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Communities, modules and large-scale structure
in networks
M. E. J. Newman

Networks, also called graphs by mathematicians, provide a useful abstraction of the structure of many complex systems,
ranging from social systems and computer networks to biological networks and the state spaces of physical systems. In the
past decade there have been significant advances in experiments to determine the topological structure of networked systems,
but there remain substantial challenges in extracting scientific understanding from the large quantities of data produced by
the experiments. A variety of basic measures and metrics are available that can tell us about small-scale structure in networks,
such as correlations, connections and recurrent patterns, but it is considerably more difficult to quantify structure on medium
and large scales, to understand the ‘big picture’. Important progress has been made, however, within the past few years, a
selection of which is reviewed here.

A network is, in its simplest form, a collection of dots joined
together in pairs by lines (Fig. 1). In the jargon of the field,
a dot is called a ‘node’ or ‘vertex’ (plural ‘vertices’) and a

line is called an ‘edge’. Networks are used in many branches of
science as a way to represent the patterns of connections between
the components of complex systems1–6. Examples include the
Internet7,8, in which the nodes are computers and the edges are data
connections such as optical-fibre cables, food webs in biology9,10,
in which the nodes are species in an ecosystem and the edges
represent predator–prey interactions, and social networks11,12, in
which the nodes are people and the edges represent any of a
variety of different types of social interaction including friendship,
collaboration, business relationships or others.

In the past decade there has been a surge of interest in both em-
pirical studies of networks13 and development of mathematical and
computational tools for extracting insight from network data1–6.
One common approach to the study of networks is to focus on
the properties of individual nodes or small groups of nodes, asking
questions such as, ‘Which is the most important node in this net-
work?’ or ‘Which are the strongest connections?’ Such approaches,
however, tell us little about large-scale network structure. It is this
large-scale structure that is the topic of this paper.

The best-studied form of large-scale structure in networks is
modular or community structure14,15. A community, in this context,
is a dense subnetwork within a larger network, such as a close-knit
group of friends in a social network or a group of interlinked web
pages on the World Wide Web (Fig. 1). Although communities
are not the only interesting form of large-scale structure—there
are others that we will come to—they serve as a good illustration
of the nature and scope of present research in this area and will
be our primary focus.

Communities are of interest for a number of reasons. They
have intrinsic interest because they may correspond to functional
units within a networked system, an example of the kind of
link between structure and function that drives much of the
present excitement about networks. In a metabolic network16,
for instance—the network of chemical reactions within a cell—a
community might correspond to a circuit, pathway or motif that
carries out a certain function, such as synthesizing or regulating a
vital chemical product17. In a social network, a community might
correspond to an actual community in the conventional sense of the
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Figure 1 | Example network showing community structure. The nodes of
this network are divided into three groups, with most connections falling
within groups and only a few between groups.

word, a group of people brought together by a common interest, a
common location or workplace or family ties18.

However, there is another reason, less often emphasized, why
a knowledge of community structure can be useful. In many
networks it is found that the properties of individual communities
can be quite different. Consider, for example, Fig. 2, which shows
a network of collaborations among a group of scientists at a
research institute. The network divides into distinct communities as
indicated by the colours of the nodes. (We will see shortly how this
division is accomplished.) In this case, the communities correspond
closely to the acknowledged research groups within the institute, a
demonstration that indeed the discovery of communities can point
to functional divisions in a system. However, notice also that the
structural features of the different communities are widely varying.
The communities highlighted in red and light blue, for instance,
appear to be loose-knit groups of collaborators working together
in various combinations, whereas the groups in yellow and dark
blue are both organized around a central hub, perhaps a group
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Figure 2 |A network of collaborations among scientists at a research
institute. Nodes in this network represent the scientists and there is an
edge between any pair of scientists who co-authored a published paper
during the years of the study. Colours represent communities, as
discovered using a modularity-maximization technique.

leader or principal investigator of some kind. Distinctions such as
these, which may be crucial for understanding the behaviour of
the system, become apparent only when one looks at structure on
the community level.

