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The switching model is a well-known random network model that randomizes a network while keeping
its degree sequence fixed. The idea behind the switching model is simple: a network is randomized by
repeatedly rewiring pairs of edges. In this paper we demonstrate that despite its simple description, and
in part due to it, much can go wrong when implementing the switching model. Specifically, we show that
the model needs to be implemented carefully, to avoid biased sampling. We propose a precise definition of
the switching model which guides its implementation. Furthermore, we argue that we should refer to the
switching model with respect to a specific network class, and in fact define a family of switching models.
This formalizes previous use of the switching model to randomize networks from numerous network
classes. We show that the properties of these models depend on the network class, and in particular that
their stationary distributions differ. Hence it is important to take into account which class of networks
is being randomized. We derive conditions, and where possible adjust the models, such that sampling is
unbiased for the switching model with respect to eight common network classes. These unbiased null-
models are important, since common network analysis techniques such as motif finding and community
detection rely on them.

Keywords: random networks; Markov chain; switching model; unbiased sampling; fixed degree sequence.

1. Introduction

The randomization of networks with fixed degree sequence is used extensively throughout network science
[1–6]. It has turned out to be hard to generate provably unbiased samples [1, 7–10]. There are two types
of approach to this problem: building a network from scratch as in the configuration model [4–6] or
randomizing a network by making small changes to it as in the switching model [1, 9, 11–14]. We focus
on the latter Markov chain approach to network randomization.

In this paper we point out that the simple and flexible nature of the switching algorithm comes at a
price. First, in order to obtain unbiased samples with the switching model, a specific Markov chain has to
be implemented [1, 9, 12]. Second, even though the switching model has been used to randomize different
classes of networks, it is typically referred to as the switching model [15]. We argue that really we should
be talking about the family of switching models. We demonstrate that it is important to distinguish the
switching model with respect to different classes of networks, because ignoring this distinction has led
to biased sampling. Third, we identify mistakes in its implementation that are easily overlooked but
introduce bias in sampling.

We use Markov chain terminology to propose a simple and flexible, yet unambiguous definition of
the family of switching models. Furthermore, using a well-known theorem about finite Markov chains
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2 C. J. CARSTENS AND K. J. HORADAM

(Theorem 2.1), we analyse it with respect to eight distinct network classes. In particular we derive the
conditions for which this family of switching models converges to a stationary distribution, as well as
their stationary distributions. When the stationary distribution is not the uniform distribution we propose
small changes to the particular switching model to ensure unbiased sampling.

Throughout this paper, we illustrate how the theoretical properties of the switching model relate to its
implementation. We show that there are many subtleties in the implementation of switching models that
may cause biased sampling. For instance, we show that an implementation error in the software package
MFinder [16] has previously produced biased samples for undirected networks. Ultimately, to ensure
that the results of experimental studies are correct, it is of great importance that correct algorithms are
available or easily implemented based on theoretical papers.

An important question that we do not address in this paper is the number of steps required to reach
the stationary distribution of the switching models. Instead, we focus on how to ensure this distribution
is uniform. However, taking too few steps in the algorithm will also introduce sampling bias. There are
several theoretical results but only for special network classes [17–19]. Furthermore, the theoretical limits
are too large to be practical [20]. We refer to [21] for a recent discussion on how to bridge the gap between
theoretical limits and practical run-times.

This paper is organized as follows. In Section 2 we give a brief overview on Markov chains.
We then discuss two Markov chains corresponding to the switching model that have different sam-
pling distributions. We propose a simple and precise definition of the switching model that directs its
implementation.

In Section 3 we generalize the definition of the switching model to any subset of the class of directed
multigraphs. We analyse the theoretical properties of the switching model with respect to four common
subsets and derive the corresponding sampling distributions. We also propose simple alterations to ensure
sampling is unbiased.

In Section 4 we propose a similar definition of the switching model with respect to any subset
of the class of undirected multigraphs. We show that the switching model with respect to undirected
networks has its own subtleties, and how, when these are not taken into account, sampling can be very
biased.

In Section 5 we present selected proofs of the theoretical properties of the switching models as
described in Sections 3 and 4. The remainder appears in the Supplementary data.

We conclude by summarizing our results and making recommendations in Section 6.

2. Different Markov chains corresponding to the switching model

In order to derive the sampling distribution of the switching model, we use the well-known fact that
it corresponds to a Markov chain [1, 12, 13, 22]. That is, the switching model generates a stochastic
sequence of networks where the probability of a network occurring at some point in the sequence only
depends on its immediate predecessor. This stochastic sequence starts with a network G, followed by
networks obtained from repeatedly applying switches.

