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© Graph Embeddings

@ Graph Neural Networks
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Graph machine learning

Node classification (attribute inference)
Link prediction (missing/hidden links inference)

Community detection (clustering nodes in graph)

Graph visualization (cluster projections)
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Node classification

Node classification - labeling of all nodes in a graph structure

Subset of nodes is labeled: categorical/numeric/binary values

Extend labeling to all nodes on the graph
(class/class probability /regression)

Classification in networked data, network classification, structured
inference, relational learning
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Node classification

@ Structure can help only if labels/values of linked nodes are correlated

@ Social networks show assortative mixing - bias in favor of connections
between network nodes with similar characteristics:
— homophily: similar characteristics — connections
— influence: connections — similar characteristics

@ Can apply to constructed (induced) similarity networks

@ Node classification by label propagation
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Node classification

Supervised learning approach

@ Given graph nodes V =V, U V,:
— nodes V) given labels Y}
— nodes V/,, do not have labels

@ Need to find Y,

@ Labels can be binary, multi-class, real values

o Features (attributes) can be computed for every node ¢;:
— local node features (if available)

— link features available (labels from neighbors, attributes from
neighbors, node degrees, connectivity patterns)
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[terative relational classifiers

@ Weighted-vote relational neighbor classifier:

P(y; = c|N;) = ZAUPyJ—cU\/')
_/GN

@ Network only Naive Bayes classifier:

PWilc)P(c)

where

P(Nilc) = H P(y; = yjlyi = c)
JEN
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Semi-supervised learning

Graph-based semi-supervised learning

Given partially labeled dataset

o Data: X = X, U X,

— small set of labeled data (X}, Y})
— large set of unlabeled data X,

Similarity graph over data points G(V/, E), where every vertex v;
corresponds to a data point x;

Transductive learning: learn a function that predicts labels Y, for the
unlabeled input X,
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Random walk methods
@ Consider random walk with absorbing states - labeled nodes V;

@ Probability y;[c] for node v; € V,, to have label c,

pilel =) piyjlel
Jjev

where y;[c] - probability distribution over labels,
pij = P(i — j) - one step probability transition matrix
o If output requires single label per node, assign the most probable

@ In matrix form
Y = P®Y

where Y = (Y},0), Y = (Y}, Y,)
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Random walk methods

@ Random walk matrix: P = D~ 1A

@ Random walk with absorbing states

- 2)- (4 )
Pul Puu Pul Puu

o At the t — oo limit:

im Pt — ( I 0 > B ( / 0)
t—s00 (o PPy P (I = Pyu)™ Py 0O
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Random walk methods

@ Matrix equation

B ((/ - Pulu)lPu/ 8) GI)

7N\
X
——

@ Solution

Y, = Y
’A/u — (I_Puu)_lpulyl

@ (/I — Pyy) is non-singular for all label connected graphs (is always
possible to reach a labeled node from any unlabeled node)
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Label propagation

Algorithm: Label propagation, Zhu et. al 2002
Input: Graph G(V, E), labels Y]

Output: labels Y

Compute D;; = ZJ- Ajj

Compute P = D71A

Initialize Y(©) = (Y},0), t=0

repeat

y(+1l) . p. y()
Y,(t+l) (t)

«~Y,
until Y converges;
Y « Y

Solution: Y = lim;_o Y(®) = (I — Pyu)" 1Py,
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Label spreading

Algorithm: Label spreading, Zhou et. al 2004

Input: Graph G(V,E), labels Y;

Output: labels Y

Compute D;; = EJ- Ajj

Compute S = D~1/2AD~1/2

Initialize Y(©) = (Y},0), t=0

repeat
Y1) « aSY() 4 (1 - )Y@
t—t+1

until Y converges;

Solution: ¥ = (1 — a)(l — aS)~1Y(©
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Graph Machine Learning

Node regression
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Regression on graphs

Find labeling Y = (Y}, Y,) that

o Consistent with initial labeling:

S G- i) = 1V = Y|P

eV,
o Consistent with graph structure (regression function smoothness):
1 6 o2 _ OT o _ VTV
5 A -5 =YT(D-AY=YTLY
ijev

@ Stable (additional regularization):

02 112
ey 9=Vl

iev
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Regularization on graphs

Minimization with respect to Y, arg miny, Q(Y)
@ Label propagation [Zhu, 2002]:

