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Abstract

The betweenness centrality index is essential in the analysis of social
networks, but costly to compute. Currently, the fastest known algo-
rithms require Θ(n3) time and Θ(n2) space, where n is the number of
actors in the network.

Motivated by the fast-growing need to compute centrality indices
on large, yet very sparse, networks, new algorithms for betweenness
are introduced in this paper. They require O(n + m) space and run
in O(nm) and O(nm + n2 log n) time on unweighted and weighted
networks, respectively, where m is the number of links. Experimen-
tal evidence is provided that this substantially increases the range of
networks for which centrality analysis is feasible.
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1 Introduction

In social network analysis, graph-theoretic concepts are used to understand
and explain social phenomena. A social network consists of a set of actors,
who may be arbitrary entities like persons or organizations, and one or more
types of relations between them. For a comprehensive overview of methods
and applications see Wasserman and Faust (1994) or Scott (1991).

∗Part of this research was done while with the Department of Computer Science at
Brown University. I gratefully acknowledge financial support from the German Academic
Exchange Service (DAAD, Hochschulsonderprogramm III).
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An essential tool for the analysis of social networks are centrality indices
defined on the vertices of the graph (Bavelas, 1948; Sabidussi, 1966; Freeman,
1979). They are designed to rank the actors according to their position in
the network and interpreted as the prominence of actors embedded in a
social structure. Many centrality indices are based on shortest paths linking
pairs of actors, measuring, e.g., the average distance from other actors, or
the ratio of shortest paths an actor lies on. Many network-analytic studies
rely at least in part on an evaluation of these indices.

With the increasing practicality of electronic data collection and, of
course, the advent of the Web, there is a likewise increasing demand for
the computation of centrality indices on networks with thousands of ac-
tors. Several notions of centrality originating from social network analysis
are in use to determine the structural prominence of Web pages (Kleinberg,
1999; Brin et al., 1998; Bharat and Henzinger, 1998). However, there is
an Ω(n3) bottleneck in existing implementations, due to the particularly
important betweenness centrality index (Freeman, 1977; Anthonisse, 1971),
which makes comparative centrality analyses of networks with more than
a few hundred actors prohibitive. As a remedy, network analysts are now
suggesting simpler indices, for instance based only on linkages between the
neighbors of each actors (Everett et al., 1999), to at least obtain rough
approximations of betweenness centrality.

In this paper, we show that betweenness can be computed exactly even
for fairly large networks. We introduce more efficient algorithms based on a
new accumulation technique that integrates well with traversal algorithms
solving the single-source shortest-paths problem, and thus exploiting the
sparsity of typical instances. The range of networks for which betweenness
centrality can be computed is thereby extended significantly. Moreover, it
turns out that all standard centrality indices based on shortest paths can
thus be evaluated simultaneously, further reducing both the time and space
requirements of comparative analyses.

The centrality indices relevant here are defined in Section 2. In Section 3,
we review methods computing all shortest paths between all pairs of actors
in a network. A recursion formula for accumulating betweenness central-
ity is derived in Section 4, and its practical implications are validated by
experiments on real and randomly generated data, as discussed in Section 5.
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2 Centrality Indices Based on Shortest Paths

Social and other networks are conveniently described as a graph G = (V, E),
where the set V of vertices represents actors, and the set E of edges repre-
sents links between actors. We use n and m to denote the number of vertices
and edges, respectively. For simplicity, we assume that all graphs are undi-
rected and connected, though they may have loops or multiple edges. Note
that our results generalize to directed graphs with only minor modification.

Let ω be a weight function on the edges. We assume that ω(e) > 0,
e ∈ E, for weighted graphs, and define ω(e) = 1, e ∈ E, for unweighted
graphs. Weights are used to measure, e.g., the strength of a link.

Define a path from s ∈ V to t ∈ V as an alternating sequence of vertices
and edges, beginning with s and ending with t, such that each edge connects
its preceding with its succeeding vertex. The length of a path is the sum
of the weights of its edges. We use dG(s, t) to denote the distance between
vertices s and t, i.e. the minimum length of any path connecting s and t in
G. By definition, dG(s, s) = 0 for every s ∈ V , and dG(s, t) = dG(t, s) for
s, t ∈ V . We assume familiarity with standard algorithms for shortest-paths
problems (see, e.g., Cormen et al. 1990).