We will use the following facts and terminology about finite Markov chains. A finite Markov chain
is uniquely defined by its finite state space {Gi} and the transition probabilities pij between each pair of
states Gi and Gj. The state graph of a Markov chain is a graph with vertices that correspond to its states
and edges that correspond to non-zero transition probabilities. A Markov chain is irreducible if its state
graph is strongly connected. A Markov chains is called aperiodic if for all states x, the greatest common
divisor of the length of walks starting and ending at x equals 1. A finite Markov chain converges to a
stationary distribution under the following conditions (see, e.g. [23, Theorem 7.10]).
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SWITCHING EDGES TO RANDOMIZE NETWORKS 3

(a) (b) (c)

Fig. 1. (a) The five directed networks with degree sequences kin = (1, 1, 2) and kout = (1, 1, 2). Networks are connected by an
edge if there is a switch that transforms one into the other. For instance there is an edge from network G1 to network G2 since
replacing edges (1, 2) and (2, 3) in network G1 by edges (1, 3) and (2, 2) results in network G2. (b) The transition probabilities
corresponding to the interpretation of the switching model excluding repeated states. (c) The transition probabilities corresponding
to the interpretation of the switching model including repeated states.

Theorem 2.1 A finite irreducible and aperiodic Markov chain converges to a unique stationary distribu-
tion. If there exists a probability distribution π on its state space such that the detailed balance equations,
πipij = πjpji, are satisfied for all i, j, then π is this unique stationary distribution.

This theorem implies that a finite, irreducible and aperiodic Markov chain converges to the uniform
distribution if pij = pji for all i, j.

We now focus on the randomization of a single class of networks: directed networks. In this paper,
directed networks may include self-loops; directed networks without self-loops are referred to as simple
directed networks. The switching model for these networks was introduced within network science as
follows: ‘Let G be a directed network, randomly select two edges (x, y) and (u, v) and replace them by
(x, v) and (u, y). In case one or both of these new edges already exist in G, abort this step and select a
new pair of edges. Repeat this until the network is sufficiently randomized.’ [11, 16]

This definition is ambiguous with respect to the abortion of a switch: it is unclear whether aborting
a switch corresponds to repeating a network in the corresponding Markov chain, or not. This seemingly
innocent distinction makes the difference between biased and unbiased sampling, as has been discussed
a number of times in the literature [1, 9, 12]. The following two examples show that two different ways
of addressing this issue, in terms of repeating states [1, 12] and in terms of fixing the number of switches
[9], are in fact the same.

Example 2.2 Let G1 be the directed network illustrated in Fig. 1(a). Its in-degree sequence kin equals
(1, 1, 2) and its out-degree sequence kout equals (1, 1, 2). There are exactly five directed networks with
these degree sequences, as shown in Fig. 1(a).

The network G1 has four edges, hence there are six pairs of edges that can potentially be switched.
Only three of these edge pairs result in different directed networks when switched: (1, 2) and (2, 3) result
in network G2, (1, 2) and (3, 3) result in network G3, and (1, 2) and (3, 1) result in network G4.

In the first interpretation of the switching model, e.g. [1], the Markov chain changes state in every step.
To do so it selects a neighbour of the current state uniformly at random. Hence the transition probability
pij, between states that differ by a switch, equals 1/k(Gi) with k(Gi) the degree of Gi. For instance, the
transition probability from state G1 to G2 equals 1/3 because G1 has three neighbours. The Markov chain
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4 C. J. CARSTENS AND K. J. HORADAM

(a) (b)

Fig. 2. Pseudo-code for two implementations of the switching model. (a) In this implementation, the index i is only incremented
when an allowed switch is made. Hence each of the N states Gi differs by a switch from its immediate predecessor Gi−1. This
implementation corresponds to the Markov chain without repeated states in Example 2.2 (first interpretation) and samples with
bias. (b) In this implementation, the index i is incremented regardless of whether an allowed switch is found. Instead of fixing the
number of switches, here the number of switching attempts is fixed. This implementation corresponds to the Markov chain with
repeated states in Example 2.2 (second interpretation) and hence samples without bias.

for directed networks with degree sequences (1, 1, 2) has transition matrix P

P =

⎛
⎜⎜⎜⎜⎝

0 1/3 1/3 1/3 0
1/3 0 1/3 0 1/3

1/4 1/4 0 1/4 1/4

1/3 0 1/3 0 1/3

0 1/3 1/3 1/3 0

⎞
⎟⎟⎟⎟⎠

, lim
N→∞

PN =

⎛
⎜⎜⎜⎜⎝

3/16 3/16 1/4 3/16 3/16

3/16 3/16 1/4 3/16 3/16

3/16 3/16 1/4 3/16 3/16

3/16 3/16 1/4 3/16 3/16

3/16 3/16 1/4 3/16 3/16

⎞
⎟⎟⎟⎟⎠

.