The network in this particular example has the nice property that
it is small enough and sparse enough to be drawn clearly on the page.
One does not need any calculations to pick out the communities in
this case: a good eye will do the job. However, when we are working
with larger or denser networks, networks that can have thousands
or even millions of nodes (or a smaller number of nodes but very
many edges), clear visualization becomes impossible and we must
turn instead to algorithmic methods for community detection and
the development of such methods has been a highly active area of
research in the past few years15.

The community-detection problem is challenging in part be-
cause it is not verywell posed. It is agreed that the basic problem is to
find locally dense regions in a network, but this is not a precise for-
mulation. If one is to create a method for detecting communities in
amechanical way, onemust first define exactly what onemeans by a
community. Researchers have been aware of this issue from the out-
set and have proposed a wide variety of definitions, based on counts
of edges within and between communities, counts of paths across
networks, spectral properties of network matrices, information-
theoretic measures, randomwalks andmany other quantities. With
this array of definitions comes a corresponding array of algorithms
that seek to find the communities so defined14,15,19–31. Unfortu-
nately, it is no easy matter to determine which of these algorithms
are the best, because the perception of good performance itself
depends on how one defines a community and each algorithm
is necessarily good at finding communities according to its own

definition. To get around this circularity, we typically take one of
two approaches. In the first, algorithms are tested against real-world
networks for which there is an accepted division into communities,
often based on additionalmeasurements that are independent of the
network itself, such as interviews with participants in a social net-
work or analysis of the text of web pages. If an algorithm can reliably
find the accepted structure then it is considered successful. In the
second approach, algorithms are tested against computer-generated
networks that have some form of community structure artificially
embedded within them. A number of standard benchmark net-
works have been proposed for this purpose, such as the ‘four groups’
networks14 or so-called the LFR benchmark networks32. A number
of studies have been published that compare the performance of
proposed algorithms in these benchmark tests33,34. Although these
approaches do set concrete targets for performance of community-
detectionmethods, there is room for debate over whether those tar-
gets necessarily align with good performance in broader real-world
situations. If we tune our algorithms to solve specific benchmark
problems we run the risk of creating algorithms that solve those
problemswell but other (perhapsmore realistic) problems poorly.

This is a crucial issue and one that is worth bearing inmind as we
take a look in the following sections at the present state of research
on community detection. As we will see, however, researchers have,
in spite of the difficulties, come up with a range of approaches that
return real, useful information about the large-scale structure of
networks, and in the process have learned much, both about indi-
vidual networks that have been analysed and about mathematical
methods for representing and understanding network structure.

Hierarchical clustering
Studies of communities in networks go back at least to the 1970s,
when a number of techniques were developed for their detection,
particularly in computer science and sociology. In computer
science the problem of graph partitioning35, which is similar
but not identical to the problem of community detection, has
received attention for its engineering applications, but the methods
developed, such as spectral partitioning36 and the Kernighan–
Lin algorithm37, have also been fruitfully applied in other areas.
However, it is thework of sociologists that is perhaps themost direct
ancestor ofmodern techniques of community detection.

An early, and still widely used, technique for detecting
communities in social networks is hierarchical clustering5,11.
Hierarchical clustering is in fact not a single technique but an
entire family of techniques, with a single central principle: if we
can derive a measure of how strongly nodes in a network are
connected together, then by grouping the most strongly connected
we can divide the network into communities. Specific hierarchical
clusteringmethods differ on the particularmeasure of strength used
and on the rules by which we group strongly connected nodes.
Most common among themeasures used are the so-called structural
equivalence measures, which focus on the number nij of common
network neighbours that two nodes i, j have. In a social network
of friendships, for example, two people with many mutual friends
are more likely to be close than two people with few and thus a
count of mutual friends can be used as a measure of connection
strength. Rather than using the raw count nij , however, one typically
normalizes it in some way, leading to measures such as the Jaccard
coefficient and cosine similarity. For example, the cosine similarity
σij between nodes i and j is defined by

σij =
nij
√
kikj

where ki is the degree of node i (that is, the number of con-
nections it has). This measure has the nice property that its
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Figure 3 |Average-linkage clustering of a small social network. This tree or ‘dendrogram’ shows the results of the application of average-linkage
hierarchical clustering using cosine similarity to the well-known karate-club network of Zachary38, which represents friendship between members of a
university sports club. The calculation finds two principal communities in this case (the left and right subtrees of the dendrogram), which correspond
exactly to known factions within the club (represented by the colours).

value falls always between zero and one—zero if the nodes have
no common neighbours and one if they have all their neigh-
bours in common.