Several measures capture variations on the notion of a vertex’s impor-
tance in a graph. Let σst = σts denote the number of shortest paths from
s ∈ V to t ∈ V , where σss = 1 by convention. Let σst(v) denote the number
of shortest paths from s to t that some v ∈ V lies on. The following are
standard measures of centrality:

CC(v) =
1

∑

t∈V dG(v, t)
closeness centrality (Sabidussi, 1966)

CG(v) =
1

maxt∈V dG(v, t)
graph centrality (Hage and Harary, 1995)

CS(v) =
∑

s6=v 6=t∈V

σst(v) stress centrality (Shimbel, 1953)

CB(v) =
∑

s6=v 6=t∈V

σst(v)

σst

betweenness centrality
(Freeman, 1977; Anthonisse, 1971)

High centrality scores thus indicate that a vertex can reach others on rela-
tively short paths, or that a vertex lies on considerable fractions of shortest
paths connecting others. For interpretability, i.e. to control for the size of
the network, the above indices are usually normalized to lie between zero
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and one. Though their definitions extend naturally to directed or discon-
nected graphs, normalization then becomes a problem with some of the
above measures. The inhomogeneity of a centrality index is used to define
the centralization of a graph with respect to that index (Freeman, 1979). A
theoretical foundation for centrality measures not based on shortest paths is
given in Friedkin (1991). See Wasserman and Faust (1994) for further details
and note that we tacitly generalized some of these definitions of centrality
to weighted graphs.

The computationally rather involved betweenness centrality index is the
one most frequently employed in social network analysis. However, the
sheer size of many instances occurring in practice makes the evaluation of
betweenness centrality prohibitive. In the following, we therefore focus on
computing betweenness. As it turns out, the resulting algorithm can trivially
be augmented to compute the other measures as well, at virtually no extra
cost. First, recall the following crucial observation.

Lemma 1 (Bellman criterion) A vertex v ∈ V lies on a shortest path
between vertices s, t ∈ V , if and only if dG(s, t) = dG(s, v) + dG(v, t).

Given pairwise distances and shortest paths counts, the pair-dependency 1

δst(v) = σst(v)
σst

of a pair s, t ∈ V on an intermediary v ∈ V , i.e. the ratio of
shortest paths between s and t that v lies on, is given by

σst(v) =

{

0 if dG(s, t) < dG(s, v) + dG(v, t)
σsv · σvt otherwise

.

To obtain the betweenness centrality index of a vertex v, we simply have to
sum the pair-dependencies of all pairs on that vertex,

CB(v) =
∑

s6=v 6=t∈V

δst(v).

Therefore, betweenness centrality is traditionally determined in two steps:

1. compute the length and number of shortest paths between all pairs

2. sum all pair-dependencies

1Note that this definition differs from the one in Freeman (1980, p. 588), where pair-
dependency is defined as the dependency of a single vertex on another one. Here, the
latter is simply called dependency (defined in Section 4).
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3 Counting the Number of Shortest Paths

In this section, we observe that the complexity of determining betweenness
centrality is, in fact, dominated by the second step, i.e. the Θ(n3) time sum-
mation and Θ(n2) storage of pair-dependencies. This situation is remedied
in the next section.

The two implementations most widely used to compute betweenness are
UCINET (Analytic Technologies, Version V, 1999) and SNAPS.2 Probably
because of a reference to Harary et al. (1965) in Freeman (1979), the latter
appears to make use of the following lemma. Recall that the adjacency
matrix of a graph is the n × n-matrix A = (auv)u,v∈V with auv = 1 if
{u, v} ∈ E, and auv = 0 otherwise.

Lemma 2 (Algebraic path counting) Let Ak = (a
(k)
uv )u,v∈V be the k-th

power of the adjacency matrix of an unweighted graph. Then a
(k)
uv equals the

number of paths from u to v of length exactly k.