By taking the limit of PN , we find that this Markov chain converges to the distribution π = (3/16, 3/16,
1/4, 3/16, 3/16). Another way to arrive at the same conclusion is by using Theorem 2.1 and checking that
π satisfies the detailed balance equations. Thus sampling using this Markov chain is not uniform: it is
more likely to sample network G3 than the other networks.

In the second interpretation, e.g. [24], the Markov chain contains repeated states. At each step, a pair
of edges of Gi is randomly selected; if switching these edges results in another simple directed network,
then the resulting network is the next state, else Gi is repeated. The transition probability from network G1

to G2 now equals 1/6 because only one out of the six edge pairs of G1 results in network G2 when rewired.
The probability of repeating G1 corresponds to the probability of selecting an edge pair that results in
the same network, i.e. (3, 1) and (3, 3), or that gets rejected, e.g. (2, 3) and (3, 1). For G1 this probability
equals 1/2. In this case, the transition probabilities are those illustrated in Fig. 1(c). Notice that pij = pji

for all states i, j. The Markov chain furthermore is irreducible and aperiodic and hence converges to the
uniform distribution.

This example shows that for a specific network, the switching model samples without bias when
repeated states are included, and with bias when they are excluded. In fact it is well-known that the
switching model with repeated states converges to the uniform distribution for all directed networks
[1, 12].

Our next example shows that the two interpretations from Example 2.2 correspond to fixing the
number of switches or the number of attempted switches in the switching model. This alternative point
of view was discussed in [9]. However, we think it is important to point out that this is just a different
way of describing the same problem.

Example 2.3 Figure 2 shows pseudo-code of two distinct implementations of the switching model.
The implementations only differ in the placement of a bracket. However, this small difference
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SWITCHING EDGES TO RANDOMIZE NETWORKS 5

causes algorithm (a) to sample with bias whereas algorithm (b) samples without bias for directed
networks.

The first implementation (Fig. 2(a)) fixes the number of switches N made by the switching method,
since the index variable i is only incremented when a switch is made. As such it does not include repeated
states and hence results in biased sampling as in the first interpretation discussed in Example 2.2.

In the second implementation (Fig. 2(b)) N switches are attempted and i is incremented regardless of
whether a switch is accepted or rejected. This corresponds to the inclusion of repeated states and hence
to the second interpretation of the switching model discussed in Example 2.2.

We finish this section by proposing a definition of the switching model with respect to directed
networks, designed to remove this ambiguity. To do so, we first define a directed switch.

Definition 2.4 Let Gi and Gj be directed networks. There exists a directed switch from network Gi =
(Vi, Ei) to Gj = (Vj, Ej) if and only if Vj = Vi, Ei �= Ej and there are two edges (x, y) and (u, v) in Ei such
that Ej = (Ei\{(x, y), (u, v)}) ∪ {(x, v), (u, y)}.

We now define the switching model with respect to directed networks as follows.

Definition 2.5 Let G be a finite directed network. The switching model for G with respect to directed
networks is defined by a Markov chain starting at G. The states of this Markov chain are all directed
networks that have the same degree sequences as G. If there exists a directed switch from Gi to Gj then the
transition probability pij equals the probability of randomly selecting an edge pair in Gi that corresponds
to this switch.

The resulting transition probabilities can be expressed in terms of the number of edge pairs, M =
m(m−1)

2 , with m the total number of edges of G, and k(Gi) the degree of state Gi in the state graph for G.

pij =

⎧⎪⎨
⎪⎩

1
M if there exists a directed switch between Gi and Gj,

1 − k(Gi)

M if j = i,

0 otherwise.

.

Notice that this definition includes repeated states and leaves no ambiguity about its implementation.
Hence it generates unbiased samples for directed networks. In the next section we will show that even
though this definition is easily generalized to randomize different network classes, this does not imply
that these generalized switching models sample without bias.

