernel LS-SVM of degree 2 and 3 (Poly2-LS-SVM, Poly3-LS-SVM), RBF kernel LS-SVM (RBF-LS-SVM); 
naive Bayes (NB), naive Bayes with Dirichlet smoothing confidence factor 5 (NB|), 25 (NB 5), and 50 (NB|0); TAN 
Bayes, TAN Bayes with Dirichlet smoothing confidence factor 5 (TAN|), 25 (TAN25), and 50 (TAN|0); majority classifier 0 o 
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TABLE 6 

Mean AUROC Using Ten-Fold Cross-Validation 

Indicator Models Extended Predictor Models 

1+ 4+ 7+ vnl vop 1+ 4+ 7+ vnl vop R Rg 
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NB 72.97 76.33 73.98 73.95 78.20 83.19 82.48 71.91 75.53 77.70 4/10 10/10 
NB5 73.07 76.73 77.74 75.40 78.33 85.09 85.09 80.45 87.03 82.96 10/10 

NB5s 73.00 76.69 77.92 75.35 78.15 85.04 84.98 81.13 86.83 83.34 10/10 

NBs0 72.85 76.57 77.14 75.21 77.73 84.88 84.82 80.50 86.77 83.19 9/10 

TAN 71.37 74.69 71.05 73.95 75.98 73.84 74.61 60.72 75.53 65.17 1/10 9/10 
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Classification algorithms: logistic regression (logit); m-estimation smoothed C4.5 (C4.5s), m-estimation smoothed and 7, 
unpruned C4.5 (C4.5s ), m-estimation smoothed and curtailed C4.5 (C4.5?); 1-nearest neighbor (INN), 10-nearest neigh- 0 
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for each individual operationalization (Provost and Fawcett, 2001). The algorithm type 
ROC convex hull plots are taken up as Figures 2-11. 

Discussion of the Performance 

A comparison of the mean algorithm performances in Tables 5 and 6 in absolute terms 
and in terms of Duncan's multiple range difference assessment allows us to conclude 
that the performance (specifically, in terms of mean PCC and mean AUROC) of many 
algorithms is sufficiently similar to state that their differences are rather small. We 
should not attribute much weight to the (high) mean PCC for the more skewed target 
encoding schemes, 7+ and vop. For both cases, many of the underlined performances 
are either inferior to or equal to the performance of the Majority classifier of minimal 
work. As discussed in the first part of the third section, the AUROC may prove a more 
meaningful measure of classification or scoring performance for these cases in that it 
summarizes the tradeoff between the false positives and false negatives over the range 
of operating conditions and thus better reflects the work done by the algorithms in 
separating the data instances. 

No algorithm type jumps out as consistently and significantly superior in terms of 
predictive performance over all considered evaluation scenarios. In fact, the set of 
competitive algorithms is quite large for each of the evaluation scenarios in Tables 5 
and 6. We first take a closer look at the mean PCC results in Table 5 per evaluation 
scenario. The discussion makes abstraction of the mean PCC results for the columns 
labeled 7+ and vop. This leaves six relevant evaluation scenarios in Table 5. Summary 
measure Cg indicates that in three out of six relevant evaluation scenarios all sev- 
en algorithm types have at least one operationalization among the best. The logistic 
regression (logit), the Bayesian learning MLP, and the LS-SVM algorithm types have 
at least one operationalization among the best for all relevant columns. The 
naive Bayes operationalizations fail to measure up to the best when trained on 
the indicator predictor set for 4+ but regain their place among the best when using 
the extended predictor set. Conversely, the TAN Bayes operationalizations are cast 
out of the set of best performers by Duncan's multiple range test when trained on the 
extended predictor set for 1+. The C4.5 decision tree operationalizations consistently 
fail for 1+. 

The mean AUROC results presented in Table 6 expand the view on predictive perfor- 
mance, measuring the quality of an algorithm's classification work across all possible 
classification thresholds. Summary measure Cg in Table 6 indicates that in nine out 
of ten evaluation scenarios at least six out of seven algorithm types have at least one 
operationalization among the best. The one column for which this is not the case is 
for 1+ indicator models. Here, neither the C4.5 decision tree nor the TAN Bayes 
operationalizations are counted among the best. However, with the addition of non- 
flag predictors, the TAN Bayes algorithm type regains its place at the top. Although 
the C4.5 decision trees clearly benefit from the addition of the nonflag predictors, they 
are not capable of keeping up with the best performers. And 1+ is not an exception: 
The C4.5 decision tree operationalizations report consistently inferior mean AUROC 
performance for all the evaluation scenarios. 