Since O(n2) pair-dependencies need to be summed for each vertex, the
overall running time of the implementation is dominated by the time spend
on matrix multiplications.

Clearly, algebraic path counting computes more information than needed.
Instead of the number of paths of length shorter than the diameter of the
network (the maximum distance of any pair of vertices), we are only inter-
ested in the number of shortest paths between each pair of vertices.

Some superfluous work is avoided in a suitably defined instance, called
geodetic semiring (Batagelj, 1994), of the closed semiring generalization for
shortest paths problems (Aho et al., 1974). It yields an Θ(n3) algorithm for
betweenness by augmenting the Floyd/Warshall algorithm for the all-pairs
shortest-paths problem with path counting.

To exploit the sparsity of typical instances, we count shortest paths using
traversal algorithms. Both breadth-first search (BFS) for unweighted and
Dijkstra’s algorithm for weighted graphs start with a specified source s ∈ V

and, at each step, add a closest vertex the set of already discovered vertices
in order to find shortest paths from the source to all other vertices. In that
process, they naturally discover all shortest paths from the source. Define
the set of predecessors of a vertex v on shortest paths from s as

Ps(v) = {u ∈ V : {u, v} ∈ E, dG(s, v) = dG(s, u) + ω(u, v)} .

2A collection of routines for GAUSS (Aptech Systems, Inc.) by Noah Friedkin of
University of California, Santa Barbara.
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Lemma 3 (Combinatorial shortest-path counting) For s 6= v ∈ V

σsv =
∑

u∈Ps(v)

σsu.

Proof Since all edge weights are positive, the last edge of any shortest
path from s to v is an edge {u, v} ∈ E such that dG(s, u) < dG(s, v).
Clearly, the number of shortest paths from s to v ending with this edge
equals the number of shortest paths from s to u. The equality now follows
from Lemma 1. �

Both Dijkstra’s algorithm and BFS are thus easily augmented to count
the number of shortest paths according to this lemma. BFS takes time
O(m), and Dijkstra’s algorithm runs in time O(m + n log n), if the priority
queue is implemented with a Fibonacci heap (Fredman and Tarjan, 1987).

Corollary 4 Given a source s ∈ V , both the length and number of all
shortest paths to other vertices can be determined in time O(m+n log n) for
weighted, and in time O(m) for unweighted graphs.

Consequently, σst, s, t ∈ V , can be computed in time O(nm) for un-
weighted and in time O(nm + n2 log n) for weighted graphs.

Corollary 4 implies that running time is dominated by the Θ(n3) time
it takes to sum pair-dependencies. Apparently, this is the approach imple-
mented in UCINET. Clearly, the Θ(n2) space bound stems from the need to
store the distance matrix and quantities σst, s, t ∈ V . In the next section we
show how to reduce these complexities substantially by accumulating partial
sums of pair-dependencies.

4 Accumulation of Pair-Dependencies

To eliminate the need for explicit summation of all pair-dependencies, we
introduce first the notion of the dependency of a vertex s ∈ V on a single
vertex v ∈ V , defined as

δs•(v) =
∑

t∈V

δst(v).

The crucial observation is that these partial sums obey a recursive relation.
In the following special case, this relation is particularly easy to recognize.
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Figure 1: With the assumption of Lemma 5, a vertex lies on all shortest
paths to its successors in the tree of shortest paths from the source

Lemma 5 If there is exactly one shortest path from s ∈ V to each t ∈ V ,
the dependency of s on any v ∈ V obeys

δs•(v) =
∑

w : v∈Ps(w)

(1 + δs•(w)) .

Proof The assumption implies that the vertices and edges of all shortest
paths form s form a tree. Therefore, v lies on either all or none of the paths
between s and some t ∈ V , i.e. δst(v) equals either 1 or 0. Moreover, v lies
on all shortest paths to those vertices for which it is a predecessor, and on
all shortest paths that these lie on (see also Figure 1). �

In the general case, a very similar relation holds.

