Metric spaces

Tuesday, 6 October 2020 12:33

Def. Let $f: X \to Y$ be a map. 1. f is **continuous** if $\forall U \subset Y$ open, its preimage $f^{-1}(U) = \{y \in X: f(y) \in U\}$ is open.

3. *f* is **isometry** if it preserves distances: d(x, y) = d(f(x), f(y)).

Example in the plane (with
$$d_2$$
). Isometries are translations,
 f f f $\rightarrow +0$ rotations and
reflections.

is connected NOT P. connected.