Finally, to complete the picture, we should also have a look at Figures 2-11. The 
ROC convex hull per algorithm type allows us to visually monitor the classification 
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FIGURE 2 
Algorithm Type ROC Curve Convex Hull for 1 + Indicator Models 

0.6 

E 
co 0.5 
co 

0.5 
false alarm rate 

behavior of the algorithm types as the operating conditions change. No surprises 
here. Consistent with the mean AUROC performance patterns observed in Table 6, 
many of the algorithm type ROC convex hulls are quite close together over the whole 
range.16 Intersections between the curves are not uncommon. This illustrates the point 
made in the first part of the third section that AUROC assessment is only considered 
appropriate when evaluating (continuous-output) classifiers under various operating 
conditions. Under specific operating conditions, ROC curve analysis, even though 
purely visual, may be more appropriate. Observe that, for all the depicted evalua- 
tion scenarios, the C4.5 decision tree hull is dominated in large part by most, and 
sometimes all, of the other algorithm type hulls. 

Taking abstraction of the C4.5 decision trees-we will comment on their performance 
below-we may conclude that in terms of predictive performance we clearly have a 

16 For some evaluation scenarios the distance between the convex hulls in ROC space is nev- 
ertheless clearly larger than for others. For instance, contrast the evaluation scenarios for 
the 1+ and the 7+ target encoding schemes. The distance between curves is, however, to be 
evaluated in relation to the size of the spread of the mean AUROC values within the group 
of best performing algorithms-that is, those with boldfaced or underlined means-for the 
evaluation scenarios in Table 6. We should take into account this spread when comparing the 
set of ROCs from one scenario to the other. 

1 
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set of competitive algorithm types that all seem up to the job. In this case, we may 
wish to select an algorithm (type) based on other criteria such as the time needed for 
training, tuning, or classification or the comprehensibility of the produced results. If 
we add time considerations to the equation, for instance, picking logit as the method 
of choice would be easily defensible. Not once did logit fail to rank among the best, 
as can be seen from the Rg summary measure in Tables 5 and 6. This assessment is 
confirmed by the ROC convex hulls displayed in Figures 2-11. Moreover, logit is a 
classification tool that has been well studied over the years. It also is readily available 
in most common off-the-shelf statistical or data mining packages. 

Now we will take a closer look at the individual algorithm type performance. In 
Tables 5 and 6 we report on C4.5 with the default hyperparameter settings estimat- 
ing posterior class membership probabilities at the tree leaves using m-estimation 
smoothing (C4.5s), unpruned C4.5 with m-estimation smoothing at the leaves (C4.5a), 
and curtailed C4.5 with m-estimation smoothing at the leaves (C4.5s). C4.5s uses the 
unpruned tree and a form of neighborhood sizing to obtain posterior class membership 
probability estimates and to classify new observations. C4.5s is conceived as follows 
(Zadrozny and Elkan, 2001a, 2001b). First, a full (unpruned) C4.5 tree is grown. Then, 
instead of estimating class membership from the leaves of the unpruned tree (using 
m-estimation) as for C4.5S, we backtrack through the parents of the leaf until we find 
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a subtree that contains k or more training data instances. Thus, the estimation neigh- 
borhood of a data instance is enlarged until we find a subtree that classifies k or more 
training data instances. The choice of k is determined during training using ten-fold 
cross-validation on the training data and choosing k E {5j : j = 1,... ,20} for which 
the cross-validated mean AUROC performance is highest. The inclusion of C4.51 and 
C4.5s in our study was influenced by work presented in Provost and Domingos (2000) 
and Zadrozny and Elkan (2001a, 2001b). Both were included in the study to investigate 
their effect on the AUROC performance.17 This is further discussed below. We note 
that results for m-estimation smoothing and Laplace correction did not differ much. 
Therefore, we do not report results for Laplace correction. 

