Navigation in a small world

It is easier to find short chains between points in some networks than others.

he small-world phenomenon — the

principle that most of us are linked by

short chains of acquaintances — was
first investigated as a question in sociolo-
gy"? and is a feature of a range of networks
arising in nature and technology’™. Experi-
mental study of the phenomenon' revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed”™, and here I investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments', in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the ‘small-world’ paradigm’ they are rich
in structured short-range connections and
have a few random long-range connections.

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, «, that determines the
probability of a connection between two
nodes as a function of their lattice distance
(Fig. la). Decentralized algorithms are
studied for transmitting a message: at each
step, the holder of the message must pass it
across one of its short- or long-range con-
nections; crucially, this current holder does
not know the long-range connections of
nodes that have not touched the message.
The primary figure of merit for such an
algorithm is its expected delivery time T,
which represents the expected number of
steps needed to forward a message between
a random source and target in a network
generated according to the model. It is cru-
cial to constrain the algorithm to use only
local information — with global knowledge
of all connections in the network, the short-
est chain can be found very simply®.

A characteristic feature of small-world
networks is that their diameter is exponen-
tially smaller than their size, being bounded
by a polynomial in logN, where N is the
number of nodes. In other words, there is
always a very short path between any two
nodes. This does not imply, however, that a
decentralized algorithm will be able to dis-
cover such short paths. My central finding
is that there is in fact a unique value of the
exponent « at which this is possible.

When a=2, so that long-range connec-
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tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by a function proportional to
(logN)>. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-
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Figure 1 The navigability of small-world networks. a, The network
model is derived from an nx n lattice. Each node, v, has a short-
range connection to its nearest neighbours (a, b, cand d) and a
long-range connection to a randomly chosen node, where node v
is selected with probability proportional to r =<, where ris the lat-
tice (‘Manhattan’) distance between v and v, and a=0 is a fixed
clustering exponent. More generally, for p,g= 1, each node v has
a short-range connection to all nodes within p lattice steps, and g
long-range connections generated independently from a distribu-
tion with clustering exponent . b, Lower bound from my charac-
terization theorem: when « # 2, the expected delivery time T
of any decentralized algorithm satisfies T=cn®, where
B=@2—a)/3 for 0sa<?2 and B=(a—2)/(a—1) for a>2,
and where ¢ depends on «, p and g, but not n. ¢, Simulation of
the greedy algorithm on a 20,000 x 20,000 toroidal lattice, with
random long-range connections as in a. Each data point is the
average of 1,000 runs.
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nection that brings it as close as possible to
the target in lattice distance. Moreover,
a=2 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
logN: for every other exponent, an asymp-
totically much larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is a fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d= 1, with the critical value of
the clustering exponent becoming a=d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works’ and neuroanatomy®, the issue of
routing without a global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered™"’.
Although I have focused on a very clean
model, I believe that a more general conclu-
sion can be drawn for small-world networks
— namely that the correlation between local
structure and long-range connections pro-
vides critical cues for finding paths through
the network.

When this correlation is near a critical
threshold, the structure of the long-range
connections forms a type of gradient that
allows individuals to guide a message effi-
ciently towards a target. As the correlation
drops below this critical value and the social
network becomes more homogeneous,
these cues begin to disappear; in the limit,
when long-range connections are generated
uniformly at random, the result is a world
in which short chains exist but individuals,
faced with a disorienting array of social
contacts, are unable to find them.
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