3. Randomizing different classes of directed networks

The switching model offers a flexible approach to network randomization. It can easily be altered to
sample from different network classes by changing which switches are rejected or accepted. For instance,
by rejecting switches that introduce self-loops we can randomize simple directed networks (i.e. directed
networks without self-loops).

However, care must be taken when altering the switching model. We show that several changes will
introduce bias in the sampling distribution.
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6 C. J. CARSTENS AND K. J. HORADAM

A

BC

D

E

F

G

Fig. 3. The state graph of the switching model with respect to D for network A. Each state has a self-loop, which we have not
depicted for visual clarity. The state graphs with respect to classes D0, D s and Dm are subgraphs as indicated. For instance, the
state graph of the switching model with respect to D s is the induced subgraph on states A, B and D − F.

We start this section by generalizing the definition of the switching model to different classes of
directed networks. We then analyse under which conditions the switching model with respect to four
common network classes converges to a stationary distribution and, where possible, introduce acceptance
probabilities to ensure unbiased sampling.

Definition 3.1 Let D be the set of all finite directed multigraphs and let G ⊂ D be a subset. Let G be a
network in the set G . The switching model for G with respect to G is defined by a Markov chain starting
at G. The states of this Markov chain are all the networks in G that have the same degree sequences as
G. Let Gi and Gj be such states, then if there exists a directed switch between Gi and Gj the transition
probability pij equals the probability of selecting an edge pair corresponding to this directed switch.

In this general setting, G can be any subset of the class of directed multigraphs. We focus on four
common classes of networks: simple directed networks (D 0), directed networks, i.e. which may have
self-loops, (D s), and directed multigraphs with and without self-loops (D and Dm). These network classes
are related by the following inclusions: D 0 ⊂ D s ⊂ D and D 0 ⊂ Dm ⊂ D . The state graphs of these
models reflect the same inclusions as illustrated in Fig. 3.

As discussed in Section 2, the switching model with respect to D s samples without bias.1 This was
proven using Theorem 2.1.

For certain networks and network classes, the three sufficient conditions in Theorem 2.1 are not
satisfied. Figure 4 shows different situations in which one or more of these conditions are no longer true.
In these situations the Markov chain either no longer converges to a stationary distribution or converges
to a distribution other than the uniform distribution.

Luckily, these problems are either so rare that they can safely be ignored, or they can easily be fixed.
We now discuss problems related to each of the three properties in Theorem 2.1 in some more detail.

3.1 Irreducibility

The irreducibility for the switching model with respect to D s was proven in 1963 by Ryser [25, Theorem
3.1]. Rao et al. [12] later gave an alternative proof. Furthermore they showed that for the class of simple
directed networks (i.e. D 0), the Markov chain of the switching model is not always irreducible. The

1 Under mild conditions, see Table 1.
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SWITCHING EDGES TO RANDOMIZE NETWORKS 7

(a) (b) (c)

Fig. 4. (a) The switching model with respect to classes D0 and Dm is reducible for the directed three cycle. There are only two
realizations of this network without self-loops. Since all switches introduce self-loops, the switching model with respect to D0 and
Dm never leaves the state it starts in and hence is reducible since the state graph is disconnected. For the same network, the switching
model with respect to D s and D is irreducible. (b) For any of these networks, the Markov chain of the switching model with respect
to all four classes is periodic, with period 2. (c) For multigraphs, transition probabilities are no longer necessarily symmetric. In
this example the probability of selecting an edge pair in G1 that results in G2 is twice as big as the probability of selecting the
reverse switch. This is due to the fact that there are two edges between vertex 1 and vertex 2. In this situation p12 = 2p21.

networks for which this switching model has a reducible Markov chain were classified in [24]. The
problem for these networks is that the orientation of a directed three-cycle cannot be reversed (Fig. 4(a)).
The same problem arises for class Dm. There are two solutions to this problem: (1) check if a network has
reducible Markov chain [24], and if so, use a pre-sampling step [26], or (2) include triangle reorientations
[12, hexagonal move; 13, triangle swap; 24, three-cycle reorientation]. On the other hand, the Markov
chain of the switching model with respect to D is always irreducible, as we prove in Lemma 5.1.

3.2 Aperiodicity

In practice, the switching model with respect to classes D 0, D s, Dm and D has an aperiodic Markov chain
for all networks of interest. Lemma 5.2 proves that for classes D 0 and Dm it suffices for a network to
contain at least one vertex with total degree 2 or more. In the Supplementary data we prove that for classes
D s and D it suffices for a network to contain at least one vertex with in-degree 2 or more or out-degree
2 or more.

