
Other useful topics in LLMs

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja

Natural Language Processing, Edition 2025



Contents

• parameter efficient fine-tuning (PEFT)

• agent architectures

Camile Lendering, Manfred González, and Joaquín Figueira: Efficient 
fine-tuning techniques for Slovenian language models. Proceedings of 
Language technologies & digital humanities conference, 2024. 

• Some slides and examples adapted from Yang , Ruder, Pfeiffer, &
Vulić

• check out: https://www.modulardeeplearning.com/

2

https://www.modulardeeplearning.com/


Parameter efficient fine-tuning (PEFT)

Parameter-efficient Fine-tuning
Update a small subset of model 
parameters

3

Full Fine-tuning
Update all model parameters



Why PEFT?

• Why fine-tuning only some parameters?

• Fine-tuning all parameters is impractical with large models. Why?

• State-of-the-art models are massively over-parameterized

• → Parameter-efficient fine-tuning (almost) matches performance of full fine-tuning

• Emphasis on accuracy over efficiency in current AI paradigm

• Hidden environmental costs of training (and fine tuning) LLMs

• As costs of training go up, AI development becomes concentrated in well-funded 
organizations, especially in large companies

4



Opportunities for PEFT

5

Parameter Input Functions



Parameters: Sparse subnetworks 

• A common inductive bias on the module parameters is sparsity 

• Most common sparsity method: pruning 

• Pruning can be seen as applying a binary mask 𝐛 ∈ {0, 1}𝜃 that selectively keeps or 
removes each connection in a model and produces a subnetwork. 

• Most common pruning criterion: weight magnitude 

• Sparsity ratios: from 40% (SQuAD) to 90% (QQP and WNLI)

• During pruning, a fraction of the lowest-magnitude weights are removed

• The non-pruned weights are re-trained

• Pruning for multiple iterations is more common 

6



The full fine-tuning 

• Assume we have a pre-trained autoregressive language model 𝑃𝜙(𝑦|𝑥) 

• E.g., GPT based on Transformer 

• Adapt this pretrained model to downstream tasks (e.g., summarization, NL2SQL, 
reading comprehension)

• Training dataset of context-target pairs {(𝑥𝑖 , 𝑦𝑖)} 𝑖=1,…,𝑁

• During full fine-tuning, we update the parameters of the model 𝜙𝑜 to 𝜙𝑜 + Δ𝜙 by 
following the gradient to maximize the conditional language modeling objective 

7



LoRA: low rank adaptation

• Full fine-tuning: For each downstream task, we learn a different set of parameters 
Δ𝜙

• |Δ𝜙| = 𝜙𝑜

• GPT-3 has a | 𝜙𝑜| of 175 billion 

• Expensive and challenging for storing and deploying many independent instances 

• Can we do better?

• Key idea: encode the task-specific parameter increment Δ𝜙 = Δ𝜙(Θ) by a smaller-
sized set of parameters 𝚯, Θ ≪ |𝜙𝑜 | 

• The task of finding Δ𝜙 becomes optimizing over Θ 

8



Low-rank-parameterized update matrices

• Updates to the weights have a 
low “intrinsic rank” during 
adaptation

• 𝑊0 ∈ ℝ𝑑×𝑘 : a pretrained 
weight matrix 

• Constrain its update with a 
low-rank decomposition: 
𝑊0 + Δ𝑊 = 𝑊0 + 𝛼𝐵𝐴 where 
𝐵 ∈ ℝ𝑑×𝑟 , 𝐴 ∈ ℝ𝑟×𝑘 ,
𝑟 ≪ min(𝑑, 𝑘) 

• 𝛼 is the tradeoff between pre-
trained “knowledge” and task-
specific “knowledge” 

• Only A and B contain trainable 
parameters

9



LoRA details

• As one increase the number of 
trainable parameters, training 
LoRA converges to training the 
original model 

• No additional inference 
latency: when switching to a 
different task, recover 𝑊0 by 
subtracting 𝐵𝐴 and adding a 
different 𝐵′𝐴′ 

• Often LoRA is applied to the 
weight matrices in the self-
attention module 

10



From LoRA to QLoRA

• QLORA improves over LoRA by 
quantizing the transformer 
model to 4-bit precision and 
using paged optimizer to 
handle memory

• •4-bit NormalFloat (NF4)

• A new data type that is 
information theoretically 
optimal for normally 
distributed weights

11



An input perspective of adaptation

12



Prefix-Tuning

• Prefix-Tuning adds a 
prefix of parameters and 
freezes all pretrained 
parameters.

• •The prefix is a sequence 
of continuous task-
specific vector and is 
processed by the model 
just like real words would 
be, i.e., “virtual tokens”.

• •Advantage: each 
element of a batch at 
inference could run a 
different tuned model.

13



Prompt-Tuning

• Learning “soft prompts” to condition frozen LMs to perform downstream tasks

• Prepend virtual tokens to input, and learn embeddings of these special tokens only

• Standard model tuning achieves strong performances but requires scoring separate 
copies of model for each end task

• •Prompt tuning matches the quality of model tuning as size increases

14



A functional perspective of adaptation

• Function composition augments a model’s functions with new task-
specific functions: 

• Most commonly used in multi-task learning, where modules of 
different tasks are composed

15



Adapters

• Insert a new function f𝜙 between layers of a 
pre-trained model to adapt to a 
downstream task 

• known as “adapters” 

• An adapter in a Transformer layer consists 
of: 

• A feed-forward down-projection 𝑊𝐷 ∈ 𝑅𝑘×𝑑

• A feed-forward up-projection 𝑊𝑈 ∈ 𝑅𝑑×𝑘

• 𝑓𝜙 (𝒙) = 𝑊𝑈(𝜎 (𝑊𝐷𝒙 )) 

16



Adapter placement

• The adapter is usually 
placed after the multi-head 
attention and/or after the 
feed-forward layer

• Most approaches have used 
this bottleneck design with 
linear layers

• Adapter-based tuning 
attains a similar 
performance to full fine-
tuning with two orders of 
magnitude fewer trained

• parameters

17



Unifying View

• • He et al. [2022] (Towards a unified view of parameter-efficient transfer learning) 
show that LoRA, prefix tuning, and adapters can be expressed with a similar 
functional form 

• All methods can be expressed as modifying a model’s hidden representation 𝒉

• Sparsity, structure, low-rank approximations, rescaling, and other properties can 
also be applied and combined in many settings

• Prompt tuning underperforms the other methods due to limited capacity

• Adapter achieves better performance but add more parameters 18



Knowledge distillation to obtain smaller 
models

• The generic teacher-student framework for knowledge distillation 

19



Language agents

• Example
Sumers, Yao, 
Narasimhan, Griffiths.
CoALA: Cognitive 
Architectures for 
Language Agents TMLR 
2024 

20



Architecture

• How do we make sense of various LLM systems (digital circuits)? 

• Where should the field be going? 

• von Neuman architecture

21



Cognitive architectures

• Cognitive
architectures: 
frameworks to 
modularize 
and build 
complex 
symbolic AI 
agents, using 
cognitive 
inspirations 

• E.g. Soar 
architecture

• or ACT-R

22



From LLMs to CLAs

23



Cognitive Architectures for Language Agents 
(CoALA)

• Memory: short and long term 
• Action space: internal and external 

1. Reasoning (update short-term memory) 
2. Retrieval (read long-term memory) 
3. Learning (write long-term memory) 
4. Grounding (update external world) 

• Decision making: choose an action 

24