Theorem 6 The dependency of s ∈ V on any v ∈ V obeys

δs•(v) =
∑

w : v∈Ps(w)

σsv

σsw

· (1 + δs•(w)) .

Proof Recall that δst(v) > 0 only for those t ∈ V \{s} for which v lies on
at least one shortest path from s to t, and notice that on any such path there
is exactly one edge {v, w} with v ∈ Ps(w). This slightly more complicated
situation is illustrated in Figure 2.

We extend pair-dependency to include an edge e ∈ E by defining δst(v, e) =
σst(v,e)

σst

where σst(v, e) is the number of shortest paths from s to t that con-
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Figure 2: In the general case of Theorem 6, fractions of the dependencies on
successors are propagated up along the edges of the directed acyclic graph
of shortest paths from the source

tain both v and e. Then,

δs•(v) =
∑

t∈V

δst(v) =
∑

t∈V

∑

w : v∈Ps(w)

δst(v, {v, w}) =
∑

w : v∈Ps(w)

∑

t∈V

δst(v, {v, w}).

Let w be any vertex with v ∈ Ps(w). Of the σsw shortest paths from s to w,
σsv many first go from s to v and then use {v, w}. Consequently, σsv

σsw

·σst(w)
shortest paths from s to some t 6= w contain v and {v, w}. It follows that
the pair-dependency of s and t on v and {v, w} is

δst(v, {v, w}) =

{

σsv

σsw

if t = w
σsv

σsw

· σst(w)
σst

if t 6= w

Inserting this into the above yields

∑

w : v∈Ps(w)

∑

t∈V

δst(v, {v, w}) =
∑

w : v∈Ps(w)





σsv

σsw

+
∑

t∈V \{w}

σsv

σsw

·
σst(w)

σst





=
∑

w : v∈Ps(w)

σsv

σsw

· (1 + δs•(w)) .

�
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Corollary 7 Given the directed acyclic graph of shortest paths from s ∈ V

in G, the dependencies of s on all other vertices can be computed in O(m)
time and O(n + m) space.

Proof Traverse the vertices in non-increasing order of their distance from
s and accumulate dependencies by applying Theorem 6. We need to store
a dependency per vertex, and lists of predecessors. There is at most one
element per edge in any of these lists. �

With this result, we can determine the betweenness centrality index by
solving one single-source shortest-paths problem for each vertex. At the
end of each iteration, the dependencies of the source on each other vertex
are added to the centrality score of that vertex. For unweighted graphs,
the algorithm can be implemented as described in Algorithm 1. Note that
the centrality scores need to be divided by two if the graph is undirected,
since all shortest paths are considered twice. The modifications necessary
for weighted graphs are straightforward.

Theorem 8 Betweenness centrality can be computed in O(nm + n2 log n)
time and O(n + m) space for weighted graphs. For unweighted graphs, run-
ning time reduces to O(nm).

The other shortest-path based centrality measures defined in Section 2
are easily computed during the execution of single-source shortest-paths
traversals. The same holds for a recently introduced index called radiality
(Valente and Foreman, 1998)

CR(v) =

∑

t∈V (D(G) + 1− dG(v, t))

(n− 1) ·D(G)
,

where D(G) = maxs,t∈V dG(s, t), and for other potential measures as well.
This is a significant practical advantage, reducing the combined time and
space spent on computing different measures that are to be compared.

Finally, we note that centrality computations for many shortest-path
based indices can be sped up heuristically by first decomposing an undirected
graph into its biconnected components.