3.3 Detailed balance equations

As illustrated in Fig. 4(c), the transition probabilities of the switching model with respect to multigraphs
(Dm and D ) are no longer symmetric (i.e. pij �= pji). In the Supplementary data we derive both the
transition probabilities and the stationary distribution for the switching model with respect to classes Dm

and D .
The switching model with respect to these classes produces biased samples. However, in Section 5

we show that these switching models can be forced to sample without bias by introducing acceptance
probabilities [22, 27].

Table 1 summarizes the properties of the switching model with respect to the four network classes
discussed in this section. Under mild conditions, and for some classes after a small adjustment, the
switching model can be used to produce unbiased samples for all four classes: D 0, D s, Dm and D .
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8 C. J. CARSTENS AND K. J. HORADAM

Table 1 Properties of the Markov chains corresponding to switching methods with
respect to four classes of directed networks.

Network classes Properties of the switching model

Class Multiple Self-loops Irreducible Aperiodic pij = pji Uniform

D 0 No No No [12, 24] Yes† Yes Yes‡

D s No Yes Yes [12, 24, 25] Yes§ Yes Yes
Dm Yes No No Yes† No Yes‡,¶

D Yes Yes Yes Yes§ No Yes¶

†If the network contains at least one vertex with total degree two or more.
‡For most networks this Markov chain is irreducible [24], if not the bias in sampling can be removed by
using a pre-sampling step[26].
§If the network contains at least one vertex with in-degree two or more or out-degree two or more.
¶If acceptance probabilities are used.

4. Randomizing undirected networks

The switching model has also been used to randomize undirected networks [15]. The randomization of
undirected networks has its own subtleties, and again, the switching model needs to be implemented
with care to avoid biased sampling. We point out that MFinder, the popular motif finding software
accompanying [15, 16], up until recently2 produced biased samples of undirected networks. Results
obtained using MFinder for undirected networks should hence be checked for correctness.

To formulate the switching model with respect to undirected networks we first define an undirected
switch.

Definition 4.1 There exists a switch from the undirected network Gi = (Vi, Ei) to the undirected network
Gj = (Vj, Ej) if and only if Vj = Vi, Ei �= Ej and there are two edges {x, y} and {u, v} in Ei such that either
Ej = (Ei\{{x, y}, {u, v}}) ∪ {{x, v}, {u, y}} (switch 1) or Ej = (Ei\{{x, y}, {u, v}}) ∪ {{x, u}, {y, v}} (switch
2) (see Fig. 5(a)).

In a sense, this definition of a switch is overspecified. We could restrict to switch 1 only, since switch
2 is just switch 1 where one edge is labelled in reverse order. However, the reason that we do mention
both switches is that it is important to realize that selecting an edge pair does not correspond to selecting
a switch, there are two potential switches for each pair of edges. This is important for two reasons. Firstly,
when implementing the switching algorithm for undirected networks, it is most likely that edges are
stored with vertices in fixed order. Example 4.3 shows how implementing just switch 1 results in biased
sampling. In fact, this is exactly what caused MFinder to produce biased samples of undirected networks.
Secondly, to derive the transition probabilities for the Markov chains, we need to take into account that
switch 1 and switch 2 may result in different networks.

We now define the switching model with respect to any subset of undirected multigraphs.

2 After we contacted the authors of MFinder the software was fixed and updated in May 2015.
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SWITCHING EDGES TO RANDOMIZE NETWORKS 9

Table 2 Properties of the Markov chains corresponding to switching methods with
respect to four classes of undirected networks

Network classes Properties of the switching model

Class Multiple Self-loops Irreducible Aperiodic pij = pji Uniform

U 0 No No Yes [14, 28, 29] Yes Yes Yes
U s No Yes No Yes No No†

U m Yes No Yes [30, 31] Yes No Yes‡

U Yes Yes Yes [30] Yes No Yes‡

†We suspect that this Markov chain is only reducible for a small class of networks. Furthermore we believe
that a triangle move may be introduced to ensure irreducibility; however we have no proof of this (see
Supplementary data for more details).
‡If acceptance probabilities are used.