Q(Y) = ZAU = YTLY, withfixed V)=V
IJEV
o Label spread [Zhou, 2003]:

" 2
QY) = 1ZA (\yf —}) +uS

iiev iev

QUY)=YTLY +ullY - Y|P
L=1-8=1-D"12AD1/2
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Regularization on graphs

e Laplacian regularization [Belkin, 2003]

jev IEV,
QY)=YTLY Y, — V|2
(Y) = + pl| Y = Y|
@ Use eigenvectors (ej..ep) from smallest eigenvalues of L = D — A:
Lej = )\jej
o Construct classifier (regression function) on eigenvectors
Err(a) = Z Z ajeji)?
i€V, j=1

o Predict value (classify) y; = 3°%_
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Laplacian regularization

Algorithm: Laplacian regularization, Belkin and Niyogy, 2003

Input: Graph G(V/, E), labels Y]

Output: labels Y

Compute D;; = EJ- Ajj

Compute L=D - A

Compute p eigenvectors e;..e, with smallest eigenvalues of L, Le = e
Minimize over aj...ap

arg mina,,a, Yooy (vi — 3.0, 3jei)?, a=(ETE)ETY,

Label v; by the sign(327_; aje;i)
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Label propagation example
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Graph Machine Learning

Matrix Factorization
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Low-rank approximations

@ Low-rank approximation (truncated SVD)

n r
A= ZUkSkaT — ZUkSkaT :A’,r <n
k k

X U S VT
Z11 Z12 R S e
" Uil Uir 11 0 Vi1 ... Vin
T21 T2 ... . 0
Um1 U s Ur1 Urn
€T T rr
ml mm mXxTr rXr rXn
mXmn
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Matrix Factorization: Dimension Reduction

The idea of solving node classification lies in decomposing structural and
context features from graph for efficient node representation.

e Multidimensional scaling (MDS): Approximating MSE over
A — lui — ujl3

@ Indexing by latent semantic analysis (LSI): SVD decomposition of A
adjacency matrix

@ Dimension reduction for A: PCA (principal components analysis),
LDA (linear discriminant analysis), etc.

from Makarov et al., 20211

"https://peerj.com/articles/cs-357/
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Matrix Factorization: Proximity Matrix

Instead of extracting features from A alone, take into account node
neighbors in the approximation framework.

A Global Geometric Framework for Nonlinear Dimensionality Reduction
(Isomap)

@ Take graph as an input from some metric learning task, for e.g.
@ Compute its k-distance matrix by Floyd-Warshall algorithm.
@ Use dimension reduction to extract meaningful components.

Nonlinear Dimensionality Reduction by Locally Linear Embedding (LLE)
LLEerror(W) = MSE(A — W'U)

where U contains neighbors of points from A. In this way, locally, each
point is presented as linear combinations of neighbor vector
representations.

from Makarov et al., 20212

*https://peerj.com/articles/cs-357/
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Matrix Factorization: Spectral Decomposition

Find eigen-vector decomposition, producing low-dimensional space
representation.

Laplacian Eigenmaps and Spectral Techniques for Embedding and
Clustering (LE)

@ Take graph as an input from some metric learning task, and allow
heat kernels for weights from features F.

@ Solve the equation Lx = ADx, L = D — A is Laplacian
@ X =(x1--x,), X'F get a low dimension representation.

The goal for Laplacian Eigenmaps class of models lies in preserving
first-order similarities giving a larger penalty using graph Laplacian if two
nodes with larger similarity are embedded far apart.

from Makarov et al., 20213

*https://peerj.com/articles/cs-357/
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Matrix Factorization: Spectral Decomposition

Find eigen-vector decomposition, producing low-dimensional space
representation.

Locality Preserving Projections (LPP)

@ Take graph as an input from some metric learning task, and allow
heat kernels for weights from features F.

@ Solve the equation FLF*x = AFDF'x, L = D — A is Laplacian

@ X =(x1--x,), X'F get a low dimension representation.

from Makarov et al., 20214

*https://peerj.com/articles/cs-357/
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Matrix Factorization: Second-order proximities

Continuous nonlinear dimensionality reduction by Kernel Eigenmaps
present a kernel-based mixture of affine maps from the ambient space to
the target space, in which local PCA can be run.