In terms of comprehensibility, decision trees definitely belong to the most attractive 
machine learning algorithm types available. This largely explains their popularity. In 
terms of mean PCC they can often compete with the best, as is illustrated by the results 
in Table 5. In four out of six relevant evaluation scenarios-specifically, for the 4+ and 
vnl indicator and extended predictor models one C4.5 decision tree operationalization 
attains performance statistically similar to the highest according to Duncan's multiple 
range test. However, even though a C4.5 decision tree operationalization is ranked 

17 This is why k was tuned during training by optimizing the AUROC, rather than the PCC. 
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among the best for the 4+ and vnl target encoding schemes, the absolute difference 
between the highest mean PCC and the maximal mean C4.5 decision tree operation- 
alization PCC for either of the four evaluation scenarios still amounts to 1.64 percent 
for 4+ indicator models, or more, with a maximum of 2.36 percent for vnl evaluated 
on the indicator predictor set. C4.5s is inferior in terms of mean PCC, which could 
actually have been expected, since disabling pruning seriously increases the risk of 
overfitting the training data. 

The mean AUROC performance reported in Table 6 shows another clear pattern: 
Not one C4.5 decision tree operationalization in this study is capable of attaining 
mean AUROC performance comparable to the best, as evidenced by the last column 
of Table 6. This inferior performance is confirmed by the ROC convex hull plots in 
Figures 2-11. Visual inspection of the plotted scenarios reveals that the C4.5 algorithm 
type ROC convex hull is often dominated in large part by most of the other algorithm 
type hulls. 

Provost and Domingos (2000) have commented on the use of decision trees as PETs. 
Their discussion may shed some light on the observed situation. They argue that, in 
spite of the fact that the decision tree representation is not intrinsically inadequate 
for probability estimation, due to a bias of the conventional tree induction algorithms 
toward maximizing classification accuracy and minimizing tree size, decision trees 
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often prove bad probability estimators.18 Provost and Domingos (2000) provide a 
thorough overview of previous work and discuss the merits of several potential solu- 
tions. Furthermore, they illustrate their discussion by means of AUROC assessment 
on UCI benchmark data (Blake and Merz, 1998). The results reported by Provost and 
Domingos (2000), as well as those presented by Zadrozny and Elkan (2001a, 2001b), 
caused us to consider C4.5' and C4.5' as potential improvements to C4.55 for the 
purpose of probability estimation. The discussion and experimental results for bench- 
mark data in Provost and Domingos (2000) and Zadrozny and Elkan (2001a, 2001b) 
are in line with our results. In the face of limited data availability, the simple opera- 
tions (or a combination) of smoothing the probability estimates at the leaves, using an 
unpruned tree or using a curtailed tree, tend to help and are definitely worth consid- 
ering when using induction trees as PETs. We observe from Table 6 that in nine out of 
ten evaluation scenarios at least one of C4.5s and C4.5' outperforms C4.55 in absolute 
terms. Note that C4.5' and C4.5c were a priori hypothesized to provide better AUROC 
performance. Nevertheless, we also observe that, in order to obtain performance that 

18 In Provost and Domingos (2000), the bad performance of PETs from conventional decision 
tree learners is attributed to a combination of algorithmic bias and limited data availability. 
It is left as an issue for further research to investigate the effect on the behavior of those PETs 
when data availability increases. 
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is comparable to the best, more involved algorithmic means will prove to be neces- 
sary. As pointed out earlier, for none of the ten evaluation scenarios in Table 6 a C4.5 
decision tree operationalization is ranked among the best. Changing the tree pruning 
strategy with the intention of explicitly preserving the distinctions that are important 
to probability estimation is considered as an option for improvement by Provost and 
Domingos (2000). The results they report for this strategy are rather disappointing. 
However, their experiments using a combination of decision trees by bagging multiple 
trees (Breiman, 1996) to obtain good probability estimates are most promising (Pro- 
vost and Domingos, 2000). Note that, on many occasions, the use of an ensemble of 
decision trees (for example, via bagging) has been observed to significantly improve 
classification accuracy (Bauer and Kohavi, 1999; Breiman, 1996; Opitz and Maclin, 
1999). We leave more thorough investigation as an issue for further research. 