Definition 4.2 Let U be the set of all finite undirected multigraphs and let G ⊂ U be a subset. Let G be
a network in the set G . The switching model for G with respect to G is defined by a Markov chain starting
at G. The states of this Markov chain are all the networks in G that have the same degree sequence as
G. If Gi, Gj are such networks and there exists a switch between Gi and Gj then the transition probability
pij is the probability of selecting an edge pair and picking switch 1 or switch 2 (with equal probability),
corresponding to this switch.

We have summarized the properties of the switching model with respect to simple undirected net-
works (U 0), undirected networks (U s), undirected multigraphs without self-loops (U m) and undirected
multigraphs (U ) in Table 2. Lemmas 5.3 and 5.4 show that the switching model with respect to U m

converges to a distribution different from the uniform distribution. Section 5 furthermore shows how
acceptance probabilities [13, 22] may be introduced to enforce unbiased sampling. The idea of accep-
tance probabilities is simple: instead of accepting all allowed switches, accept each switch with a given
probability. If chosen well, this ensures pij = pji for all i, j and hence when the Markov chain is irre-
ducible and aperiodic, it converges to the uniform distribution. The Supplementary data contain proofs
for all statements without citations, as well as the derivations of the stationary distribution for classes U 0

and U .
The example below illustrates the impact of neglecting to implement both switches 1 and 2 for the

switching model with respect to undirected networks.

Example 4.3 Let G1 be the undirected network with six vertices v1, . . . , v6 and six edges {v1, v3}, {v2, v4},
{v3, v4}, {v3, v5}, {v4, v6} and {v5, v6} as illustrated in Fig. 5(b). There are 17 simple undirected networks
with the same degree sequence as G1 (see Fig. 1 Supplementary data).

We first look at a worst-case scenario, where the edges are stored in such a way that switch 1 is not
allowed for any of the edge pairs: (v1, v3), (v4, v2), (v4, v3), (v4, v6), (v5, v3), (v5, v6) (Fig. 5(c)). For any
edge pair, applying switch 1 either does not alter the network (when the edges have the same source or
the same target) or introduces a self-loop or a multiple edge. Any ‘random’ network generated by this
implementation will be the network G1 itself.

We now show that even when this implementation of the switching model is able to sample from
the full set of 17 networks, the sample may still be biased. This is the case when the edge list is stored
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10 C. J. CARSTENS AND K. J. HORADAM

(a) (b) (c) (d)

Fig. 5. (a) Illustration of switch 1 and switch 2 corresponding to the edge pair {x, y} and {u, v}. (b) An undirected network G1. (c) A
directed network corresponding to storing G1 with vertex order {(v1, v3), (v4, v2), (v4, v3), (v4, v6), (v5, v3), (v5, v6)} and the state
graph of the switching model with just switch 1 implemented. (d) A directed network corresponding to storing G1 with vertex order
{(v1, v3), (v4, v2), (v3, v4), (v6, v4), (v3, v5), (v5, v6)} and the state graph of the switching model with just switch 1 implemented.
In this state graph, many of the 17 undirected networks correspond to several states as indicated by labels. Each state also has a
self-loop, which we have not depicted for visual clarity.

as (v1, v3), (v4, v2), (v3, v4), (v6, v4), (v3, v5), (v5, v6). Several networks appear multiple times in the state
graph corresponding to this Markov chain (Fig. 5(d)). The reason for this is that these networks are not
uniquely represented by an ordered edge list. For instance the following two edge lists with distinct vertex
ordering, correspond to a single undirected network (G2 in Fig. 1 Supplementary data).

(v1, v6), (v4, v5), (v5, v3), (v3, v4), (v3, v2), (v6, v4), (4.1)

(v1, v6), (v4, v3), (v5, v4), (v3, v5), (v3, v2), (v6, v4). (4.2)

In this situation, all non-zero transition probabilities between distinct states are equal to 1/15, the
probability of selecting the edge pair corresponding to the switch (switch 1) between them, and hence pij =
pji for all i and j. The state graph is also irreducible and aperiodic and hence this Markov chain converges
to the uniform distribution. This implies that each undirected networks is sampled proportionally to the
number of times it appears in the state graph, and hence sampling is biased. For instance, the probability
of sampling state G1 is three times less than the probability of sampling state G3 (see Fig. 5(d) and
Fig. 1 Supplementary data).

5. Selected proofs

In this section we present mathematical proofs of some of the properties of the switching models discussed
in Sections 2–4.

