Mathematical modelling

Lecture 12, May 6, 2021

Faculty of Computer and Information Science University of Ljubljana

2020/2021

4.2.4 The dynamics of systems of 2 equations

For an autonomous linear system

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2, \quad \dot{x}_2 = a_{21}x_1 + a_{22}x_2,$$

the origin (0,0) is always a stationary point, i.e., an equilibrium solution.

The eigenvalues of the matrix

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

determine the type of the stationary point (0,0) and the shape of the phase portrait.

We will assume that det $A \neq 0$. Let λ_1, λ_2 be the eigenvalues of A. We also assume that there exist two linearly independent vectors v_1, v_2 of A (even if $\lambda_1 = \lambda_2$).

$\mathsf{Case}\ 1:\ \lambda_1,\lambda_2\in\mathbb{R}$

The general solution is

$$x(t) = C_1 e^{\lambda_1 t} v_1 + C_2 e^{\lambda_2 t} v_2.$$

- If C₁ = 0, the trajectory x₁(t) is a ray in the direction of v₂ if C₂ > 0, or −v₁ if C₂ < 0.</p>
- Similarly, if C₂ = 0 the trajectory x₂(t) is a ray in the direction of v₂ or −v₂.
- The behaviour of other trajectories depends on the signs of λ_1 and λ_2 .

Subcase 1.1: $0 < \lambda_1 < \lambda_2$

- ▶ as $t \to \infty$, x(t) asymptotically approaches the solution $\pm e^{\lambda_2 t} v_2$,
- ▶ as $t \to -\infty$, x(t) asymptotically approaches the solution $\pm e^{\lambda_1 t} v_1$.

The point (0,0) is a *source*.

Example

The general solution of the system $\dot{x}_1 = 3x_1 + x_2, \dot{x}_2 = x_1 + 3x_2$ is

$$x(t) = C_1 e^{4t} \begin{bmatrix} 1 & 1 \end{bmatrix}^T + C_2 e^{2t} \begin{bmatrix} -1 & 1 \end{bmatrix}^T$$

Subcase 1.2: $\lambda_2 < \lambda_1 < 0$

• as $t \to \infty$, x(t) asymptotically approaches the solution $\pm e^{\lambda_2 t} v_2$,

▶ as $t \to -\infty$, x(t) asymptotically approaches the solution $\pm e^{\lambda_1 t} v_1$.

The point (0,0) is a *sink*.

Subcase 1.3: $\lambda_1 < 0 < \lambda_2$

as t→∞, x(t) asymptotically approaches the solution ±e^{λ₂t}v₂,
as t→-∞, x(t) asymptotically approaches the solution ±e^{λ₁t}v₁.

The point (0,0) is a *saddle*.

Example

The general solution of the system $\dot{x}_1 = x_1 - 3x_2, \dot{x}_2 = -3x_1 + x_2$ is

$$\mathbf{x}(t) = C_1 e^{-2t} \begin{bmatrix} 1 & 1 \end{bmatrix}^T + C_2 e^{4t} \begin{bmatrix} 1 & -1 \end{bmatrix}^T$$

Subcase 2.1: $\lambda_{1,2} = \alpha \pm i\beta$, $\alpha \neq 0$

The general solution is

 $x(t) = e^{\alpha t} \left[(C_1 \cos(\beta t) + C_2 \sin(\beta t)) u + (-C_1 \sin(\beta t) + C_2 \cos(\beta t)) w \right].$

Hence,

- ▶ if $\alpha < 0$, x(t) spirals towards (0,0) as $t \to \infty$, and
- if $\alpha > 0$, x(t) spirals away from (0,0) as $t \to \infty$.

The point (0,0) is a *spiral sink* in the first case and a *spiral source* in the second case.

Example

$$\dot{x}_1 = -3x_1 + 2x_2, \dot{x}_2 = -x_1 - x_2$$
$$x(t) = e^{-2t} \cdot \left((C_1 \cos t + C_2 \sin t) \begin{bmatrix} 2 \\ 1 \end{bmatrix} + (-C_1 \sin t + C_2 \cos t) \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

Subcase 2.2: $\lambda_{1,2} = \pm i\beta$, $\alpha \neq 0$

The trajectories are periodic with period $2\pi/\beta$, i.e. the point x(t) circles around (0,0).

The point (0,0) is a *center*. Example

 $\begin{aligned} \dot{x} &= v, \quad \dot{v} &= -\omega^2 x \\ x(t) &= \\ (C_1 \cos(\omega t) + C_2 \sin(\omega t)) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \\ (-C_1 \sin(\omega t) + C_2 \cos(\omega t)) \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{aligned}$

Linear DE's of order n

A linear DE (LDE) of degree n is of the form

$$x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = f(t)$$

The equation is

- homogeneous if f(t) = 0, and
- nonhomogeneous if $f(t) \neq 0$.
- The general solution of the homogeneous part is the family of all linear combinations

$$y(t) = C_1 x_1(t) + \cdots + C_n x_n(t)$$

of *n* linearly independent solutions $x_1(t), \ldots, x_n(t)$.

If the coefficients a₁(t),..., a_n(t) are continuous functions, then for any α₀,..., α_n there exists exactly one solution satisfying the initial condition

$$x(t_0) = \alpha_0, \quad \dot{x}(t_0) = \alpha_1, \quad \dots, \quad x^{(n-1)}(t_0) = \alpha_n.$$

LDEs with constant coefficients

Assume that the coefficient functions $a_1(t), \ldots a_n(t)$ in a homogeneous LDE are constant:

$$x^{(n)} + a_{n-1}x^{(n-1)}\cdots + a_0x = 0, \quad a_1,\ldots a_n \in \mathbb{R}$$

Then a solution is of the form $x(t) = e^{\lambda t}$ where λ is a root of the *characteristic polynomial*:

$$\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0 = 0.$$

A polynomial of degree n has exactly n roots, counted by multiplicity. These can be either real or complex conjugate pairs.

From the roots of the characteristic polynomial, n linearly independent solutions of the LDE can be reconstructed.