Once one has defined a measure of connection strength, one
can begin to group nodes together, which is done in hierarchical
fashion, first grouping single nodes into small groups, then
grouping those groups into larger groups and so forth. There are a
number of methods by which this grouping can be carried out, the
three common ones being the methods known as single-linkage,
complete-linkage and average-linkage clustering. Single-linkage
clustering is the most widely used by far, primarily because it is
simple to implement, but in fact average-linkage clustering gener-
ally gives superior results and is notmuch harder to implement.

Figure 3 shows the result of applying average-linkage hierarchical
clustering based on cosine similarity to a famous network from
the social networks literature, Zachary’s karate-club network38.
This network represents patterns of friendship between members
of a karate club at a US university, compiled from observations
and interviews of the club’s 34 members. The network is of
particular interest because during the study a dispute arose among
the club’s members over whether to raise club fees. Unable to
reconcile their differences, the members of the club split into
two factions, with one faction departing to start a separate club.
It has been claimed repeatedly that by examining the pattern
of friendships depicted in the network (which was compiled
before the split happened) one can predict the membership of the
two factions14,20,26,27,38–40.

Figure 3 shows the output of the hierarchical clustering proce-
dure in the form of a tree or ‘dendrogram’ representing the order in
which nodes are grouped together into communities. It should be
read from the bottom up: at the bottom we have individual nodes
that are grouped first into pairs, and then into larger groups as
we move up the tree, until we reach the top, where all nodes have
been gathered into one group. In a single image, this dendrogram
captures the entire hierarchical clustering process. Horizontal cuts
through the figure represent the groups at intermediate stages.

As we can see, the method in this case joins the nodes together
into two large groups, consisting of roughly half the network each,
before finally joining those two into one group at the top of the
dendrogram. It turns out that these two groups correspondprecisely
to the groups into which the club split in real life, which are
indicated by the colours in the figure. Thus, in this case the method
works well. It has effectively predicted a future social phenomenon,
the split of the club, fromquantitative datameasured before the split
occurred. It is the promise of outcomes such as this that drivesmuch
of the present interest in networks.

Hierarchical clustering is straightforward to understand and to
implement, but it does not always give satisfactory results. As it
exists in many variants (different strength measures and different
linkage rules) and different variants give different results, it is not
clear which results are the ‘correct’ ones. Moreover, the method
has a tendency to group together those nodes with the strongest
connections but leave out those with weaker connections, so that
the divisions it generates may not be clean divisions into groups,
but rather consist of a few dense cores surrounded by a periphery of
unattached nodes. Ideally, wewould like amore reliablemethod.

Optimization methods
Over the past decade or so, researchers in physics and applied
mathematics have taken an active interest in the community-
detection problem and introduced a number of fruitful approaches.
Among the first proposals were approaches based on a measure
known as betweenness14,21,41, in which one calculates one of
several measures of the flow of (imaginary) traffic across the
edges of a network and then removes from the network those
edges with the most traffic. Two other related approaches are
the use of fluid-flow19 and current-flow analogies42 to identify
edges for removal; the latter idea has been revived recently
to study structure in the very largest networks30. A different
class of methods are those based on information-theoretic ideas,
such as the minimum-description-length methods of Rosvall and
Bergstrom26,43 and related methods based on statistical inference,
such as the message-passing method of Hastings25. Another large
class exploits links between community structure and processes
taking place on networks, such as randomwalks44,45, Potts models46
or oscillator synchronization47. A contrasting set of approaches
focuses on the detection of ‘local communities’23,24 and seeks to
answer the question of whether we can, given a single node,
identify the community to which it belongs, without first finding
all communities in the network. In addition to being useful for
studying limited portions of larger networks, this approach can give
rise to overlapping communities, in which a node can belong to
more than one community. (The generalized community-detection
problem in which overlaps are allowed in this way has been an area
of increasing interest within the field in recent years22,31.)

