Mathematical modelling
3.2 Parametric curves

Neža Mramor Kosta

Faculty of Computer and Information Science
University of Ljubljana

2019/2020
3.2. Parametric curves

A parametric curve (or parametrized curve) in \mathbb{R}^m is a vector function $f : \mathbb{R} \to \mathbb{R}^m$, or from $I \to \mathbb{R}^m$ where $I \subset \mathbb{R}$ is a bounded or unbounded interval

$$f(t) = \begin{bmatrix} f_1(t) \\ \vdots \\ f_m(t) \end{bmatrix},$$

The independent variable (in this case t) is the parameter of the curve.

For every value $t \in I$, $f(t)$ represents a point in \mathbb{R}^m.

As t runs through I, $f(t)$ traces a path, or a curve, in \mathbb{R}^m.
If $m = 2$, then for every $t \in I$,

$$f(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = r(t)$$

is the position vector of a point in the plane \mathbb{R}^2.

All points $\{f(t), t \in I\}$ form a plane curve:

In this example $x(t) = t \cos t, y(t) = t \sin t, t \in [-3\pi/4, 3\pi/4]$
If \(m = 3 \), then
\[
 f(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \mathbf{r}(t)
\]
is the position vector of a point in \(\mathbb{R}^3 \) for every \(t \), and \(\{ f(t), \ t \in I \} \) is a space curve:

In this example \(x(t) = \cos t, \ y(t) = \sin t, \ z(t) = t/5, \ t \in [0, 4\pi] \)
Examples:

\[f(t) = \begin{bmatrix} 2 \cos t \\ 2 \sin t \end{bmatrix}, \quad t \in [0, 2\pi] \]

a circle with radius 2 and center (0, 0)

\[f(t) = r_0 + te, \quad t \in \mathbb{R}, \]
\[r_0, e \in \mathbb{R}^m, \quad e \neq 0 \]

line through \(r_0 \) in the direction of \(e \) in \(\mathbb{R}^m \)

m=2:
- slope \(k = e_2/e_1 \) if \(e_1 \neq 0 \)
- vertical if \(e = (0, e_2) \)
- horizontal if \(e = (e_1, 0) \)
A parametric curve $f(t), t \in [a, b]$ is closed if $f(a) = f(b)$.

Example:

$$f(t) = \begin{bmatrix} \cos 3t \\ \sin 5t \end{bmatrix}, t \in [0, 2\pi]$$

Lissajous curves: $x(t) = \sin(nt + \delta), y(t) = \sin mt$, are closed if the ratio n/m is rational. They describe 2D harmonic motion.
Problem: What path does the valve on your bicycle wheel trace as you bike along a straight road?

Represent the wheel as a circle of radius a rolling along the x-axis, the valve as a fixed point on the circle, the parameter is the angle of rotation:

The curve is a cycloid: $x(\theta) = a\theta - a\sin \theta$, $y(\theta) = a - a\cos \theta$.
A parametric curve \(f(t) \) describes the motion of a point with respect to \(t \). The path that it traces is simply a *curve* \(C \).

The following parametric curves all describe the circle with radius \(a \) around the origin (as well as many others):

\[
f_1(t) = \begin{bmatrix} a \sin t \\ a \cos t \end{bmatrix}, \quad t \in [0, 2\pi]
\]

\[
f_2(t) = \begin{bmatrix} a \cos 2t \\ a \sin 2t \end{bmatrix}, \quad t \in [0, 2\pi]
\]

\[
f_3(t) = \begin{bmatrix} a \cos t \\ a \sin t \end{bmatrix}, \quad t \in \mathbb{R}
\]
Problem: find the self-intersection (if there is one) of a parametric curve

Let \(f(t) = \begin{bmatrix} t^3 - 2t \\ t^2 - t \end{bmatrix} \)

A self-intersection is at a point \(f(t) = f(s) \), with \(t \neq s \), so:

\[
\begin{align*}
 t^3 - 2t &= s^3 - 2s, \\
 t^2 - t &= s^2 - s, \\
 t^3 - s^3 &= 2t - 2s, \\
 t^2 - s^2 &= t - s
\end{align*}
\]

Since \(t \neq s \) we can divide by \(t - s \):

\[
\begin{align*}
 t^2 + ts + s^2 &= 2, \\
 t + s &= 1, \\
 t &= 1 - s, \\
 (1 - s)^2 + s(1 - s) + s^2 &= 2.
\end{align*}
\]

The self-intersection (where \(s \) and \(t \) can be interchanged) is at

\[
 s = \frac{1 + \sqrt{5}}{2}, \quad t = \frac{1 - \sqrt{5}}{2}, \quad f(t) = f(s) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.
\]
Problem: do two parametric curves intersect. Imagine two superheroes speeding along the two curves. Do they meet?