Cauchy Graph Embedding enhance the local topology preserving with
the similarity relationships of the original data.

from Makarov et al., 2021°

*https://peerj.com/articles/cs-357/
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Matrix Factorization: Second-order proximities

Structure Preserving Embedding (SPE) aims to use LE combined with
preserving spectral decomposition representing the cluster structure of the
graph. SPE is formulated as a semidefinite program that learns a low-rank
kernel matrix constrained by a set of linear inequalities which captures the
input graph.

Graph Factorization minimize MSE(Aj;, < Z;, Z; >) with L
regularization on ‘Z’ representations.

from Makarov et al., 2021°

®https://peerj.com/articles/cs-357/
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Lecture outline

© Node Classification
© Link Prediction
© Graph Embeddings

@ Graph Neural Networks
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Graph Machine Learning

Link Prediction

21.05.2021 34 /118



Link prediction

@ Link prediction. A network is changing over time. Given a snapshot
of a network at time t, predict edges added in the interval (t,t)

e Link completion (missing links identification). Given a network, infer
links that are consistent with the structure, but missing (find
unobserved edges)

o Link reliability. Estimate the reliability of given links in the graph.

@ Predictions: link existence, link weight, link type
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Link prediction

e Graph G(V,E)
@ Number of "missing edges”: |V|(|V]|—1)/2 — |E|
o In sparse graphs |E| < |V/|?, Prob. of correct random guess O(ﬁ)
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Similarity based algorithms - unsupervised

Link prediction by proximity scoring
@ For each pair of nodes compute proximity (similarity) score c(v1, v»)
@ Sort all pairs by the decreasing score
@ Select top n pairs (or above some threshold) as new links
@ Quality measurements - precision TP/(TP + FP), precision at top N
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Local similarity indices

Local neighborhood of v; and v;
@ Number of common neighbors:

sij = N (vi) DN ()]

@ Jaccard’s coefficient:

@ Resource allocation:
1
Sjj = Z —
we(mry) V(W)
Adamic/Adar:

1
=D Nw)

weN (vi)NN(v))

Liben-Nowell and Kleinberg, 2003
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Local similarity indices

@ Preferential attachment:
sij = ki - ki = IN(vi)] - IN ()]
or
sij = ki + ki = IN(vi)| + N (v))]
o Clustering coefficient:
S,'j = CC(V,') . CC(VJ‘)

or
sij = CC(v;) + CC(v))
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Quasi-Local similarity indices

@ Local Path Index:
Sip = A2 + aA3

@ High-order LPI:

Sp(n) = D' A
i=2
or
55 = CC(w) + CC(y)
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Path based methods

Paths and ensembles of paths between v; and v;

@ Shortest path:
sj = —min{path; > 0}
S

o Katz score:

sj =Y Flpaths® (vi, )| = Y (BA); = (1 — BA) " — I
s=1

s=1

@ Personalized (rooted) PageRank:

PR=a(D'A)TPR+(1—a)- (e +¢))

Liben-Nowell and Kleinberg, 2003
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Path based indeces

@ Expected number of random walk steps:
hitting time: s; = —H;;

commute time s;j = —(H;; + Hji)
normalized hitting/commute time s; = —(Hjim; + Hjim;)
e SimRank:
SimRank(v;, vj) = SimRank(
imRank(vj, vj) |N(v,- Z Z imRank(m, n)

me/\/(v,) neN (vj)

Liben-Nowell and Kleinberg, 2003
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Community based methods

e Within-inter community/cluster of v;,v; € C

lw e C|
2 w ¢ C|

weN (vi)NN (v})

e Common neighbors with community information, v;,v; € C, f(w) =1
ifwe C

N AN+ D f(w)
WEN (PN (%)

@ Resource allocation index with community information (
soundarajan-hopcroft), vi,v; € C, f(w) =1ifwe C

WGN(V;)W(VJ)
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Evaluation of scoring prediction

10 —

Relative performance ratio versus random predictions

random predictor

Ratio of predictor performance over the baseline, averaged 5 datasets

Liben-Nowell and Kleinberg, 2007
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Evaluation of scoring prediction

B
Z 100
g
:
3

b
o
38

% f = E % common neighbors predictor

)

rooted PageRank

o
z

Ratio of predictor performance over the baseline, averaged 5 datasets

Liben-Nowell and Kleinberg, 2007
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Classification for link prediction