Finding the nearest neighbors for a given observation from among a set of training 
data instances is conceptually straightforward. Nevertheless, as the number of train- 
ing data instances rises, the computational overhead and storage of the distance matrix 
may become a burden. Being faced with a rather small data set, this is not much of 
an issue to us. A definite advantage of this type of classifier is that the class informa- 
tion is not needed until the end of the classifier construction process. The similarity 
or distance calculation does not depend on it. So, as the classification shifts through 
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the target encoding schemes presented in the second section, no recomputation of the 
distance matrix is required. In our implementation we opt for the standard Euclidean 
distance metric as a measure for the similarity between data instances.19 We report the 
performance of 1-nearest neighbor (INN), 10-nearest neighbor (10NN), 100-nearest 
neighbor (100NN), and 500-nearest neighbor (500NN) classification. We simply report 
on these four values of k, but could have determined k using a form of tuning during 
training (for example, via cross-validation on the training data). In addition to being 
computationally more intensive, this would have involved a number of expert choices 
to be made: What range of values are to be tested for k? What kind of optimization 
criterion is to be used? When is the value of the optimization criterion significantly 
different to choose one k over the other, taking into account issues of limited data 
availability and overfitting? These choices obviously depend on the purpose of the 
study (for example, classification, where k could be tuned for optimal PCC, versus 
probability estimation, where we could base our tuning procedure on the AUROC). 
From the results in Tables 5 and 6, we may observe that, as the smoothing factor k is 

19 The choice of distance metric is an important hot spot for nearest neighbor classification. It 
essentially enables domain experts to incorporate prior domain knowledge into the classi- 
fication process (for example, weighting some predictors more than others on the basis of 
prior domain expertise). 
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increased from 10 over 100 to 500, for some evaluation scenarios the mean AUROC 
increases, even though the mean PCC performance clearly degrades. More thorough 
investigation of the issue is beyond the scope of this study. 

What we are interested in here is amply demonstrated by the reported results: In five 
out of six relevant evaluation scenarios for the mean PCC, and in ten out of ten for the 
mean AUROC, at least one of the nearest neighbor operationalizations attains perfor- 
mance that is statistically similar to the highest according to Duncan's multiple range 
test. This definitely attests to the prediction potential of nearest neighbor classification 
in the context of this study. Again, the plots in Figures 2-11 back this assessment. Note 
that 1NN is a binary and not a continuous-output classifier. On a set of training data 
it produces just one nontrivial point in ROC space. 

We report the results of Bayesian learning MLPs with one output neuron and one hid- 
den layer with up to three neurons (MLP1, MLP2, MLP3). Adding more hidden layer 
neurons to the architecture proves unnecessary. We also include the mean AUROC 
performance of the smoothed versions (MLP1S, MLP2s, MLP3s) in Table 6. Since, by 
design, the smoothing operation has no effect on the PCC, we omitted the smoothed 
models from Table 5. The MLPs show excellent overall mean PCC and mean AUROC 
performance, as can be observed from contrasting the absolute performance figures 
and from the R and Rg columns in Tables 5 and 6. On very few occasions the smoothed 
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MLPs fail to beat their unsmoothed counterparts in absolute mean AUROC terms. 
Nevertheless, the absolute difference in terms of mean AUROC between smoothed 
and unsmoothed versions remains small. The difference is never significant according 
to Duncan's multiple range test. Remember that this does not mean that smoothing 
does not give better-calibrated posterior class membership probability estimates (see 
the first part of the third section). 

The MLPs are among the most computationally intensive algorithms, which makes 
them less attractive from a practical perspective. Furthermore, their universal mod- 
eling power seems to be of little extra value here. For example, under no evaluation 
scenario in this study is an MLP capable of statistically outperforming the simple lin- 
ear logit discriminant function according to Duncan's multiple range test. Absolute 
differences in terms of mean PCC and mean AUROC performance are rather small 
too. Moreover, the overall results provide a strong argument in favor of a linear discri- 
minant function in the measurement space. This is backed up by the LS-SVM results. 
The computationally much cheaper linear kernel LS-SVM (Lin-LS-SVMs); again based 
on constructing a linear discriminant function in the measurement space, are never 
statistically outperformed by the superior intrinsic modeling power of the computa- 
tionally more demanding RBF kernel LS-SVMs (RBF-LS-SVMs), which first map the 
measurement space to a (high-dimensional) feature space using the mapping function 
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59(x) before constructing bounding hyperplanes (see the fifth part of the fourth section). 
The polynomial kernel LS-SVMs of degree 2 and 3 (Poly2-LS-SVM and Poly3-LS-SVM) 
do not attain performance in line with that of their linear and RBF kernel variants. 
The Lin-LS-SVMs and RBF-LS-SVMs consistently score very high in terms of mean 
PCC, mean AUROC, and algorithm type ROC convex hull. The reported results for 
the LS-SVMs on our insurance fraud data can be added to the excellent benchmark 
results for LS-SVM classification reported in Van Gestel, Suykens, Baesens, Viaene, 
Vanthienen, Dedene, De Moor, and Vandewalle (2000). 