Let \(f_1(t) = \begin{bmatrix} t^2 - 1 \\ -t^3 - t^2 + t + 1 \end{bmatrix}, \quad f_2(s) = \begin{bmatrix} s - 1 \\ 1 - s^2 \end{bmatrix}. \)

To find the intersections, solve the system

\[
\begin{align*}
 t^2 - 1 &= s - 1, \\
 -t^3 - t^2 + t + 1 &= 1 - s^2 \\
 s &= t^2 \\
 -s^6 - s^4 + s^2 + 1 &= 1 - s^2
\end{align*}
\]

There are three solutions (work them out!!):

\[
\begin{align*}
 t &= -1, s = 1 & x &= 0, y &= 0 \\
 t &= 0, s = 0 & x &= -1, y &= 1 \\
 t &= 1, s = 1 & x &= 0, y &= 0
\end{align*}
\]

The superheroes meet at \(t = 0, s = 0 \) at the point \((-1, 1)\) and at \(t = 1, s = 1 \) at the point \((0, 0)\).
The derivative of the vector function \(f(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_m(t) \end{bmatrix} \) at the point \(a \) is the vector:

\[
Df(a) = \begin{bmatrix} x'_1(a) \\ \vdots \\ x'_m(a) \end{bmatrix} = f'(a) = \lim_{h \to 0} \frac{1}{h}(f(a + h) - f(a))
\]

The vector \(f'(a) \) (if it exists) represents the velocity vector of a point moving along the curve at the point \(t = a \).

If \(f'(a) \neq 0 \) it points in the direction of the tangent at \(t = a \).
The **linear approximation** of f at $t = a$ is

$$L_a(t) = f(a) + (t - a)f'(a)$$

If $f'(a) \neq 0$, this is a parametric line corresponding to the tangent line to the curve $f(t)$ at $t = a$.

In this case $f(a)$ is a **regular point** of the parametric curve and the parametric curve is **smooth** at $t = a$.

If $f'(a) = 0$ (or if it does not exist), the point $f(a)$ is **singular**.
A curve \(C \in \mathbb{R}^m \) is *smooth* at a point \(x \) on \(C \) if there exists a parametrization \(f(t) \) of \(C \), such that \(f(a) = x \) and \(f'(a) \neq 0 \).

A smooth curve has a tangent at every point \(x \in C \).

Problem: Is the curve \(C = \{ f(t), t \in [0, \sqrt{2\pi}] \} \),
\[
f(t) = \begin{bmatrix} \cos(t^2) \\ \sin(t^2) \end{bmatrix},
\] smooth?

Since \(x^2 + y^2 = 1 \), \(f(t) \) is a parametrization of the unit circle which is a smooth curve (it has a tangent at every point).

Since \(f'(0) = 0 \) the parametrization \(f(t) \) is not a smooth at \(t = 0 \).

Find a smooth parametrization!
Problem: is the cycloid a smooth curve?

Our parametrization

\[f(t) = \begin{bmatrix} t - \sin t \\ 1 - \cos t \end{bmatrix} , \quad f'(t) = \begin{bmatrix} 1 - \cos t \\ \sin t \end{bmatrix} . \]

is not smooth at \(t = 2k\pi \) since \(f'(2k\pi) = 0 \).

Does a tangent exist? (It seems not, but let’s check...)
The slope of the tangent line at a point \(f(t) \) is:

\[
k_t = \frac{y'(t)}{x'(t)} = \frac{a \sin t}{a(1 - \cos t)}
\]

The left and right limits as \(t \to 2k\pi \) are

\[
\lim_{t \to 2k\pi^+} k_t = \lim_{t \to 2k\pi^+} \frac{\cos t}{\sin t} = -\infty, \quad \lim_{t \to 2k\pi^-} k_t = \lim_{t \to 2k\pi^-} \frac{\cos t}{\sin t} = \infty,
\]

so at these points the curve forms a sharp spike (a \textit{cusp}) and a tangent does not exist.

