
Transformers

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Natural Language Processing, Edition 2025

Contents

• transformer networks

Literature
• Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,

Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need. In Advances in
neural information processing systems (pp. 5998-6008).

• Jay Alammar: The Illustrated Transformer. Blog, 2019.

• Sasha Rush: Annotated Transformer. Jupyter Notebook using PyTorch.

• Elvis Saravia: https://github.com/dair-ai/Transformers-Recipe

• some slides by Jay Alammar, Jacob Devlin and Andrej Miščič

2

https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://jalammar.github.io/illustrated-transformer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://github.com/dair-ai/Transformers-Recipe

Problems with RNNs

• We want parallelization, but RNNs are inherently sequential

• For parallelization we need fixed input size (relatively short)

• Despite GRUs and LSTMs, RNNs still need attention
mechanism to deal with long range dependencies – path
length between states grows with sequence

• If attention gives us access to any state… maybe we can just
use attention and don’t need the RNN?

3

Problems with long sequences:
one solution is level jumping

4

Transformer model

• currently the most successful DNN

• non-recurrent

• architecturally it is an encoder-decoder model

• fixed input length (relatively long but projected to short)

• adapted for parallelization

• adapted for GPU (TPU) processing

• based on extreme use of attention

• well-scalable

• includes level jumping to prevent forgetting

• encoder and decoder can be used independently

5

Transformer
overview

• Initial task: machine
translation with parallel
corpus

• Predict each translated word

• Final cost/loss/error function
was standard cross-entropy
loss on top of softmax

6

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need. In
Advances in neural information processing systems (pp. 5998-6008).

https://papers.nips.cc/paper/7181-attention-is-all-you-need

Transformer is an encoder-decoder model

7

On the figure, there are 6 encoders and 6 decoders
(could be some other number).

Transformer: encoder

• two layers

• no weight sharing between different encoders

• self-attention helps to focus on relevant part of input

8

Transformer: decoder

• the same as encoder but with an additional attention layer in
between, receiving input fom encoder (called encoder-
decoder attention)

9

Start with embeddings

10

Input to transformer

11

• embeddings, e.g., 512 dimensional vectors
(special, we will discuss that later)

• fixed length, e.g., max 128 tokens
• dependencies between inputs are only in the self-

attention layer, no dependencies in feed forward
layer – good for parallelization

• Let us first present the working of the
transformer with illustration of the prediction,
later we will cover also training.

Encoding

12

Self-attention

• As the model processes each word (each position in the input
sequence), self-attention allows it to look at other positions in
the input sequence for clues that can help lead to a better
encoding for this word

”The animal didn't cross the street because it was too tired”

• What does “it” in this sentence refer to? Is it referring to the
street or to the animal? It’s a simple question to a human, but
not as simple to an algorithm.

• ”The animal didn't cross the street because it was too wide”

• When the model is processing the word “it”, self-attention
allows it to associate “it” with “animal”. 13

Illustrating self-attention

• As we are encoding
the word "it" in
encoder #5 (the top
encoder in the stack),
part of the attention
mechanism was
focusing on "The
Animal", and baked a
part of its
representation into
the encoding of "it".

14

Self-attention details 1/4

• create three vectors from each of the encoder’s
input vectors (in the first layer, the input vectors
are the embedding of each word).

• Query vector Q, Key vector K, Value vector V are
created by multiplying the embedding by three
matrices that are learned during the training
process.

• Q, K, and V are smaller than the embedding
vector, typically 64, while the embedding and
encoder input/output vectors have a
dimensionality of 512.

• They are smaller to make the computation of
multiheaded attention (mostly) constant.

15

Self-attention details 1/4

16

Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that
word. We end up creating a "query", a "key", and a "value" projection of each word in the input
sentence.

Details 2/4: attention vectors Q, K, V

• The “query” Q, “key” K, and “value” V vectors are abstractions
that are useful for calculating and thinking about attention.

• To calculate self-attention for a given word (e.g., “Thinking”),
we score each word of the input sentence against this word.
The score determines how much focus to place on other parts
of the input sentence as we encode a word at a certain
position.

• The score is calculated by taking the dot product of the query
vector Q with the key vector K of the respective word.

• E.g., on computing the self-attention for the word in position
#1, we would compute dot product of q1 and k1, and q1 and k2.

17

Details 2/4: scoring

18

Details 3/4: normalize scores

• divide the scores by the square root of the dimension of the
key vectors used (in example, the vectors are of dimension 64,
therefore divide by 8)

• This leads to more stable gradients.

• Then pass the result through a softmax operation. Softmax
normalizes the scores so they’re all positive and add up to 1.

19

Details 3/4: normalization of scores

20

Details 4/4: apply attention scores

• The softmax score determines how much each word will be expressed at
this position. Usually the word at this position will have the highest
softmax score, but sometimes it’s useful to attend to another word that is
relevant to the current word.

