
N-gram language models

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Natural Language Processing, Edition 2025

Contents

• language models

• n-grams (still used in the evaluation measures)

mostly based on Jurafsky & Martin, 3rd edition,

read Chapter 3.1 – 3.4

2

Predicting words

• The water of Walden Pond is beautifully ...

*refrigerator
*that

blue
green
clear

Language Models

•Systems that can predict upcoming words
• Can assign a probability to each potential next word

• Can assign a probability to a whole sentence

Why word prediction?

It's a helpful part of language tasks

• Grammar or spell checking
Their are two midterms Their There are two midterms

Everything has improve Everything has improve improved

• Speech recognition
I will be back soonish I will be bassoon dish

Probabilistic Language Models

•The goal: assign a probability to a sentence
• Machine Translation:

• P(high winds tonight) > P(large winds tonight)

• Spell Correction
• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets from)

• Speech Recognition
• P(I saw a van) >> P(eyes awe of an)

• + Summarization, question-answering, etc., etc.!!

Why?

Probabilistic Language Modeling

•Goal: compute the probability of a sentence or sequence of
words:

P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

•A model that computes either of these:
P(W) or P(wn|w1,w2…wn-1) is called a language model.

• Another suitable name would be: the grammar model

• But language model or LM is standard

How to statistically compute P(W)

• How to compute this joint probability:

P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability

Reminder: The Chain Rule

•Recall the definition of conditional probabilities

p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

•More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

•The Chain Rule in General

P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)

The Chain Rule applied to compute joint
probability of words in sentence

P(“its water is so transparent”) =

P(its) × P(water|its) × P(is|its water)

× P(so|its water is) × P(transparent|its water is so)

 −=
i

iin wwwwPwwwP)|()...(12121

How to estimate these probabilities

• Could we just count and divide?

• No! Too many possible sentences!

• We’ll never see enough data for estimating these

P(the | its water is so transparent that) =

Count(its water is so transparent that the)

Count(its water is so transparent that)

Markov Assumption

•The memory is short

•First order Markov assumption

•The second order Markov assumption

P(the | its water is so transparent that) » P(the | that)

P(the | its water is so transparent that) » P(the | transparent that)

Andrei Markov

Using Markov assumption of order k

•In other words, we approximate each
component in the product

 −−
i

ikiin wwwPwwwP)|()...(121

)...|()...|(1121 −−− ikiiii wwwPwwwwP

Simplest case: Unigram model

fifth, an, of, futures, the, an, incorporated, a,

a, the, inflation, most, dollars, quarter, in, is,

mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Some automatically generated sentences from a unigram model

i

in wPwwwP)()...(21

Condition on the previous word:

Bigram model

texaco, rose, one, in, this, issue, is, pursuing, growth, in,

a, boiler, house, said, mr., gurria, mexico, 's, motion,

control, proposal, without, permission, from, five, hundred,

fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached

this, would, be, a, record, november

)|()...|(1121 −− iiii wwPwwwwP

Estimating bigram probabilities

• The Maximum Likelihood Estimate

P(wi |wi-1) =
count(wi-1,wi)

count(wi-1)

P(wi |wi-1) =
c(wi-1,wi)

c(wi-1)

An example

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

P(wi |wi-1) =
c(wi-1,wi)

c(wi-1)

N-gram models

•We can extend to trigrams, 4-grams, 5-grams

• In general this is an insufficient model of language
• because language has long-distance dependencies:

“The computer(s) which I had just put into the machine room
on the fifth floor is (are) crashing.”

•N-gram models are better in English than in Slovene and
many other languages. Why?

Example: Restaurant sentences

• can you tell me about any good cantonese restaurants close by

• mid priced thai food is what i’m looking for

• tell me about chez panisse

• can you give me a listing of the kinds of food that are available

• i’m looking for a good place to eat breakfast

• when is caffe venezia open during the day

Raw bigram counts

• Out of 9222 sentences

Raw bigram probabilities

• Normalize by unigrams:

• Result:

Bigram estimates of sentence probabilities

P(<s> I want english food </s>) =
P(I|<s>)
× P(want|I)
× P(english|want)
× P(food|english)
× P(</s>|food)

= .000031

What kinds of knowledge bigram LM
contains?

•P(english|want) = .0011

•P(chinese|want) = .0065

•P(to|want) = .66

•P(eat | to) = .28

•P(food | to) = 0

•P(want | spend) = 0

•P (i | <s>) = .25

Dealing with scale in large n-grams

•LM probabilities are stored and computed in
log format, i.e. log probabilities

•This avoids underflow from multiplying many
small numbers

log(p1 ´ p2 ´ p3 ´ p4) = log p1 + log p2 + log p3 + log p4

If we need probabilities we can do one exp at the end

Larger ngrams

• 4-grams, 5-grams

• Large datasets of large n-grams have been released

• N-grams from Corpus of Contemporary American English
(COCA) 1 billion words (Davies 2020)

• Google Web 5-grams (Franz and Brants 2006) 1 trillion words)
• Efficiency: quantize probabilities to 4-8 bits instead of 8-byte

float
Newest model: infini-grams (∞-grams) (Liu et al 2024)

• No precomputing! Instead, store 5 trillion words of web text in suffix arrays. Can
compute n-gram probabilities with any n!