Challenging classification problem:

@ Computational cost of evaluating of very large number of possible
edges (quadratic in number of nodes)

@ Highly imbalanced class distribution: number of positive examples
(existing edges) grows linearly and negative quadratically with
number on nodes
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Link prediction with supervised learning

Supervised learning:
© Features generation
@ Model training
@ Testing (model application)

Features:
@ Topological proximity features
o Aggregated features
@ Content based node proximity features

o 2
%4. . 0 Y
CCOo

Predictors
Network Feature Vectors
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Simple evaluation

Simple "hold out set” evaluation

‘Whole graph Training graph
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Evaluation metrics

@ Precision and Recall, F-measure

TP TP
Recall =

Precision —
recsIon = Tp T Fp> TP+ FN

B 2 - Precision - Recall

Precision + Recall

@ True positive rate (TPR), False positive rate (FPR), ROC curve, AUC

TP FP

TPR=——, FPR=———
TP+ FN’ FP+ TN
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Training and testing

Evaluation for evolving networks

t+1 NodePairs  CommonNbrs Label

NodePairs  CommonNbrs Label

(@)} 2 Y] CET o B o )
() o G o 1

Feature Network Label Network

Feature Network Label Network

Training Data Testing Data

image from Y. Yang et.al, 2014
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Graph Machine Learning

Graph Embeddings
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Graph Embeddings

@ Necessity to automatically select features
@ Reduce domain- and task- specific bias
@ Unified framework to vectorize network
@ Preserve graph properties in vector space

@ Similar nodes — close embeddings

& L .e .
0f
.
L] . . ’ . u
08 SBe L .
" . O o - * .
™
- . a ® 10 . . .
L] ™ >
° .. e L] 12} 0 ®
- .
L] a L 14
-
° L ] - 16
* .
18 e

from Leskovec et al., 20187

"http://snap.stanford.edu/proj/embeddings-www/
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Graph Embeddings

Define Encoder

Define Similarity/graph feature to preserve graph properties
Define similarity/distance in the embedding space

Optimize loss to fit embedding with similarity computed on graph

Goal: similarity(u, v) ~ z, z,,

AN
[Need to define! |
T
YV ENC(u)
- . Zy
/\\u encde nodes !
~,_ /\
ENC(v)
original network embedding space

from Leskovec et al., 2018
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Structural Graph Embeddings

Embedding look-up (each node - separate vector)

o Different similarity measures (adjacency, common neighbours,
distances, exact function, etc.)

Quadratic optimization for MSE loss

Fast models via random walks
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First-order Proximity

@ Similarity between u and v is A,y
@ MSE Loss

@ Variant of Matrix Decomposition

: Z |z, 2 _@u,vH2
/ (u,w)EV XV \ \

loss (what we embedding
want to minimize) similarity

(weighted)
adjacency matrix
for the graph

from Leskovec et al., 2018
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First-order Proximity

@ Pros:

e Use SGD for scalable optimization

o Matrix factorization (SVD) or decomposition (QR) may be applicable
o Cons:

e Quadratic complexity
o Large embeddings space
e No indirect graph properties are preserved

I. Makarov (UL) 21.05.2021 57 /118



Multi-order Proximity

@ Similarity of neighborhoods of u and v via indices or k-hop paths
@ Direct optimization of exact similarity metric

» Red: Target node
. 1-hop neighbors
+ Afi.e., adiacency matrix)
« Blue: 2-hop neighbors
o A2
* Purple: 3-hop neighbors
. A3

L=  lzgz.— AL

from Leskovec et al., 2018
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Multi-order Proximity

e Similarity score S,, as Jaccard/Common Neighbours, etc. (HOPE)

.........
‘‘‘‘

.........
. "

SR o= Y k- Bl

u,v)EV X V/ \
: (u,v)€ ~ multi-hop ne
& embedding

twork similarity
(i.e., any neighborhood
overlap measure)

similarity

o Weighted k-hop paths with different k (GraRep)

. A, /d) k
AF . = max log ( (Ai B ) —a,0
( S (M)~
node degree constant shift

@ Even worse complexity

I. Makarov (UL)

from Leskovec et al., 2018
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Random Walks

@ Similarity between u and v is probability to co-occur on a random
walk

@ Sample each vertex u neighborhood Ng(u) (multiset) by short
random walks via strategy R