Our first proof uses the symmetric edge set difference of graphs [32]. Let G = (V , E) and G′ = (V ′, E ′)
be two graphs. The symmetric edge set difference of G and G′ is defined as E�E ′ := (E\E ′) ∪ (E ′\E).
We write G�G′ for the graph with vertices V ∪ V ′ and edge set E�E ′.

The symmetric edge set difference of two simple directed graphs with equal degree sequences
has some nice ‘Eulerian’ properties [28]. Here we use the property that it has even cardinality (see
Corollary 2 in the Supplementary data).

Lemma 5.1 Let G = (V , E) ∈ D . The Markov chain of the switching model for G with respect to D is
irreducible.
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Proof. Irreducibility of a Markov chain is equivalent to the corresponding state graph being strongly
connected. Since the directed switch is a symmetric move, it is enough to show that the state graph
of the switching model with respect to D is connected. That is, for any network G′ = (V , E ′) ∈ D
with degree sequences equal to those of G, we need to show that there exists a sequence of graphs
G = G0, . . . , Gk = G′ such that Gi ∈ D and there exists a directed switch between Gi and Gi+1 for all
i ∈ (0, . . . , k − 1). This can be proven in terms of the edge set difference by showing |Ei�Ei+1| = 4
for all i ∈ (0, . . . , k − 1) (see [28]). The edge set difference E�E ′ = E\E ′ ∪ E ′\E has even cardinality,
|E�E ′| = 2κ .

We prove this lemma by induction on κ . Let κ > 2 and let (v1, v2) ∈ E\E ′, then there exist edges
(v1, v3) and (v4, v2) in E\E ′ with v3 �= v2 and v4 �= v1 since G and G′ have equal degree sequences. Let
G∗ be the graph with vertices V and edges E∗ = (E ′\{(v1, v3), (v4, v2)})∪{(v1, v2), (v4, v3)} then G∗ ∈ D ,
|E∗�E ′| = 4 and |E∗�E| ≤ 2κ − 2. �

Lemma 5.2 Let G ∈ D 0 or Dm. The Markov chain of the switching model for G with respect to D 0 or
to Dm is aperiodic if and only if G contains a vertex v with total degree at least 2.

Proof. We first show that the Markov chain is trivially aperiodic when G contains a vertex v of total
degree at least 2, by showing that each state has a non-zero probability of being repeated (i.e. pii > 0
for all i). Let Gi be a state, then v has degree at least 2, since all states have the same degree sequence
as G. If v has an incoming and an outgoing edge then switching these edges is not allowed, since it
would result in a network that contains a self-loop at v. Hence pii > 0. If instead, v has either two
incoming or two outgoing edges, then switching these edge does not change the network and hence
pii > 0.

To prove the reverse claim, we use proof by contrapositive: we show that if G does not contain a
vertex v with total degree at least 2, then the Markov chain of the switching model with respect to D 0

and Dm is periodic.
If G does not contain a vertex v with total degree at least 2 then G is a disjoint union of single vertices

and single edges. We ignore the single vertices since the switching model leaves these invariant. Thus
the interesting part of G is a collection of single edges {(s1, t1), (s2, t2), . . . , (sm, tm)}. We can represent
G as the ordered tuple T = (t1, t2, . . . , tm). The set of simple directed networks with the same degree
sequences corresponds to all permutations of T . For instance, if (ti1 , ti2 , . . . , tim) is a permutation of T ,
then the network with edge set {(s1, ti1), (s2, ti2), . . . , (sm, tim)} is simple directed and has the same degree
sequence as G.

A directed switch corresponds to a transposition of two elements in (t1, t2, . . . , tm). The identity is an
even permutation and can thus only be obtained as the composition of an even number of transpositions.
This precisely means that any sequence of networks in the Markov chain starting and ending at a net-
work Gi has to be of even length. The chain is periodic with period 2 (Fig. 4(b) illustrates the m = 3
case). �

We next derive the stationary distribution for the switching model with respect to U m. To do so, we
first derive the transition probabilities for this switching model.
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12 C. J. CARSTENS AND K. J. HORADAM

Lemma 5.3 Let Gi and Gj be two networks in U m with equal degree sequence. The transition probability
pij from Gi to Gj is given by

pij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ai
xyAi

uv
2M if Ej = Ei\{{x, y}, {u, v}} ∪ {{x, v}, {u, y}},

or Ej = Ei\{{x, y}, {u, v}} ∪ {{x, u}, {y, v}},
1 − ∑

k,k �=i pik if i = j,

0 otherwise,

where [Ai
kl] is the weighted adjacency matrix of the network Gi and M is the number of edge pairs m(m−1)/2

in Gi.