However, the methods most heavily studied by physicists, per-
haps unsurprisingly, are those that view the community-detection
problem by analogy with equilibrium physical processes and treat
it as an optimization task. The basic idea is to define a quantity
that is high for ‘good’ divisions of a network and low for ‘bad’
ones, and then to search through possible divisions for the one
with the highest score. This approach is similar to the minimization
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of energy when finding the ground state or stable state of a
physical system, and the connection has been widely exploited. A
variety of different measures for assigning scores have been pro-
posed, such as the so-called E/I ratio48, likelihood-based measures49
and others50, but the most widely used is the measure known
as the modularity18,51.

Suppose you are given a network and a candidate division into
communities. A simple measure of the quality of that division
is the fraction of edges that fall within (rather than between)
communities. If this fraction is high then you have a good division
(Fig. 1). However, this measure is not ideal. It is maximized by
putting all nodes in a single group together, which is a correct but
trivial form of community structure and not of particular interest.
A better measure is the so-called modularity, which is defined to be
the fraction of edges within communities minus the expected value
of that fraction if the positions of the edges are randomized51. If
there are more edges within communities than one would find in a
randomized network then the modularity will be positive and large
positive values indicate good community divisions.

Let Aij be equal to the number of edges between nodes i and j
(normally zero or one); Aij is an element of the ‘adjacency matrix’
of the network. It can be shown that for a network with m edges
in total, the expected number that fall between nodes i and j if
the positions of the edges are randomized is given by kikj/2m,
where ki is again the degree of node i. Thus, the actual number of
edges between i and j minus the expected number is Aij−kikj/2m
and the modularity Q is the sum of this quantity over all pairs of
nodes that fall in the same community. If we label the communities
and define si to be the label of the community to which node i
belongs, then we can write

Q=
1
2m

∑
ij

[
Aij−

kikj
2m

]
δsi,sj

where δij is the Kronecker delta and the leading constant 1/2m is
included only by convention—it normalizesQ to measure fractions
of edges rather than total numbers but its presence has no effect on
the position of the modularity maximum.

The modularity takes precisely the form H = −
∑

ij Jijδsi,sj of
the Hamiltonian of a (disordered) Potts model, apart from a
minus sign, and hence its maximization is equivalent to finding the
ground state of the Potts model—the community assignments si act
similarly to spins on the nodes of the network. Unfortunately, direct
optimization of the modularity by an exhaustive search through the
possible spin states is intractable for any but the smallest of net-
works, and faster indirect (but exact) algorithms have been proved
rigorously not to exist52. A variety of approximate techniques from
physics and elsewhere, however, are applicable to the problem and
seem to give good, but not perfect, solutions with relatively modest
computational effort. These include simulated annealing17,53,
greedy algorithms54,55, semidefinite programming28, spectral
methods56 and several others40,57. Modularity maximization forms
the basis for other more complex approaches as well, such as the
methodof Blondel et al.27, amultiscalemethod inwhichmodularity
is first optimized using a greedy local algorithm, then a ‘supernet-
work’ is formed whose nodes represent the communities so discov-
ered and the greedy algorithm is repeated on this supernetwork.
The process iterates until no further improvements in modularity
are possible. This method has become widely used by virtue of its
relative computational efficiency and the high quality of the results
it returns. In a recent comparative study it was found to be one of the
best available algorithms when tested against computer-generated
benchmark problems of the type described in the introduction34.

Figure 2, showing collaboration patterns among scientists, is an
example of community detection using modularity maximization.

One of the nice features of the modularity method is that one does
not need to know in advance the number of communities contained
in the network: a free maximization of the modularity, in which
the number of communities is allowed to vary, will tell us the most
advantageous number, as well as finding the exact division of the
nodes among communities.