@ Optimize similarity considering independent neighbor samples via
MLE (remind Word2Vec)

L=3, > —log(P(v]z.))

ueV veENRr(u)

from Leskovec et al., 2018

I. Makarov (UL)
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Random Walks

o P(v|z,) is approximated via softmax over similarity z/ - z,

L=y Y - (Z exp(zIsz) )

exXpl\z, Z
UGV’UGNR u) neV p( u n)

@ Problem in second ¥ over all nodes

@ Hard to find optimal solution
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Negative Sampling

@ Use Negative Sampling to approximate denominator

random distribution
over all nodes

GXP(ZIZU)
log —
EnEV exp(z Zn)

~ log(o( z Zy)) Zlog zZ zni)),nimPV

from Leskovec et al., 2018
@ Sample in proportion to node degree
@ Experiment with k to impact negative prior and robustness

@ No need to sample non-connected edges — same as random
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Feature representation

@ How to construct pair of nodes representation having node
embeddings?

o Will it be more efficient than o(z} - z;)

Symmetry operator  Definition

Average

2
Hadamard fi(u) - £(v)
Weighted-L, [fi(w) = (W)l
Weighted-L, (f(u) = (V)

Neighbor Weighted-L,
Pwentupy fil®)  Yeenpup fi(t)

|N(u)|+1 [N(v)| +1

Neighbor Weighted-L,

Pwenvwuogy Hil®) Vv fit) :
[N(u)|+1 |N(v)| +1

DOI: 10.7717/peerj-¢s.172/table-2

from Makarov et al., 2019

I. Makarov (UL)
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Feature representation

How efficient simple solution?

Works for undirected networks

Samples neighbor information for low cost

Not stable across different datasets (L; works in general better than
L)

For weighted networks it is better to solve binary classification stacked
with regression rather then directly solve link regression problem

from Makarov et al., 2019
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Directed network link prediction

@ When order matters, how to build classifier (see HOPE also)?

@ Concat works not good probably - use asymmetric encoding via
bi-linear form of compressed embeddings
M = LR, g(u,v) = f(Y,)*MFf(Y,)

Node Low-Rank
Embeddings Asymmetric Edge
DNN Projection Representation
Graph (—A—\
\ T Source

7 fv) Rf(})\ L| kelihood
o R———
: T Des/
f b—E x %——B
f(Y) L'f(Y)

I. Makarov (UL) GML

from Abu-El-Haija et al., 2018
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Self-supervised learning via Line graph

o Edge-vertex dual (Line) graph allows to build dual representation and
learn any edge embedding function

@ Joint constraints on original and Line graph under bijective closure
with agglutination of nodes embeddings in dual representation

from Makarov et al., 2021
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@ Graph Neural Networks
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Graph Neural Networks

GNN
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Graph Neural Network: Setting

@ We have a graph G(V/, E) defined by adjacency matrix A and feature
matrix X € RV

@ Confirmed relation between closeness of feature space and graph
structure

@ Non-graph features are vectorized separately (images, texts, one-hot
encoding for labels, numeric features)
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Graph Neural Network: Idea

@ Assign weights only to information obtained from neighbors
@ Include node itself via loop with trainable weight

@ Each node generate its own computational graph

TARGET NODE

EES

i

INPUT GRAPH

from Leskovec et al., 2018
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Graph Neural Network: Layer structure

@ Each aggregation defines new layer

@ Zero-level embedding is non-graph feature

@ Arbitrary depth but remember on “law of six handshakes”

Layer-0

Layer-1 _@XA

TARGET NODE . .“: .. . XC
l Layer-2 BX A

e .

INPUT GRAPH

from Leskovec et al., 2018
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Graph Neural Network: Basic Approach

o Aggregation over weighted sum of neighbor input and node itself
under non-linearity

@ Use simple neural network construction

Initial “layer 0" embeddings are
hO — | — equal to node features
- v

hh ! .
h,ﬁ;:@ W, Z W—I—Bkhﬁ . , Vk >0

weN (v)

non-linearity (e.g.,

ReLU or tanh) average of neighbor's

previous layer embeddings

from Leskovec et al., 2018
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Graph Neural Network: Training

o Stop at K-th layer and feed hX as embeddings to task-dependent
loss; use SGD to optimize

@ Unsupervised training uses reconstruction loss of adjacency matrix A
(MSE, CE)