Finally, we report the results of standard (no smoothing) naive Bayes (NB), naive 
Bayes with Dirichlet smoothing confidence factor 5 (NB|), 25 (NBy5), and 50 (NB|0); 
standard (no smoothing) tree augmented naive Bayes (TAN); TAN Bayes with Di- 
richlet smoothing confidence factor 5 (TAN|), 25 (TANy5), and 50 (TAN0o). From the 
results in Tables 5 and 6, we immediately observe that the smoothed naive Bayes algo- 
rithms often have their place among the best. In terms of mean PCC the naive Bayes 
operationalizations fail to measure up to the best for 4+ indicator models. However, 
the smoothed variants regain their place among the best when using the extended 
predictor set instead of the indicator predictors only. From the last column in Table 6, 
we observe that the naive Bayes algorithm type does not once fail to rank among the 
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best in terms of mean AUROC. Again, the algorithm type ROC curve convex hull 
plots in Figures 2-11 confirm this assessment. 

Our findings for naive Bayes are in line with a long history of other practical studies 
reporting often surprisingly good performance for naive Bayes, even in cases where 
the independence assumption underlying it is clearly unrealistic (Domingos and Paz- 
zani, 1997; Duda, Hart, and Stork, 2001; Friedman, Geiger, and Goldszmidt, 1997; 
Hand, 1992; Webb, 1999). Compared to the TAN Bayes operationalizations, naive 
Bayes does not require the computationally intensive structure learning phase. From 
the results in Tables 5 and 6 and considering the ROC convex hull behavior depicted 
in Figures 2-11, one can definitely question the need for the extra modeling power of 
the tree augmented models (with smoothing) in most cases. However, the smoothing 
operation seems to be an overall success for both NB and TAN Bayes. As discussed 
in the sixth part of the fourth section, smoothing is introduced in light of the limited 
availability of training data. The negative effect of data deficiency in certain regions 
of the measurement space is clearly illustrated by the mean PCC and mean AUROC 
performance of NB and TAN Bayes for all evaluation scenarios covering the extended 
predictor set. This may be attributed to the fact that many of the nonflag predictors are 
discretized into a rather large number of discrete values. Some data regions are less 
densely populated than others. Smoothing satisfactorily counters the adverse effect 
this has on the performance of naive Bayes and TAN Bayes. 

Predictive Power of Nonflags 

Independent of the target encoding scheme and the algorithm type, the inclusion of 
nonflag predictors allows us to significantly boost predictive performance, in terms 
of both mean PCC (where relevant) and mean AUROC. The increase in predictive 
performance observed from the inclusion of nonflags into the set of predictors is com- 
pletely in line with our prior hypothesis that unexploited potential for early screening 
resides in the use of structural and systematic data mining for fraud detection that 
goes beyond the use of traditional red flags. Of course, as stated before, the selection 
of the predictors for this study is limited by what was available in the coded data and 
is only intended as an initial example of adding nonflag predictors, not an attempt at 
a complete or efficient model. Nevertheless, the results present a strong argument in 
favor of using a combination of flags and nonflags for modeling suspicion of fraud. 

SUMMARY AND CONCLUSIONS 

The main aim of this research effort was to report on an exploratory study for bench- 
marking the predictive power of several state-of-the-art binary classification tech- 
niques in the context of early screening for suspicion of fraud in PIP automobile 
insurance claims. The documentation on the problem domain, the data set, the 
experimental setup, and the algorithm types and operationalizations in the first four 
sections should enable the reader to assess the robustness and scope of the bench- 
marking. In an attempt to realize a fair comparison of algorithms, we relied on auto- 
matic classifiers as much as possible, using default (widely accepted) hyperparameter 
choices or tuning hyperparameters using the training data. For most algorithm 
design or hyperparameter, we reported on several operationalizations using alterna- 
tive, a priori sensible hyperparameter or design choices, documenting the effect of the 
latter on the cases involved. Results were presented in terms of mean PCC and mean 
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AUROC curve using a stratified, blocked, ten-fold cross-validation experiment. Algo- 
rithm performance differences were assessed using a two-way ANOVA and Duncan's 
multiple range test (using a 5 percent significance level). We also visualized the per- 
formance per algorithm type by constructing the convex hull of the cross-validated 
model ROCs associated with its alternative operationalizations. 