Although modularity maximization is efficient, widely used
and gives informative results, it—like hierarchical clustering—has
deficiencies. In particular, it has a known bias in the size of the
communities it finds—it has a preference for communities of size
roughly equal to the square root of the size of the network58.
Modifications of the method have been proposed that allow one
to vary this preferred size59,60, but not to eliminate the preference
altogether. The modularity method also ignores any information
stored in the positions of edges that run between communities:
as modularity is calculated by counting only within-group edges,
one could move the between-group edges around in any way
one pleased and the value of the modularity would not change
at all. One might imagine that one could do a better job of
detecting communities if one were to make use of the information
represented by these edges.

In the past few years, therefore, researchers have started to look
for a more principled approach to community detection, and have
gravitated towards the method of block modelling, a method that
traces its roots back to the 1970s (refs 61,62), but which has recently
enjoyed renewed popularity, with some powerful new methods
and results emerging.

Block models
Block modelling63–67 is in effect a form of statistical inference for
networks. In the same way that we can gain some understanding
from conventional numerical data by fitting, say, a straight line
through data points, so we can gain understanding of the structure
of networks by fitting them to a statistical network model. In
particular, if we are interested in community structure then we can
create a model of networks that contain such structure, then fit it
to an observed network and in the process learn about community
structure in that observed network, if it exists.

A simple example of a block model is a model network in
which one has a certain number n of nodes and each node is
assigned to one of several labelled groups or communities. In
addition, one specifies a set of probabilities prs, which represent
the probability that there will be an edge between a node in
group r and a node in group s. This model can be used, for
instance, in a generative process to create a random network with
community structure. By making the edge probabilities higher for
pairs of nodes in the same group and lower for pairs in different
groups, then generating a set of edges independently with exactly
those probabilities, one can produce an artificial network that has
many edges within groups and few between them—the classic
community structure.

However, we can also turn the experiment around and ask, ‘If we
observe a real network and we suppose that it was generated by this
model, what would the values of the model’s parameters have to
be?’ More precisely, what values of the parameters are most likely
to have generated the network we see in real life? This leads us to
a ‘maximum likelihood’ formulation of the community-detection
problem. The probability, or likelihood, that an observed network
was generated by this blockmodel is given by

L=
∏
i<j

pAij
sisj (1−psisj )

1−Aij

where Aij is an element of the adjacency matrix, as before,
and si is again the community to which node i belongs. Now
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we simply maximize this quantity over the probabilities prs and
the communities si. Again we have turned the detection of
communities into an optimization problem, albeit a harder one
than the modularity-maximization problem. The values of the
probabilities prs are usually of lesser interest to us, but if we can find
the community parameters si that maximize the likelihood then we
have solved our community-detection problem.

Although it seems elegant and well-founded in principle, the
surprising thing about this approach, at least as we have described
it here, is that it does not work well. Figure 4a shows an example
application of (a slight variant of) the method to a network of
weblogs, or ‘blogs’—personal web pages maintained by individuals
or groups, on which they publish their thoughts on topics of their
choosing. This particular network, which was assembled by Adamic
and Glance68, is composed of blogs about US politics that were
active around the time of the US presidential election in 2004, and
the edges in the network represent web hyperlinks between blogs.
Adamic and Glance showed that this network was strongly divided
into two communities, one of left-leaning (that is, liberal) blogs,
which commonly link to one another, and the other of right-leaning
(conservative) ones, which also link to one another, but that there
were few links between left and right. The communities appear as
roughly the left and right halves of the network as it is drawn in
Fig. 4a. The colours in the figure show the division of the network
into two communities foundwith themaximum likelihoodmethod
above, and it is clear that the method has failed to find the known
division in this case. What has gone wrong?

On closer inspection, we find that the method fails in this case
because it does not take into account the wide variation among the
degrees of nodes in the network. In this network (and many others)
degrees vary over a great range, whereas degrees in the block model
are Poisson distributed and narrowly peaked about their mean.
This means, in effect, that there is no choice of parameters for the
model that gives a good fit to the data. Fitting this block model
is similar to fitting a straight line through an inherently curved
set of data points—you can do it, but it is unlikely to give you a
meaningful answer.

It turns out, however, that one can fix such problems by suitably
modifying the model. Figure 4b shows a different fit to the same
network using now a ‘degree-corrected’ block model that allows for
widely varying degrees49. As the figure shows, the model now finds
a division that corresponds closely to the known division between
left- and right-leaning blogs. The moral of the story is that it is not
hard to come up with models so unrealistic that they will not fit
the observed network for any parameter values and one must guard
against this possibility if the method is to work.