@ (Semi-)Supervised loss feeds node embeddings to FC layer to predict
labels under CE loss with possible Laplacian regularization

@ When no features available, unsupervised training uses either one hot
encoding for nodes (each node - separate label), or pretrains some
structural embedding and feed them into feature matrix
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Graph Neural Network: General Pipeline

Define Aggregator

o Different aggregators support only transductive learning for static graph
e Sharing layer-wise weights allows inductive learning and inference on
unseen nodes

Define Loss

Train on batches of nodes

Generate output embeddings
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Graph Convolutions

GCN
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Graph Convolutional Network

@ Aggregation over shared weights between node and its neighbors
@ Normalization to stabilize training for high-degree nodes

Basic Neighborhood Aggregation

hk'fl
k __ U k—1
ho=o | Wi D ey + B
ueEN (v)

VS.
GCN Neighborhood Aggregation
: >
h,U =0 Wk =
/ ueN (v)Uv \/’N(U)HN(UN
—r A

same matrix for self and

‘ ‘ per-neighbor normalization
neighbor embeddings

from Leskovec et al., 2018
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Graph Convolutional Network

o Efficient batch computation in matrix form
@ Obtained O(| E |) complexity (see pyG, DGL libraries)

gD = 5 (D—%AD—%H(k)Wk)

from Leskovec et al., 2018
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Graph ATtention

GAT
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Graph ATtention Network

@ Not all the neighbors are equal

€i; = a(WEf., WEJ)

exp(e;;
a; = softmax;(e;;) = 5 p( ”2 )
’ ’ kEN; expleir

exp (LeakyReLU ( Wh, ||WJ1J]))

e CXP (LeakyReLU ( [(Wh, |\Whh]))

Q?'_j =

|| is the concatenation operation.

Z &iij_?:j

JEN;

from Bengo et al., 2018
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Graph ATtention Network

@ Multi-head attention works better like in different convolution filters
o Final layer require pooling isntead of concatenation

=0 > oy Wh

JEN;

” o Za,jwkhj

JEN;

- 1 & -
h=0 E; > bWk,

=1 jEN;

from Bengo et al., 2018
I. Makarov (UL) GML 21.05.2021 80/118



Graph ATtention Network

o Feature aggregation via attention over learned weights

@ Different patterns for the same structure

softmax;

concat/avg
4

Wi,
from Bengo et al., 2018
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Message Aggregation

GraphSAGE
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GraphSAGE: Feature Pyramid

@ Vary feature space across layers
o Aggregate from neighbors and concatenate with self-representation

Simple neighborhood aggregation:

hk—1
PR
GraphSAGE: concatenate seff embedding and

neighbor embedding

h = o ([W,, |ace ({ht ', Vu € N(v)}).B:h~'])

generalized aggregation

from Leskovec et al., 2018
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GraphSAGE: Differentiable Aggregators

Mean:

hk—l
AGG = L
Z' [N (v)|
Pool ueN(v)
element-wise mean/max

AGG = E(/{Qhﬁ_l,Vu € N(v)})
LSTM:

= Apply LSTM to random permutation of neighbors.
AGG = LSTM ([hf ', Vu € n(N(v))])

from Leskovec et al., 2018
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More layers?

How to fight dimension curse
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Model Depth

Usually 2-3 layers for GCN / GraphSAGE
More layers make method global
Computation graph exceed memory limits
Overfitting, vanishing gradient

RNN module! |

TARGET NODE

INPUT GRAPH

from Leskovec et al., 2018
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Gated GNN

@ Use recurrent model with shared weights across all the layers, support
any depth

1. Get “message” from neighbors at step k:

k k—1 i i
m- =W h aggregation function
Z N “ does not depend on k
ueN (v)
2. Update node “state” using Gated Recurrent

Unit (GRU). New node state depends on the
old state and the message from neighbors:

h? = GRU(h*~! m?)

v

from Leskovec et al., 2018
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Large Scale RecSys: PinSAGE

@ Pinterest: 3 billion pins and boards; 16 billion interactions; label, text
and image features

Human curated collection of pins

5 é Pins: Visual bookmarks someone
) has saved romthe intemet to a
board they've created.