• Next multiply each value vector by the softmax score (in preparation to
sum them up). The intuition is to keep intact the values of the word(s) we
want to focus on, and drown-out irrelevant words (by multiplying them
with small scores, e.g., 0.001).

• End computation by summing up the weighted value vectors. This
produces the output of the self-attention layer at this position (for the
given word – the first one in the example).

• The resulting vector is send to the feed-forward neural network.

• In the actual implementation, however, the calculation is done in matrix
form for faster processing.

21

Details 4/4: self-attention output

22

illustration for
the third input

23

24

Matrix calculation of self-attention 1/2

25

Every row in the X matrix
corresponds to a word in the
input sentence.
The embedding vector x (512) is
larger then the q/k/v vectors (64)

Matrix calculation of self-attention 2/2

26

• final calculation

Computing attention head

27

Encoding

28

In summary 1/3

29

In summary 2/3

30

In summary 3/3

31

Multi-headed attention

• Self-attention layer is replicated several times, called “multi-
headed” attention.

• This expands the model’s ability to focus on different positions.
E.g., one attention head might be dominated by the the actual
word, but other heads might reveal other important information

• E.g., in translating a sentence like “The animal didn’t cross the
street because it was too tired”, we would want to know which
word “it” refers to.

• Multi-head attention layer can cover multiple “representation
subspaces”

• I.e., we have multiple sets of Query/Key/Value weight matrices
(original Transformer uses 8 attention heads)

• Each attention head is randomly initialized. After training, each set
is used to project the input embeddings (or vectors from lower
encoders/decoders) into a different representation subspace.

32

Example: two attention heads

33

Example: 8 att. heads

34

• What to do with 8 Z matrices, the feed-forward layer is expecting a single matrix
(one vector for each word). We need to condense all attention heads into one
matrix.

Condensation of attention heads

35

Computing multi-head attention

36

Summary of self-attention

37

Illustration of self-attention: 1 head

• encoder #5 (the top
encoder in the stack)

• As we encode the word
"it", one attention
head is focusing most
on "the animal", while
another is focusing on
"tired" -- in a sense,
the model's
representation of the
word "it" bakes in
some of the
representation of both
"animal" and "tired".

38

Illustration of self-attention: all heads

• all the
attention
heads in one
picture are
harder to
interpret

39

Animated workings of the transformer
attention mechanism

40

Representing the order of the
sequence using positional encoding

• Order of the sequence is important, but it is lost with the
described transformation, therefore

• The transformer adds a position vector to each input
embedding.

• These vectors follow a specific pattern that the model learns,
which helps it to determine the position of each word, or the
distance between different words in the sequence.

• Adding these values to the embeddings provides meaningful
distances between the embedding vectors once they’re
projected into Q/K/V vectors and during the dot-product
attention.

41

Adding position encoding

42

Example: encoding position

• the values of positional encoding vectors
follow a specific pattern.

43

Patterns of positional encodings

• many different possibilities how to generate a position pattern

• The next slide contains an example of positional encoding for
20 words (rows) with an embedding size of 512 (columns).

• the values of the left half are generated by one function (which
uses sine), and the right half is generated by another function
(which uses cosine). They're then concatenated to form each of
the positional encoding vectors

44

Example of positional encoding

45

Another positional encoding

46

Encoder blocks

• Each block has two “sublayers”

– Multihead attention

– 2-layer feed-forward neural network
(with ReLU)

• Each of these two steps also has a residual
(short-circuit) connection and LayerNorm,
i.e.:

– LayerNorm(x + Sublayer(x))

47

The Residual connections

• each sub-layer of transformer
(self-attention and feed-forward
NN) in each encoder has a
residual connection around it,
and is followed by a layer-
normalization step.

• the same for decoder sub-layers

• enables learning of deeper
networks by improving a
gradient flow

• in transformers, residual
connections also help to
maintain positional information
in higher layers

48

Architecture with residual connection
– top level view

49

Architecture with residual connection
– example

50

Example: 2 stacked transformer

51

Complete encoder

• each block is repeated several times,
e.g., 6 times

52

Decoder

• Decoders have the same components as encoders

• An encoder starts by processing the input sequence.

• The output of the top encoder is transformed into a set of
attention vectors K and V.

• These are used by each decoder in its “encoder-decoder
attention” layer which helps the decoder to focus on
appropriate places in the input sequence.

53

Encoder-decoder in action 1/2

54

After finishing the encoding phase, we begin the decoding phase. Each step in the
decoding phase outputs an element from the output sequence (the English
translation sentence in this case).

Encoder-decoder in action 2/2

55

The steps repeat until a special symbol indicating the end of output is generated. The output
of each step is fed to the bottom decoder in the next time step. We add positional encoding
to decoder inputs to indicate the position of each word.