Our results show that: (1) independent of the target encoding scheme and the algo- 
rithm type, the inclusion of nonflag predictors significantly boosts predictive perfor- 
mance; and (2) for all the evaluated scenarios, the performance difference in terms 
of mean PCC and mean AUROC between many algorithm operationalizations turns 
out to be rather small; visual comparison of the ROC convex hulls for the respec- 
tive algorithm types also shows limited difference in performance over the range of 
operating conditions. Noteworthy is the good overall performance of the relatively 
simple and efficient techniques such as logit and Lin-LS-SVM classification. Naive 
Bayes (with smoothing) also performs well. More complex and computationally de- 
manding algorithm types such as Bayesian learning MLP, RBF-LS-SVM, and TAN 
Bayes classification tend to add little or no extra predictive power. Furthermore, the 
good overall performance of logit and Lin-LS-SVM classificatoin provides a strong ar- 
gument in favor of a discriminant function that is linear in the input data. Assuming 
that the case at hand is representative of the domain, does this mean we may catalogue 
insurance claim fraud detection as being of a "linear," and thus rather simple, nature? 
Regrettably, we may not. The semantics of the labeled data do not allow us to draw 
such a conclusion. Remember, the objective of the classification models was to mimic 
human expert assessment of suspicion of fraud. Here the consensus is that only a 
small part of existing fraudulent behavior is actually detected by domain experts. The 
omission error of current fraud detection practice is widely recognized in the litera- 
ture on insurance (claim) fraud detection (Artis, Ayuso, and Guillen, 2000; Caron and 
Dionne, 1999; Picard, 1996). The above characterization as linear, however, may well 
be hypothesized to apply to the nature of the human expert decision-making process 
with regard to detection of insurance claim fraud and how fraud experts perceive or 
are able to perceive fraudulent activity. 

The C4.5 decision tree operationalization performance turns out to be rather disap- 
pointing. Even though a C4.5 operationalization is ranked among the best in terms of 
mean PCC according to Duncan's multiple range test for most of the evaluated scenar- 
ios (such as, for the 4+ operational domain expert choice), an absolute performance gap 
remains of at least 1.64 percent between the highest mean PCC and the maximal mean 
C4.5 operationalization PCC for each evaluation scenario. Moreover, none of the C4.5 
decision tree operationalizations are capable of attaining mean AUROC performance 
similar to the best according to Duncan's multiple range test. For all evaluated scenar- 
ios, the C4.5 algorithm type ROC convex hull is often dominated in large part by most 
of the other algorithm type hulls. This demonstrates that the primary or conventional 
decision tree objective of classification (that is, discrimination between classes) reflect- 
ed in clear algorithmic bias for growing and pruning the tree, may not be completely 
in line with scoring objectives or with the objective of producing good probability 
estimates in the face of limited data availability. Changing the decision tree grow- 
ing and/or pruning strategy or using an ensemble of decision tree classifiers may be 
more appropriate in case the primary task is probability estimation or data instance 
scoring. Moreover, the machine learning literature provides clear evidence that this 
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latter strategy may substantially improve classification accuracy. Bearing in mind the 
popularity of decision tree algorithms, these issues definitely deserve further study. 

Limited data availability motivated us to consider probability smoothing operations 
proposed for some of the algorithms to produce better posterior class membership 
probability estimates to be used as a basis for classification under various operat- 
ing conditions. The beneficial effect of smoothing for the Bayesian networks is most 
noticeable. For the Bayesian learning MLPs the performance difference in terms of 
mean AUROC between smoothed and unsmoothed versions is less pronounced. Here, 
the mean AUROC is improved in absolute terms, but this never proves to be statis- 
tically significant according to Duncan's multiple range test. However, this does not 
mean calibration of the estimates is not improved. For the C4.5 decision tree opera- 
tionalizations we estimated posterior class membership probabilities at the tree leaves 
using m-estimation smoothing. 