Pin features: Image, text, link

from Leskovec et al., 2018
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Large Scale RecSys: PinSAGE

Recommendations pipeline:

@ Collect consequent clicks

@ Train system using metric learning approach
@ Generate embeddings
°

Recommend via k-NN

Key advances:

Sub-sample neighborhoods for efficient GPU batching
@ Producer-consumer training pipeline

@ Curriculum learning for negative samples

o

MapReduce for efficient inference
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Large Scale RecSys: RW-GCN

@ Train so that pins that are consecutively clicked have similar
embeddings, use smart negative sampling

element-wise mean @
%
TARGET NODE Or max .“ 5 .
g "h‘”
e
< Ty
Z _...]3 ' @
e B h((p &
2. ®
®
h‘;‘\. § .

INPUT GRAPH

multilayer perceptrons
(MLPs)

from Leskovec et al., 2018
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Large Scale RecSys: Batch Sampling

@ Use one computation graph, sample nodes according top-PPR among

neighbors
)
TARGELN/D?E//.\ Py ‘ .: TARGET NO,D,,Ef/.\\ Ps ‘ :
y—e s S
/ /'//b @ — AGGREGATE ol : /, /’, ® — AGGREGATE ! ol ..
- ® ° /- ®
® [ B . ®
INPUT GRAPH ..

X
e
o0 ©

o o o . o, o o o, . e, .
o 000 o°° 00000 09° 00000 00° 00 o040 00° P00 00° “te ,, o0

from Leskovec et al., 2018
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Large Scale RecSys: Training
CPU (producer):

@ Select a batch of pins
@ Run random walks (for PPR approximation)
o Construct their computation graphs
GPU (consumer):

o Multi-layer aggregations
@ Loss computation

@ Backprop
Context,
Item
Item, Visual
It e G B! Red by First level
i, | o0 . ____ GroupBy ___ Reduceby | Firstlevel
Annotation Join item 0250 SR context pooling
oo
Item,
Degree

representation

I. Makarov (UL)

from Leskovec et al., 2018
GML
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Large Scale RecSys: Training

@ Include more and more hard negative samples for each epoch

L= Z max(O,@—l—zIle-l-
(uv)@ / \
/  “margin” (i.e., how

set of training pairs “positive”/true much larger positive

from userlogs  training pair pair similarity should
be compared to
negative)

Source pin Positive Easy negative Hard negative

from Leskovec et al., 2018
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Large Scale RecSys: Visual Comparison

Visual

RW-GCN

How Lo
Swiss Chard
— e
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Is everything so simply?

Open Problems
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Open Problems: Edge embedding

@ What is the best way to compose edge feature?

Symmetry operator  Definition

Average M
2
Hadamard fi{u) - f{v)
Weighted-L4 Ifi{u) = ()|
Weighted-L, () - fv)?

i = N(wygw) il
Neighbor Weighted-L ‘ e ntuugu filw) B Seentue Filt) |

|N(u)| +1 IN@)+1 |

Zuei\'[u]u{u)f'(w) Z:ew{u}u{u;fim :
[N(u) +1 [N(v)|+1

Neighbor Weighted-L; ( -

from Makarov et al., 2019
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Open Problems: Subgraph embedding

@ Even for triangle it is an open question.
@ Use sum of embeddings

@ Use virtual supernode (same as for whole graph embedding)

/ \ "0 ZS
| >
/
original network embedding space

from Leskovec et al., 2018
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Open Problems: Node & Edge embedding

@ How to optimize joint node and edge features?

A &
1 I
1}~ decoder 1. ]~ dncoder
A F _‘“IH:N‘ F 1A
GCN encoder GCN encoder
7/ ] l N
b -
. . WX Serid?) X .G
N w |
. ‘. i/r
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Open Problems: Text + Graph Fusion

@ How to fuse partially-correlated text embeddings and graph
embeddings?

