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4.2.4 The dynamics of systems of 2 equations

For an autonomous linear system

ẋ1 = a11x1 + a12x2, ẋ2 = a21x1 + a22x2,

the origin (0, 0) is always a stationary point, i.e., an equilibrium solution.

The eigenvalues of the matrix

A =

[
a11 a12
a21 a22

]
determine the type of the stationary point (0, 0) and the shape of the phase
portrait.

We will assume that detA 6= 0. Let λ1, λ2 be the eigenvalues of A. We also
assume that there exist two linearly independent vectors v1, v2 of A (even if
λ1 = λ2).
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Case 1: λ1, λ2 ∈ R

The general solution is

x(t) = C1e
λ1tv1 + C2e

λ2tv2.

I If C1 = 0, the trajectory x1(t) is a ray in the direction of v2 if C2 > 0,
or −v1 if C2 < 0.

I Similarly, if C2 = 0 the trajectory x2(t) is a ray in the direction of v2 or
−v2.

I The behaviour of other trajectories depends on the signs of λ1 and λ2.
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Subcase 1.1: 0 < λ1 < λ2

I as t →∞, x(t) asymptotically approaches the solution ±eλ2tv2,
I as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a source.

Example
The general solution of the system ẋ1 = 3x1 + x2, ẋ2 = x1 + 3x2 is

x(t) = C1e
4t
[

1 1
]T

+ C2e
2t
[
−1 1

]T
.
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Subcase 1.2: λ2 < λ1 < 0

I as t →∞, x(t) asymptotically approaches the solution ±eλ2tv2,

I as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a sink.
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Subcase 1.3: λ1 < 0 < λ2

I as t →∞, x(t) asymptotically approaches the solution ±eλ2tv2,
I as t → −∞, x(t) asymptotically approaches the solution ±eλ1tv1.

The point (0, 0) is a saddle.

Example
The general solution of the system ẋ1 = x1 − 3x2, ẋ2 = −3x1 + x2 is

x(t) = C1e
−2t

[
1 1

]T
+ C2e

4t
[

1 −1
]T
.
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Subcase 2.1: λ1,2 = α± iβ, α 6= 0

The general solution is

x(t) = eαt [(C1 cos(βt) + C2 sin(βt))u + (−C1 sin(βt) + C2 cos(βt))w ] .

Hence,
I if α < 0, x(t) spirals towards (0, 0) as t →∞, and
I if α > 0, x(t) spirals away from (0, 0) as t →∞.

The point (0, 0) is a spiral sink in the first case and a spiral source in the
second case.

Example

ẋ1 = −3x1 + 2x2, ẋ2 = −x1 − x2

x(t) = e−2t ·(
(C1 cos t + C2 sin t)

[
2
1

]
+

(−C1 sin t + C2 cos t)

[
0
1

])
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Subcase 2.2: λ1,2 = ±iβ, α 6= 0

The trajectories are periodic with period 2π/β, i.e. the point x(t) circles
around (0, 0).

The point (0, 0) is a center.

Example

ẋ = v , v̇ = −ω2x

x(t) =

(C1 cos(ωt) + C2 sin(ωt))

[
1
0

]
+

(−C1 sin(ωt) + C2 cos(ωt))

[
0
1

]

8/10



Linear DE’s of order n

A linear DE (LDE) of degree n is of the form

x (n) + an−1(t)x (n−1) + · · ·+ a0(t)x = f (t)

The equation is

I homogeneous if f (t) = 0, and

I nonhomogeneous if f (t) 6= 0.

I The general solution of the homogeneous part is the family of all linear
combinations

y(t) = C1x1(t) + · · ·+ Cnxn(t)

of n linearly independent solutions x1(t), . . . , xn(t).

I If the coefficients a1(t), . . . , an(t) are continuous functions, then for
any α0, . . . , αn there exists exactly one solution satisfying the initial
condition

x(t0) = α0, ẋ(t0) = α1, . . . , x (n−1)(t0) = αn.
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LDEs with constant coefficients

Assume that the coefficient functions a1(t), . . . an(t) in a homogeneous
LDE are constant:

x (n) + an−1x
(n−1) · · ·+ a0x = 0, a1, . . . an ∈ R

Then a solution is of the form x(t) = eλt where λ is a root of the
characteristic polynomial:

λn + an−1λ
n−1 + · · · a1λ+ a0 = 0.

A polynomial of degree n has exactly n roots, counted by multiplicity.
These can be either real or complex conjugate pairs.

From the roots of the characteristic polynomial, n linearly independent
solutions of the LDE can be reconstructed.
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