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4.2.4 The dynamics of systems of 2 equations

For an autonomous linear system
X1 = a11x1 + anxe, Xp = axxi + anxe,
the origin (0,0) is always a stationary point, i.e., an equilibrium solution.

The eigenvalues of the matrix

a a
A — 11 12
d21 a2

determine the type of the stationary point (0,0) and the shape of the phase
portrait.

We will assume that det A # 0. Let A1, A2 be the eigenvalues of A. We also

assume that there exist two linearly independent vectors vy, vo of A (even if
A1 = A2).
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Case 1: A\, R

The general solution is
x(t) = CieMtvy + Gty
> If C; =0, the trajectory x1(t) is a ray in the direction of v, if C; > 0,

or —vq iIf G < 0.
» Similarly, if C; = 0 the trajectory x»(t) is a ray in the direction of v, or

—va.
» The behaviour of other trajectories depends on the signs of A; and \s.
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Subcase 1.1: 0 < A1 < Xy
» as t — oo, x(t) asymptotically approaches the solution +e*?%vs,
> as t — —oo, x(t) asymptotically approaches the solution e*tv;
The point (0,0) is a source.

Example
The general solution of the system x; = 3x; + x2, X2 = x3 + 3x2 is

x()=Ge*[1 1] +Ge*[ -1 1]"
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Subcase 1.2: My < A1 <0

Aot

> as t — oo, x(t) asymptotically approaches the solution +e*2fvy,

At

> as t — —oo, x(t) asymptotically approaches the solution +e*1%v;.

The point (0,0) is a sink.
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Subcase 1.3: A1 <0 < X

> as t — oo, x(t) asymptotically approaches the solution :I:e’\ztvz,
> as t — —oo, x(t) asymptotically approaches the solution e*tv;

The point (0,0) is a saddle.

Example
The general solution of the system x; = x; — 3xp, % = —3x1 + xo is

x()=Ce?[1 1] +Ge*[1 —1]
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Subcase 2.1: i =axif, a#0

The general solution is
x(t) = e [(Cy cos(Bt) + Cosin(Bt))u + (—Cysin(Bt) + Gy cos(Bt))w] .

Hence,

» if a <0, x(t) spirals towards (0,0) as t — oo, and
> if « >0, x(t) spirals away from (0,0) as t — oo.

The point (0,0) is a spiral sink in the first case and a spiral source in the

second case.

Example

X1 = —3X1 + 2x0,Xp = —X1 — X2

x(
((Cl cost + Gsin t) [ 2
(—

Cisint + Gycost) [ 0
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Subcase 2.2: A1 ==£if3, a #0

The trajectories are periodic with period 27 //3, i.e. the point x(t) circles

around (0, 0).

The point (0,0) is a center.

Example
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Linear DE’s of order n

A linear DE (LDE) of degree n is of the form
™ a1 (DxD 4 ao(E)x = £(2)

The equation is
» homogeneous if f(t) =0, and
» nonhomogeneous if f(t) # 0.
» The general solution of the homogeneous part is the family of all linear
combinations
y(t) = Gixa(t) + - 4+ Coxa(t)
of n linearly independent solutions xi(t), ..., x,(t).

» If the coefficients aj(t),...,a,(t) are continuous functions, then for
any «g, ..., «p there exists exactly one solution satisfying the initial
condition

X(to) = g, ).((tO):Oél, ey X(n_l)(to) = Qp.
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LDEs with constant coefficients

Assume that the coefficient functions a;(t), ... an(t) in a homogeneous
LDE are constant:

() + an_lx(n—l) ---+ax=0, a,...ap R
Then a solution is of the form x(t) = et where ) is a root of the
characteristic polynomial.
N4 a2, A"+ a A+ ap = 0.

A polynomial of degree n has exactly n roots, counted by multiplicity.
These can be either real or complex conjugate pairs.

From the roots of the characteristic polynomial, n linearly independent
solutions of the LDE can be reconstructed.
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