University of Ljubljana, Faculty of Computer and Information Science

Other useful topics in LLMs

ADVANCED TOPICS'

LLMs

Prof Dr Marko Robnik-Sikonja
Natural Language Processing, Edition 2025

Contents

e parameter efficient fine-tuning (PEFT)
e agent architectures

Camile Lendering, Manfred Gonzalez, and Joaquin Figueira: Efficient
fine-tuning techniques for Slovenian language models. Proceedings of
Language technologies & digital humanities conference, 2024.

* Some slides and examples adapted from Yang , Ruder, Pfeiffer, &
Vulic

* check out: https://www.modulardeeplearning.com/

https://www.modulardeeplearning.com/

Parameter efficient fine-tuning (PEFT)

4

=

Full Fine-tuning Parameter-efficient Fine-tuning
Update all model parameters Update a small subset of model
parameters

Why PEFT?

Why fine-tuning only some parameters?

Fine-tuning all parameters is impractical with large models. Why?

State-of-the-art models are massively over-parameterized

— Parameter-efficient fine-tuning (almost) matches performance of full fine-tuning

Emphasis on accuracy over efficiency in current Al paradigm
Hidden environmental costs of training (and fine tuning) LLMs

As costs of training go up, Al development becomes concentrated in well-funded
organizations, especially in large companies

Parameter

Opportunities for PEFT

—

]

T

1
Iil\.

uj

N
e

Input

0

Functions

Parameters: Sparse subnetworks

A common inductive bias on the module parameters is sparsity
Most common sparsity method: pruning

Pruning can be seen as applying a binary mask b € {0, 1} that selectively keeps or
removes each connection in a model and produces a subnetwork.

Most common pruning criterion: weight magnitude

Sparsity ratios: from 40% (SQUAD) to 90% (QQP and WNLI)

During pruning, a fraction of the lowest-magnitude weights are removed
The non-pruned weights are re-trained

Pruning for multiple iterations is more common

m Initial m Re-training m Re-training
training

Pruning Pruning

O

~

One-shot pruning

~

Iterative pruning

The full fine-tuning

Assume we have a pre-trained autoregressive language model P ,(y|x)
E.g., GPT based on Transformer

Adapt this pretrained model to downstream tasks (e.g., summarization, NL2SQL,
reading comprehension)

Training dataset of context-target pairs {(x;, y,)} i=1,...N

During full fine-tuning, we update the parameters of the model ¢, to ¢, + A by
following the gradient to maximize the conditional language modeling objective

%
max D 08Py (el yer))

(x.v) t=1

LoRA: low rank adaptation

Full fine-tuning: For each downstream task, we learn a different set of parameters
A¢

Ag| = ¢,

GPT-3 hasa | ¢,| of 175 billion

Expensive and challenging for storing and deploying many independent instances
Can we do better?

Key idea: encode the task-specific parameter increment A¢ = A¢(0) by a smaller-
sized set of parameters 0,0 < | ¢, |

The task of finding A¢ becomes optimizing over ©

4
max > > " 10g(Py, sap(0) Vel Yer))

Gy

Low-rank-parameterized update matrices

Updates to the weights have a
low “intrinsic rank” during
adaptation

W, € R¥k : 3 pretrained
weight matrix

Constrain its update with a Pretrained
low-rank decomposition: Weights
W,+ AW =W, + aBA where
B € Rer’A €]Rrxk’

r < min(d, k)

a is the tradeoff between pre-
trained “knowledge” and task-
specific “knowledge”

Only A and B contain trainable
parameters

LoRA details

As one increase the number of
trainable parameters, training

LoRA converges to training the
original model

No additional inference
latency: when switching to a
different task, recover W, by
subtracting BA and adding a
different B'A’

Often LoRA is applied to the
weight matrices in the self-
attention module

Pretrained
Weights

=]RdXd

10

From LoRA to QLoRA

QLORA improves over LoRA by
quantizing the transformer
model to 4-bit precision and
using paged optimizer to
handle memory

*4-bit NormalFloat (NF4)

* A new data type that is

information theoretically
optimal for normally
distributed weights

LoRA

16-bit Transformer

QLoRA

DDDEE
|] | om0
o O O
47

4-bit Transformer

Parameter Updates ==
Gradient Flow ==

Paging Flow ===

11

An input perspective of adaptation

_ ... the movie was ...
Learnable prefix

parameters

12

Prefix-Tuning adds a
prefix of parameters and
freezes all pretrained
parameters.

*The prefix is a sequence
of continuous task-
specific vector and is
processed by the model
just like real words would
be, i.e., “virtual tokens”.

*Advantage: each
element of a batch at
inference could run a
different tuned model.