Now, a final commentary on the nature of the discussion presented in this study is in 
order. Algorithm choice evidently cannot simply be reduced to a question of predictive 
performance, although having a clear indication of expected predictive performance 
of an algorithm given a certain domain and data configuration remains an impor- 
tant facet of a more general evaluation. The issue is much more complex. The choice 
of algorithm from the ever growing bag of predictive tools and tool sets is as much 
dictated by issues such as speed of training, tuning, classifying, and the interpret- 
ability and actionability of the results. Algorithm choice is equally influenced by tool 
availability, expert knowledge, in-house expertise, domain characteristics, data (set) 
characteristics, and other (business) operating conditions. In many a business situa- 
tion, a white-box or insightful model is chosen a priori over a black-box model simply 
because it better fits the evidence-based analysis and decision framework. From a 
practical or business perspective, statistically accurate prediction or scoring may well 
be an asset of a model but definitely not a sufficient one, especially if one is not capable 
of answering the important Why? underlying a model's decisions. This often means 
trading off the predictive performance of a powerful black-box tool for the simplicity 
of an understandable and actionable, but less powerful, white-box model. In other 
situations, a high-parameterized model, potentially requiring lengthy tuning, may be 
preferred over a more efficient, low-parameterized algorithm because of its capability 
to be tuned to complex data-, domain-, or organization-specific characteristics. One 
may then hope to realize a more optimal fusion between the algorithm and the prior 
domain or expert knowledge. Success of the more involved algorithm construction 
will of course largely depend on the skill of the people involved in constructing and 
operating the tools. One may thus ask whether human expert skill is not the foremost 
critical success factor of any model building or operating activity. In the end, the main 
contribution to the final performance is the translation from the business problem to 
the algorithmic context, which is determined by human expert skill (Webb, 1999). 

The reader should be well aware of the limited setting of our comparison. In partic- 
ular, one definitely has a valid point stating that more complex algorithms such as 
neural networks allow for more modeler manipulation than, for instance, statistical 
regression-type models. The real power of the former may for that reason be more 
apparent in a setup where one needs to incorporate valuable domain-specific informa- 
tion in a nonconventional manner during the training phase, the manner that statistical 
regression-type of tools may not be comfortable with, or when input information 
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arrives as a process rather than in batch. Neural networks can then provide more flex- 
ible ways of accommodating such circumstances. One must also keep in mind that 
very often low-parameterized methods implicitly make use of more assumptions than 
really necessary (for example, assumptions of normality or conditional independence 
of given the class predictors). Moreover, as one of the reviewers of this article noted, 
the conclusion coupled to the results can be drawn, both sides. Not only do the results 
illustrate the power of relatively simple algorithms such as logit, but they also show 
how more complex algorithms like the Bayesian learning MLPs stay in line with the 
former in this limited setting. Granted! According to the reviewers, this work should 
thus be complemented by future work to investigate how much may be gained by 
switching from a simple, yet efficient, exploratory model to a more flexible, complex 
algorithm if the model is to be set up to make use of domain-specific information in a 
nonconventional manner. For this study, we chose to minimize that aspect to test the 
algorithms per se. 

Let us, however, help one misconception out of this world: The learning or training 
step is definitely not the only step in the knowledge discovery in databases process 
(Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy, 1996) in which domain-specific 
or prior expert information can help steer the modeling effort. Preprocessing of the 
data can be an equally effective option to incorporate useful domain specifics or prior 
knowledge. Even a simple logit model can be very effectively manipulated by adding, 
deleting, or constructing predictors. In addition, for most real-life problems of data 
mining, domain-specific or prior expert knowledge proves indispensable in the post- 
processing stage, when one filters the often very limited, really interesting knowledge 
patterns from the often abundant pile of automatically generated, potentially relevant 
patterns. This, in turn, may lead data analysts and domain experts to feed the newly 
discovered chunks of knowledge back into earlier stages of the knowledge discovery 
process and start an iterative cycle of exploration. 

Does this critical note invalidate the objective and results of this research effort? Not in 
the least. It helps put it into the right perspective. The perspective on algorithm perfor- 
mance that we have taken is definitely partial, but nevertheless valid and worthwhile. 
For example, the AUROC results in Table 6 would argue against the adoption of any of 
the C4.5 decision tree algorithms for this application, despite the attractiveness of the 
triage procedure it produces as a claim screen. Predictive performance benchmarking 
remains a very useful exploratory exercise, not least in light of the wide variety of 
available tools and tool sets and the accompanying claims of superior performance. 
It also enables us to set out directions for further research. 
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