Proof. If there exists a switch between Gi and Gj, then without loss of generality we may assume that
Ej = Ei\{{x, y}, {u, v}} ∪ {{x, v}, {u, y}}. Notice that all four vertices are distinct since neither network
contains self-loops and the networks are different. The transition probability pij is the probability of
selecting the edge pair {x, y} and {u, v} in Gi and selecting switch 1. It is not hard to see that there are
Ai

xyA
i
uv distinct edge pairs {x, y} and {u, v}. Hence pij = Ai

xyAi
uv/2M. �

Lemma 5.4 Let G ∈ U m be an undirected multigraph without self-loops. For any Gi ∈ U m with the
same degree sequence as G, let

βi = 1∏
k<l Ai

kl!
,

where [Ai
kl] is the weighted adjacency matrix corresponding to Gi. Then πi = βi/

∑
r βr is the stationary

distribution for the switching model for G with respect to U m.

Proof. Using the transition probabilities from Lemma 5.3 we show that πi satisfies the detailed balance
equations. Let Gi = (V , Ei) ∈ U m and Gj = (V , Ej) ∈ U m with the same degree sequence as G. Without
loss of generality we assume that Ej = Ei\{{x, y}, {u, v}} ∪ {{x, v}, {u, y}}. Define Ai

{rs} to be Ai
rs. Hence

Ai
{rs} is also equal to Ai

sr , since the network is undirected. Let,

Ki = 1

2M

1∑
r βr

1∏
k<l,{k,l}/∈Ei�Ej

Ai
{kl}!

and notice that Ki equals Kj. Then,

πipij = βi∑
r βr

Ai
{xy}A

i
{uv}

2M

= Ki

Ai
{xy}A

i
{uv}

Ai
{xy}!Ai

{uv}!Ai
{xv}!Ai

{uy}!

= Ki
1

(Ai
{xy} − 1)!(Ai

{uv} − 1)!Ai
{xv}!Ai

{uy}!
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= Ki
1

Aj
{xy}!Aj

{uv}!(Aj
{xv} − 1)!(Aj

{uy} − 1)!

= Kj

Aj
{xv}A

j
{uy}

Aj
{xy}!Aj

{uv}!Aj
{xv}!Aj

{uy}!
= πjpji. �

We can introduce acceptance probabilities to force the switching model with respect to U m to
converge to the uniform distribution. Let the adjusted switching model with respect to U m have acceptance
probabilities aij = 1/Ai

xyAi
uv when Gi and Gj differ by Ej = Ei\{(x, y), (u, v)} ∪ {(x, v), (u, y)} and aij = 1

otherwise. These acceptance probabilities ensure pij = pji for all states i and j and hence the adjusted
switching model with respect to U m samples without bias. In the Supplementary data we introduce the
adjusted switching model with respect to classes Dm, D and U .

6. Conclusion

In this paper we propose a precise definition of the switching model with respect to any subset of directed
or undirected multigraphs. This definition is intended to guide practitioners to correctly implement the
switching model. Furthermore, we show that it is necessary to define the switching model with respect
to a subset, since its properties differ depending on the subset.

We demonstrated that in implementing the switching model much can potentially go wrong and cause
sampling to be biased. However, by using Theorem 2.1, most of these issues can be resolved.

For eight common network classes, we analysed under which conditions the switching model con-
verges to a stationary distribution and derived this distribution. When necessary, we introduced acceptance
probabilities, such that the resulting adjusted switching model converges to the uniform distribution.

By carefully analysing the properties of the switching model with respect to undirected networks, we
found and resolved an error in the well-known software package MFinder.

One of the strengths of the switching model is its simplicity: it is a simple procedure of edge swaps
that randomizes networks while fixing their degree sequence(s). When treated carefully, the switching
model can be used to draw uniform samples from a variety of network classes. This makes the switching
model an attractive candidate for a null-model.

As already noted, in this paper we have ignored one crucial question about switching models: how
many switches do we need to attempt, in order to obtain a truly random network? Or, in other words, how
many steps does the corresponding Markov chain need to take to reach its stationary distribution. This
question is generally hard to answer [21, 33].

A recently proposed approach, the Expand and Contract method [34], may provide a solution by
combining the fast but less flexible configuration model (which samples fromD andU ) with the (adjusted)
switching model with respect to D and U . This would be an interesting direction for further research.
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