Prefix-Tuning

Fine-tuning

Transformer (Translation)
F [1 [1 [1 [1 [1 [1 [1 [1

Transformer (Summarization)
[] [] [1 [1 [1 [1 [1 [1

Transformer (Table-to-text)

I LI L

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Output (table-to-text)

Prefix
(Translation)

' Prefix
(Summarization)
1

{Talﬂ.ﬁﬂ‘m) Transformer (Pretrained)

NN

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Input (table-to-text)

Prefix-tuning

13

Prompt-Tuning

Learning “soft prompts” to condition frozen LMs to perform downstream tasks
Prepend virtual tokens to input, and learn embeddings of these special tokens only

Standard model tuning achieves strong performances but requires scoring separate
copies of model for each end task

*Prompt tuning matches the quality of model tuning as size increases

Efficient Multitask Serving

Strong Task Performance
p N 4 .
Model Tuning Prompt Tuning Prompt Design
(a.k.a. “Fine-Tuning") (Ours) (e.g. GPT-3)
I ™y ™
Pre-trained Model Pre-trained Model Pre-trained Model
@ Tunable ¢ # Frozen #* Frozen #*
HEEEREE alafal LT 11 [l [[[[[]]
- \r ' —y — v —— N 'S '
Input Text Tunable Soft Input Text Engineered Input Text

Prompt Prompt
14

A functional perspective of adaptation

* Function composition augments a model’s functions with new task-
specific functions:

fi(x) = fo.(x) © fy,(x)

* Most commonly used in multi-task learning, where modules of
different tasks are composed

Adapters

* Insert a new function fqb between layers of a
pre-trained model to adapt to a
downstream task

* known as “adapters”

e An adapter in a Transformer layer consists
of:

* A feed-forward down-projection WP € Rkxd

* A feed-forward up-projection WU € Raxk

* fo () =WY(0 (WPx))

Feedforward
up-projection

Nonlinearity

Feedforward
down-projection

Adapter placement

The adapter is usually
placed after the multi-head
attention and/or after the
feed-forward layer

Most approaches have used
this bottleneck design with
linear layers

Adapter-based tuning
attains a similar
performance to full fine-
tuning with two orders of
magnitude fewer trained

parameters

Feedforward
up-projection

I

Nonlinearity

s

Feedforward
down-projection

’—

S b &

L

hd [Layer Norm]

Transformer
Layer °

Adapter

[

2x Feed-forward
layer

A

[Layer Norm]

Adapter

[Feed-forward layer]

T

Multi-headed
attention

e -

~

\
\

e o e e e e e

Unifying View

* He et al. [2022] (Towards a unified view of parameter-efficient transfer learning)

show that LoRA, prefix tuning, and adapters can be expressed with a similar
functional form

All methods can be expressed as modifying a model’s hidden representation h

\ \ -Scaling\
Ihoc?oo s/ | [[ROO OO Xw., /| [[ROO OO \wi,/

[PLM module] ReLU [PLM module]
Wdow

1 - r W,
\EZeXeXeXe] /K@_OOOOL,/j \EZeXeXeXe) By

(a) Adapter (b) Prefix Tuning (c) LoRA

[PLM module]

OWTL

Sparsity, structure, low-rank approximations, rescaling, and other properties can
also be applied and combined in many settings

Prompt tuning underperforms the other methods due to limited capacity

Adapter achieves better performance but add more parameters

Knowledge distillation to obtain smaller
models

Teacher Model

* The generic teacher-student framework for knowledge distillation

19

Example

Sumers, Yao,
Narasimhan, Griffiths.
CoALA: Cognitive
Architectures for
Language Agents TMLR
2024

Language agents

-

Language agents

-

\—

Large language models

Language models

Text generation

Translation, QA, summarization...

Web interaction, SWE, robotics, scientific discovery...

/

20

Architecture

* How do we make sense of various LLM systems (digital circuits)?

* Where should the field be going?
* von Neuman architecture

Input
Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Output
Device

21

Cognitive
architectures:
frameworks to
modularize
and build
complex
symbolic Al
agents, using
cognitive
inspirations
E.g. Soar
architecture

or ACT-R

Cognitive architectures

Symbolic Long-Term Memories

Procedural

[J—>]

Semantic

Episodic

il

A

H
—

Preference <
Memory
Decision

Procedure
lOpcrqur I

Learning Learning
 J 4
—J
Symbolic Working Memory
[T C

Spatial-Visual System

<> Perceptual LT Memory

~

[Other Pcrccptlon]

4 v
Visual Pc::cption\b[Motor

4

Embodiment

From LLMs to CLAs

B Language Agent

G
Il
, v
v
"
—

Observations Actmns

k@/

Environment

C

Cognitive Language Agent

Reasoning

v |

iy

Observations

N\

Environment

|

Actions

/

Cognitive Architectures for Language Agents
(CoALA)

Memory: short and long term
Action space: internal and external
1. Reasoning (update short-term memory)
2. Retrieval (read long-term memory)
3. Learning (write long-term memory)
4, Grounding (update external world)

Decision making: choose an action

A 4 Procedural Memory Semantic Memory Episodic Memory \ B

== s ”I’Ianning v

(@

LLM Agent Code — | > Proposal

A | | A I A I 4
G'rompt) (Parse) (Retrievalj (Learning:] (Retrieval) (Learni ng) (Fletrieva O (Learning) i
I v v I v | v I

Evaluation

Working Memory_/

Decision Procedure | A
g

(Actions Observations) L Selection
\ I

) &3 M-

Dialogue Physical Digital