Self-attention and encoder-decoder
attention in the decoder

• In the decoder, the self-attention layer is only allowed to
attend to itself and earlier positions in the output sequence
(to maintain the autoregressive property).

• This is done by masking future positions (setting them to -inf)
before the softmax step in the self-attention calculation.

• The “Encoder-Decoder Attention” layer works just like
multiheaded self-attention, except it creates its Q (queries)
matrix from the layer below it, and takes the K (keys) and V
(values) matrix from the output of the encoder stack.

56

Attentions in the decoder

1. Masked decoder self-attention on previously generated
outputs

2. Encoder-Decoder Attention, where queries come from
previous decoder layer and keys and values come from output of
the encoder

57

One encoder-
decoder block

58

Final Linear and Softmax Layer
• The decoder stack outputs a vector of floats.

• The final linear layer which is followed by a softmax layer turns
them into words.

• The Linear layer is a simple fully connected neural network that
projects the vector, produced by the stack of decoders, into a much
larger vector called a logits vector (probability scores for each
word).

• Example: the model knows 10,000 unique English words (“output
vocabulary”) that it has learned from its training dataset.
Therefore, the logits vector is 10,000 cells wide – each cell
corresponding to the score of a unique word.

• The softmax layer turns those scores into probabilities (all positive,
between 0 and 1, sum to 1.0).
The cell with the highest probability is chosen, and the word
associated with it is produced as the output for this time step. 59

Producing the output words

60

Training the transformer

• During training, an untrained model would go through the
exactly the same forward pass. But since we are training it on
a labeled training dataset, we can compare its output with the
actual correct output.

• For illustration, let’s assume that our output vocabulary only
contains six words(a, am, i, thanks, student, <eos>)

• The input is typically in the order of 104 (e.g., 30 000)

61

The Loss Function
• evaluates the difference between the true output and the

returned output

• transformer typically uses cross-entropy or Kullback–Leibler
divergence.

• The model output is a probability distribution, the true output
is 1-hot encoded, e.g.,

62

Loss evaluation for sequences

• loss function has to be evaluated for the whole sentence, not
just a single word

• transformers use greedy decoding or beam search

63

Subword Encoding tokenization

• Learn tokenization based on statistics
• Relevant for modern neural networks
• Use the data to guide the tokenization
• Subword tokenization (because tokens are often parts

of words)
• Can include common morphemes like -est or -er.

– (A morpheme is the smallest meaning-bearing unit of a
language; unlikeliest has morphemes un-, likely, and -est.)

• Relevant for all languages, but crucial for
morphologically rich languages such as Slovene

• What happens if subword tokenization is inadequate?

Subword tokenization

• Common algorithms:

– Byte-Pair Encoding (BPE) (Sennrich et al., 2016)

– WordPiece (Schuster and Nakajima, 2012)

• Both have 2 parts:

– A token learner that takes a raw training corpus and
induces a vocabulary (a set of tokens).

– A token segmenter that takes a raw test sentence
and tokenizes it according to that vocabulary

Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual
characters

= {A, B, C, D,…,a, b, c, d….}

• Repeat:
– choose the two symbols that are most frequently

adjacent in training corpus (say ‘A’, ‘B’),

– adds a new merged symbol ‘AB’ to the vocabulary

– replace every adjacent ’A’ ’B’ in corpus with ‘AB’.

• Until k merges have been done.

BPE token learner algorithm

BPE in use

• Most subword algorithms are run inside
white-space separated tokens.

• So first add a special end-of-word symbol '__'
before whitespace in training corpus

• Next, separate into letters.

BPE token learner

An example corpus :(

low low low low low lowest lowest newer newer newer newer newer newer wider
wider wider new new

Add end-of-word tokens and segment:

BPE token learner

Merge e r to er

BPE

Merge er _ to er_

BPE

Merge n e to ne

BPE

The next merges are:

BPE token learner algorithm

• On the test data, run each merge learned from the
training data:
– Greedily

– In the order we learned them

– (test frequencies don't play a role)

• So: merge every e r to er, then merge er _ to er_, etc.

• Result:
– Test set "n e w e r _" would be tokenized as a full word

– Test set "l o w e r _" would be two tokens: "low er_"

Transformer
architecture

75

• typically, the input is first
tokenized with subword
encoding

• what is the alternative?

Transformer hints
• Byte-pair/sentence pair encodings for input tokens

• Checkpoint averaging

• ADAM optimizer with learning rate changes

• Dropout during training at every layer just before adding
residual

• Label smoothing

• Auto-regressive decoding with beam search and length
penalties

• Use of transformers is widespread in the form of pretrained
models

• Without pretraining, they are hard to optimize and unlike
LSTMs don’t usually just work out of the box and might not
work well with other building blocks on tasks.

76

Transformers are everywhere

• music: LLM where the vocabulary consists of MIDI pitches,
pauses, velocity

• object detection (attention to objects)

• time series, where signals are discretized and values are
treated as letters

77

