Metric spaces
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1. d(x,y) =d(y, x) symmetry
2. dx,y)=0iff x =y
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Def. A pair (X, d) is a metric space if d: X x X — [0, «0) satisfying: : \
I
I
3. d(x,z) <d(x,y) + d(y, z) triangle inequality |\
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Def. Let (X,d) be a metric space, x € X,r > 0,4 c X.
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1. Openballis B(x,r) ={y € X;d(x,y) <r}. >
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Closed ball is B(x,r) = {y € X;d(x,y) < r}.
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Def. Let f: X - Y be a map.
1. fis continuous if VU c Y open, its preimage f~1(U) = {y € X: f(y) € U} is open.
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2.7 f is a homeomorphism (=) if it is continuous, bijective, and its inverse is
{ also continuous. Two spaces are homeomorphic if there exists a

homeomorphism between them.
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3. fisisometry if it preserves distances: d(x,y) = d(f (%), f())-
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Def. Let X be a metric space. Y
1. A pathin X is a continuous map [0,1] - X.
2. X is path connected if for each pair of points in it there exists X

a path between them.
3. X is connected if it can not be expressed as a union of two disjoint
non-empty open sets.
4. A subset A c X is a (path) component of X if it is a maximal (path) connected set.

For the spaces we will be considering the two concepts of connectedness coincide. &
Theorem: Suppose X = Y. Then: EZ o
1. X is connected iff Y is = .
2. Both have the same number of components. O

Def. Continuous maps f, g: X — Y are homotopic (=), if there exists a homotopy
between them:
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Def. Spaces X,Y are homotopy equivalent (=) if there exist maps f:X - Y,g:Y - X such
that fog ~1, and go f = 14. In this case we say the spaces are homotopy equivalent.

Theorem. Suppose X =~ Y. Then: @K@
1. X is connected iff Y is

2. Both have the same number of components (holes).
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