N-gram LM Toolkits

•SRILM
•http://www.speech.sri.com/projects/srilm/

•KenLM
•https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Language Modeling Tools

• are ngram language models still useful?

• yes, e.g., in speech processing

• mostly replaced by neural LMs

• many variants of adapted neural LMs exist, e.g., word2vec,
fastText, BERT, GPT

Evaluation: How good is our model?

• Does our language model prefer good sentences to bad
ones?
• Assign higher probability to “real” or “frequently observed”

sentences
• Than “ungrammatical” or “rarely observed” sentences?

• We train parameters of our model on a training set.

• We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset that is different from our training set,

totally unused.

• An evaluation metric tells us how well our model does on the test
set.

• Two types of evaluation
• intrinsic (internal)

• extrinsic (external, on a downstream task)

Extrinsic evaluation of N-gram models

•Best evaluation for comparing models A and B
• Use each model in a task

• spelling corrector, speech recognizer, MT system
• Run the task, get an accuracy for A and for B

• How many misspelled words corrected properly
• How many words translated correctly

• Compare accuracy for A and B

Intrinsic (in-vitro) evaluation

• Extrinsic evaluation not always possible
• Expensive, time-consuming
• Doesn't always generalize to other applications

• Intrinsic evaluation: perplexity
• Directly measures language model performance at predicting

words.
• Doesn't necessarily correspond with real application

performance
• But gives us a single general metric for language models
• Useful for large language models (LLMs) as well as n-grams

Training sets and test sets

We train parameters of our model on a training set.

We test the model’s performance on data we haven’t seen.
• A test set is an unseen dataset; different from training

set.
• Intuition: we want to measure generalization to

unseen data
• An evaluation metric (like perplexity) tells us how well

our model does on the test set.

Choosing training and test sets

• If we're building an LM for a specific task
• The test set should reflect the task language

we want to use the model for

• If we're building a general-purpose model
• We'll need lots of different kinds of training

data
• We don't want the training set or the test set

to be just from one domain or author or
language.

Training on the test set

We can’t allow test sentences into the training set
• Or else the LM will assign that sentence an artificially

high probability when we see it in the test set
• And hence assign the whole test set a falsely high

probability.
• Making the LM look better than it really is

This is called “Training on the test set”

Bad science, bad practice!

33

Dev sets

• If we test on the test set many times we might implicitly
tune to its characteristics
• Noticing which changes make the model better.

• So we run on the test set only once, or a few times

• That means we need a third dataset:
• A development test set or, devset.
• We test our LM on the devset until the very end
• And then test our LM on the test set once

Intuition of Perplexity

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game. (Why?)

• A better model of a text
• is one which assigns a higher probability to the word that actually

occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Perplexity

Perplexity is the inverse probability of
the test set, normalized by the number
of words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
-

1

N

 =
1

P(w1w2...wN)
N

Perplexity example

• Let us suppose a sentence consisting of random digits

• What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

Lower perplexity = better model

•Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

The Shannon Visualization Method

• Choose a random bigram

(<s>, w) according to its
probability

• Now choose a random bigram
(w, x) according to its probability

• And so on until we choose </s>

• Then string the words together

<s> I

I want

want to

to eat

eat Chinese

Chinese food

food </s>

I want to eat Chinese food

Approximating Shakespeare

Shakespeare as corpus

•N=884,647 tokens, |V|=29,066

•Shakespeare produced 300,000 bigram types out of
|V|2= 844 million possible bigrams.
•So 99.96% of the possible bigrams were never seen

(have zero entries in the table)

•Quadrigrams are even worse: What's coming out looks
like Shakespeare because it is Shakespeare

The Wall Street Journal

What is the source of these random 3-gram
sentences?

• They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores
as Mexico and gram Brazil on market conditions

• This shall forbid it should be branded, if renown made it empty.

• “You are uniformly charming!” cried he, with a smile of
associating and now and then I bowed and they perceived a
chaise and four to wish for.

43

The perils of overfitting

• N-grams only work well for word prediction if the test corpus
looks like the training corpus

• In real life, it often doesn’t

• We need to train robust models that generalize!

• One kind of (outdated) generalization: Zeros!
• Things that don’t ever occur in the training set
• But occur in the test set

• In practice, we use neural language models