So, the cycloid is not smooth at the points where it touches the \(x \) axis.

(l'Hospital’s rule was used to compute the limits.)
How long is the path of a point moving along a parametric curve?

For example, how what distance does a point on the circle cover when the circle makes one full turn?

The *arc length* s of a parametric curve $f(t)$, $t \in [a, b]$, in \mathbb{R}^m is the length of the curve between the points $t = a$ in $t = b$.
An approximate value for s is the length of a polygonal curve connecting close enough points on curve:

$$s_n = \sum_{i=1}^{n} \| f(t_i) - f(t_{i-1}) \|$$

For n big enough, s_n is a practical approximation for s.
If the function $f(t)$ is continuously differentiable, then we can approximate the value $f(t_i) = f(t_{i-1} + \Delta t)$, where $\Delta t = t_i - t_{i-1}$, by the linear approximation:

$$f(t_i) = f(t_{i-1}) + f'(t_{i-1}) \Delta t$$

and we get:

$$\|f(t_i) - f(t_{i-1})\| \approx \|f'(t_{i-1})\| \Delta t$$

$$s_n \approx \sum_{i=1}^{n} \|f'(t_{i-1})\| \Delta t.$$

This is a Riemann integral sum of the function $\|f'(t)\|$.

In the limit as $n \to \infty$, s_n converges to s and the integral sum to the integral, so

$$s = \lim_{n \to \infty} s_n = \int_{a}^{b} \|f'(t)\| \, dt$$
Problem: The length of the path traced by a point on the circle after a full turn,

that is, of a cycle of the cycloid \(f(t) = \begin{bmatrix} t - \sin t \\ 1 - \cos t \end{bmatrix} \):

\[
\begin{align*}
 s &= \int_{0}^{2\pi} \sqrt{(1 - \cos t)^2 + \sin^2 t} \, dt \\
 &= \int_{0}^{2\pi} \sqrt{2 - 2\cos t} \, dt \\
 &= \int_{0}^{2\pi} \sqrt{4\sin^2 (t/2)} \, dt \\
 &= \int_{0}^{2\pi} 2\sin (t/2) \, dt \\
 &= -4(\cos(\pi) - \cos(0)) = 8
\end{align*}
\]
Problem: The arc length of the helix \(f(t) = \begin{bmatrix} a \cos t \\ a \sin t \\ bt \end{bmatrix} \), \(0 \leq t \leq 2\pi \),

... is homework:)

Problem: The circumference of the ellipse \(\begin{bmatrix} a \cos t \\ b \sin t \end{bmatrix} \), \(a \neq b \)

\[
\int_0^{2\pi} \sqrt{a^2 \sin^2 t + b^2 \cos^2 t} \, dt = 4a \int_0^{\pi/2} \sqrt{1 - e^2 \sin^2 t} \, dt = 4a E(e)
\]

where \(e = \sqrt{1 - (b/a)^2} \) is its eccentricity and the function \(E \) is the nonelementary elliptic integral of 2nd kind.
Arc length from the initial $t = a$ to an arbitrary t

$$s(t) = \int_a^t \|f'(u)\| \, du$$

is an increasing function of t, so it has an inverse $t(s)$

So, the original parameter t can be expressed as a function of the arc length s.

Inserting this into the parametrization gives the same curve with a different parametrization: $g(s) = f(t(s))$.

Arc length is called the *natural parameter* of the curve.
A curve C is parametrized with the natural parameter s has $\|f'(s)\| = 1$

A parametrization with the natural parameter is the *unit speed parametrization*.

The natural parametrization of a curve is extremely important in theory, but for practical computing it is less useful.
Example:

The standard parametrization of the circle

\[f(t) = \begin{bmatrix} a \cos t \\ a \sin t \end{bmatrix} \]

is not the natural parametrization if \(a \neq 1 \), since

\[\| f'(t) \| = \sqrt{a^2 \cos^2 t + a^2 \sin^2 t} = a \neq 1. \]

Since \(s(t) = \int_0^t a \, dt = at \) it follows that \(t = s/a \) and the natural parametrization is

\[g(s) = \begin{bmatrix} a \cos(s/a) \\ a \sin(s/a) \end{bmatrix}. \]