5 Practical Implications

In this section, we evaluate the practical relevance of the asymptotic com-
plexity improvement achieved by accumulating dependencies. We have im-
plemented weighted and unweighted versions of our algorithm for directed
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Algorithm 1: Betweenness centrality in unweighted graphs

CB[v]← 0, v ∈ V ;
for s ∈ V do

S ← empty stack;
P [w]← empty list, w ∈ V ;
σ[t]← 0, t ∈ V ; σ[s]← 1;
d[t]← −1, t ∈ V ; d[s]← 0;
Q← empty queue;
enqueue s→ Q;
while Q not empty do

dequeue v ← Q;
push v → S;
foreach neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w → Q;
d[w]← d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w]← σ[w] + σ[v];
append v → P [w];

end
end

end

δ[v]← 0, v ∈ V ;
// S returns vertices in order of non-increasing distance from s

while S not empty do
pop w ← S;
for v ∈ P [w] do δ[v]← δ[v] + σ[v]

σ[w] · (1 + δ[w]);

if w 6= s then CB[w]← CB[w] + δ[w];

end
end
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and undirected graphs using the Library of Efficient Data Structures and Al-
gorithms (LEDA, see Mehlhorn and Näher 1999). Performance is compared
with an implementation that uses the same code to determine the length
and number of shortest paths between all pairs of vertices, but sums all pair-
dependencies explicitly. Note that this is at most faster than implementa-
tions currently in use. The experiment was performed on a Sun Ultra 10
SparcStation with 440 MHz clock speed and 256 MBytes main memory.
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Figure 3: Seconds needed to the compute betweenness centrality index for
random undirected, unweighted graphs with 100 to 2000 vertices and den-
sities ranging from 10% to 90%

Figure 3 shows running times for betweenness centrality on 180 random
undirected unweighted graphs with 100 to 2000 vertices. For each number
of vertices, there are nine graphs with 10% to 90% density (defined as the

number of edges divided by n(n−1)
2 ). First notice that running times of the

standard algorithm vary only slightly, indicating that most of the time is
spent on summing pair-dependencies, rather than counting paths. Addi-
tional experiments confirmed that the overhead to determine the number of
shortest paths in weighted graphs is negligible. As expected, accumulation
according to Theorem 6 yields a significant speedup. This is true even for
dense graphs, because the O(m) bound of Corollary 7 is, at least in gen-
eral, overly pessimistic for the number of edges on shortest paths from some
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source.
Since large instances arising in social network analysis are typically

rather sparse, with density well below 10%, the experiment clearly indi-
cates that betweenness centrality can be computed for graphs of signifi-
cantly larger size by accumulating dependencies instead of summing pair-
dependencies.

The speed-up was also validated in practice, by analysis of an instance of
4,259 intravenous drug users with 61,693 directed weighted links, originating
from 197,216 unique contacts.3 Not only because of running time, but also
because of the memory required to store the distance and shortest-paths
count matrices, betweenness centrality could not be evaluated for this net-
work to date. The largest subnetwork previously analyzed had 494 actors
with 1,774 links (taking 25 minutes on a 200 MHz Pentium Pro PC). Our
implementation determined the betweenness centrality index of the whole
network in 448 seconds, using less than 8 MBytes of memory.

0

200

400

600

800

1000

0 1000 2000 3000 4000 5000 6000

se
co

nd
s

number of vertices

standard algorithm
our algorithm

shortest paths only

Figure 4: Seconds needed to the compute betweenness centrality index for
random undirected, unweighted graphs with constant average degree 20.
The funny jumps are attributed to LEDA internals

Our algorithm has also been implemented in the publically available

3Courtesy of Robert Foreman and Thomas Valente of the Epidemiology Data House
at Johns Hopkins University. See Valente et al. (1998) for background on the data.
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network analysis tool Pajek (Batagelj and Mrvar, 1998) and by researchers
performing centrality analyses on networks of words extracted from elec-
tronic text. For typical instances, they obtained improvements from about
12 hours CPU time on an SGI Medusa workstation to less than five minutes
on a Pentium III PC with 450 MHz.4

Note that the average sum of in- and outdegrees in this network is less
than 29, corresponding to 0.3% density. (Clearly, density tends to zero when
the average degree is fixed.) Recent experiments estimate an even lower
average outdegree of 7.2 for Web pages (Kleinberg et al., 1999). Figure 4
gives running times for betweenness index calculations on random graphs
with a fixed average vertex degree of 20. These results imply that our
implementation can compute, e.g., the betweenness centrality index for an
extract of more than 10,000 Web pages in less than an hour on standard
equipment.
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