TF-IDF Sent2vec DeepWalk

Figure 1. TF-IDF, Sent2Vec and DeepWalk embeddings visualization on Cora

TADW TriDnr

Figure 2. TADW, TriDnr and GCN embeddings visualization on Cora

from Makarov et al., 2021
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Open Problems: Graphs from Metric Learning

@ How to work with non-stationary graph obtained from geometric
learning?

nj

Ppij € [0,1]

> n; —> |Sampler|
\
&

J L JL

T s
graph feature Probabilistic Graph
. learning Generator
™ layer 1 1+ 1t1ayer
L (1+1)
X

é 1) pl+)

——>| GraphConv GraphConv

Differentiable Graph Module (DGM) for Graph Convolutional Networks from Bronshtein et al., 2020

I. Makarov (UL)



Open Problems: Graphs from Metric Learning

@ How to work with non-stationary graph obtained from geometric
learning?

o
3 - 2
3 s
3[ 2|, sata || edgecon Z|_, esgocon |3 EdgeConv 3 EdgeConv & i 11024} 8
= transform L mp s | x —  mbied x " mbli2g (% “@4’,& 5
5 c 3
8 pooling E
3
categorical
vector

mip {64} 2

] 2 o 58

3 3 p t1024) [ 3 o 53

EdgeConv __|& | = EdgeConv EdgeConv 3| e 3 repeating | & D (256,256, 126.p) [ 2| B &

Ip {64, 64) x ip {64,64) - — — o Y e

mip {64, 64) X mip {64, 64} mip {64} Y T |2 x clEs

. pooling c gL

®3

keon graph pooling
™ (3, 8,8,

spatial transform EdgeConv
mp{a,a,-a)

Dynamic Graph CNN for Learning on Point Clouds from Solomon et al., 2019
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Open Problems: Temporal Graphs

@ How to work with large dynamic networks?

[ am) [ mE) | p((1, z)\n
[ at) ) » Wz)

Edge
Pmbabﬂmes

Node Embeddings

® s1(t1)
mem: s3(ta)
ss(ta)
Aggregated (Updated)
Mossages Messages Memory

TEMPORAL GRAPH NETWORKS FOR DEEP LEARNING ON DYNAMIC GRAPHS from Bronshtein et al., 2019
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Open Problems: Temporal Graphs

@ How to work with large dynamic networks?

Linear
transformation ko M
of features P, ReLU([ea Wls)
e —— e ———
=
Aggregation within each
Split the graph dimension by
by dimensions linear transform: > |
_— E——
3
Updated feature
ko zk
U Z“’SJ £l vector state

EWS-GCN by Sberbank, 2020
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Open Problems: What else?

How to choose embedding?

How to mix embeddings and pretrain/initialize?

How to fuse (heterogeneous) graphs and futures?

How to speed-up GCN and other models?

Graph RecSys still struggle from cold start problem!
Transfer learning and GNN AutoML is hard to improve!

Working with large dynamic graphs with changing features is still
hard!
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Modern Architectures

State-of-the-art
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GraphSaint

@ Sample from graph and train FC GCN

G. = SAMPLE(G) Full GCN on G,

Algorithm 1 GraphSAINT training algorithm

Input: Training graph G (V, £, X); Labels Y; Sampler SAMPLE;

Output: GCN model with trained weights
1: Pre-processing: Setup SAMPLE parameters; Compute normalization coefficients a, .
2: for each minibatch do

3: Gs (Vs, Es) + Sampled sub-graph of G according to SAMPLE

4: GCN construction on G,.

5:

6:

7:

{yv | v € Vs} < Forward propagation of {x,, | v € V,}, normalized by
Backward propagation from A-normalized loss L (y,,¥, ). Update weights.
end for

University of Southern California, 2019
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ClusterGCN

@ Limit Sampling by Cluster properties via RWs

.": /.Q\
j@ ®
[*S
Layer3 | U' ® & C; o o
| N
o e
. C};’

~ B X—0,
e — [ ey
Layer2 | @ o o o=
A X— Pl QCT—o
[P vy [ -«
[ o—o— /| Ja > j o
Layer1 | o < o= /| O o

Google Research, University of California, 2020
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SIGN

@ Precompute diffusion-based sampling instead of stacking more layers
@ Decouple graph convolutions as backbone

Y=¢Alxe"...0") = ¢(Alxe).

X v
[ ’ 99
A 9, 30 L
A 0,

Twitter, Imperial College London, 2020
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Applications

ML: NAS & AutoML

NLP: context embeddings, BERT as transformer solves LP
CV: 3D point clouds, few-shot learning, KG for captioning
DM: KG extraction, mining relations

RecSys: Embedding of everything, tensor decomposition
RL: Model MDP states via GCN embeddings

Biology/Chemistry: drug discovery, protein interaction, new materials

Libraries:
o DGL, pyG, DGM, etc.

@ "awesome graph embedding”
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