Once we deal with this issue, however, the block-model method
has some promising features. If we have found the parameter values
for the best fit of the model to an observed network, we can
then plug those values back into the model and use the model to
generate further networks that are similar to the original network,
but not identical. This ability to generate similar networks can be
used, for instance, to guess at the locations of possible missing
edges in a network. For many networks our data are incomplete
or unreliable, and there may be edges missing from the recorded
structure. Looking at a large selection of generated networks that are
similar to the original, one can find edges that appear often in the
generated networks but not in the original; such edges turn out to
be reliable candidates for missing data. Guimerá and Sales-Pardo69
have shown that this approach is at least as accurate as, and often
better than, previousmethods for predictingmissing edges.

Another nice feature of the block-model method is that it lends
itself to many variants that are suitable for particular types of
problem. For instance, in some problems we can, with some effort,
carry out experiments to determine the community membership of

a

b

Figure 4 |Analysis of a network of links between web sites about US
politics. The two panels represent the divisions found in a network of
political weblogs using two different versions of the block model method.
a, Division into two communities discovered using a fit to the basic block
model described in the text, which fails to find the acknowledged division of
the network into politically left- and right-leaning communities. b, Division
using a block model that corrects for the broad distribution of node degrees
in the network. This division corresponds closely to the acknowledged one.
Figure reproduced with permission from ref. 49, © 2011 APS. Network data
taken from ref. 68.

a few nodes, and the goal is to determine the rest. In recent work,
Yan et al.70 have devised a variant of the block-model method
in which one can use the model to determine on which nodes
these experiments should be done, by looking for the nodes whose
membership information will be most useful, in the sense that it
will tell us as much as possible not only about the measured nodes
but also about the membership of other nodes in the network. They
show that the accuracy of community detection can be enormously
improved by carrying out just a few experiments on nodes carefully
chosen using this technique.

However, perhaps the most promising feature of the block-
model method is that it is not limited to detecting traditional
community structure in networks. In principle, any type of
structure that can be formulated as a probabilistic model can be
detected, including overlapping communities, bipartite or k-partite
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Figure 5 |Hierarchical divisions in a food web of grassland species.
Outlined sets of nodes represent groups of species at different levels in the
hierarchy. For clarity only two levels in the hierarchy are shown, although
five levels were found in some parts of the network. Reproduced from
ref. 71.

structures, communities within communities andmany others. The
field is only just beginning to explore the wide range of possibilities
that this approach offers, but Fig. 5 shows one example, drawn
from my own work71. In this study we examined the food web of
a grassland ecosystem—the network of predator–prey interactions
between species—and searched for a generalized form of hierar-
chical community structure in which groups divide into subgroups
and subsubgroups and so on. Using a model that employs a tree
structure reminiscent of the dendrogram of Fig. 3 to represent the
hierarchy of groups, and edge probabilities that depend on shortest
paths through the tree, we were able to discover an entire spectrum
of structure within the network, spanning the range from small
motifs of a few nodes to the size of the entire network. Of particular
note in this example is the way in which the method groups host
species (squares) with their parasites (yellow triangles), but at the
next level in the hierarchy also gathers the parasites separately
into their own groups. In some sense, the parasites have more in
common with each other than with their host, and hence can be
thought of as belonging to a separate group, even though they have
no direct interactions with one another through the food web. The
calculation realizes this and divides the network accordingly.

Conclusion
The study of network structure and its links with the function and
behaviour of complex systems is a large and active field of endeavor,
with new results appearing daily and an energetic community of
researchers working on both methods and applications. Some of
the ideas discussed here are now well established and widely used,
whereas others, such as the block-modelmethods, are being actively
researched and developed, and there are many others still that there
is not room to describe in this article. The pace of developments
is, if anything, accelerating, and the field offers substantial promise
for those in physics, biology, the social sciences and elsewhere, for
whom the ability to make sense of the structures, large and small,
found in networks can open a new window on the behaviour of
systems of many kinds.
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