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Abstract
Nature-inspired metaheuristics comprise a compelling family of optimization techniques.
These algorithms are designedwith the idea of emulating some kind natural phenomena (such
as the theory of evolution, the collective behavior of groups of animals, the laws of physics or
the behavior and lifestyle of human beings) and applying them to solve complex problems.
Nature-inspired methods have taken the area of mathematical optimization by storm. Only
in the last few years, literature related to the development of this kind of techniques and
their applications has experienced an unprecedented increase, with hundreds of new papers
being published every single year. In this paper, we analyze some of the most popular nature-
inspired optimization methods currently reported on the literature, while also discussing
their applications for solving real-world problems and their impact on the current literature.
Furthermore, we open discussion on several research gaps and areas of opportunity that are
yet to be explored within this promising area of science.
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1 Introduction

Mathematical optimization is a branch of applied mathematics and computer sciences which
deals with the selection of the optimal solution for a particular mathematical function (or
problem) with the purpose of either minimizing or maximizing the output of such function.
In more simple terms, optimization could be described as the process of selecting of the
best element(s) from among a set of available alternatives to get the best possible results
when solving a particular problem (Galinier et al. 2013; Cuevas et al. 2016). Optimization
is a recurring problem for many different areas of application such as robotics, computer
networks, security, engineering design, data mining, finances, economics, and many others
(Cuevas et al. 2016). Independently of the area of application, optimization problems are
wide-ranging and numerous, so much that the development of methods for solving such
problems has remained a hot topic for many years.

Traditionally, optimization techniques can be roughly classified as either deterministic or
stochastic (Cavazzuti 2013). Deterministic optimization approaches, which design heavily
relies on mathematical formulation and its properties, are known to have some remarkable
advantages, such as fast convergence and implementation simplicity (Lin et al. 2012). On
the other hand, stochastic approaches, which resort to the integration of randomness into
the optimization process, stand as promising alternatives to deterministic methods for being
far less dependent on problem formulation and due to their ability to thoroughly explore a
problems design space, which in turn allow them to overcome local optima more efficiently
(Schneider and Kirkpatrick 2006). While both deterministic and stochastic methods have
been successfully applied to solve a wide variety of optimization problems, these classical
approaches are known to be subject to some significant limitations; first of all, deterministic
methods are often conditioned by problem properties (such as differentiability in the case
of gradient-based optimization approaches) (Cuevas et al. 2017a). Furthermore, due to their
nature, deterministic methods are highly susceptible to get trapped into local optima, which
is something undesirable for most (if not all) applications. As for stochastic techniques, while
these are far easier to adapt to most black-box formulations or ill-behaved optimization prob-
lems, these methods tend to have a notably slower convergence speed in comparison to their
deterministic counterparts, which naturally pose as an important limitation for applications
where time is critical. The many shortcomings of classical methods, along with the inherent
challenges of real-life optimization problems, eventually lead researchers to the develop-
ment of heuristics as an alternative to tackle such complex problems (Galinier et al. 2013).
Generally speaking, a heuristic could be described as a technique specifically tailored for
solving specific problems, often considered too difficult to handle with classic techniques.
In this sense, heuristics trade essential qualities such as optimality, accuracy, precision or
completeness to, either solve a problem in reasonably less time or to find an approximate
solution in situations in which traditional methods fail to deliver an exact solution. However,
while heuristic methods have demonstrated to be excellent to handle otherwise hard to solve
problems, there are still subject to some issues. Like most traditional approaches, heuristics
are usually developed by considering at least some specifications about the target problem,
and as such, it is hard to apply them to different problems without changing some or most of
their original framework (Díaz-Cortés et al. 2017).

Recently, the idea of developing methodologies that could potentially solve a wide variety
of problems in a generic fashion has caught the attention of many researchers, leading to
the development of a new breed of “intelligent” optimization techniques formally known as
metaheuristics (Yang 2008). Ametaheuristic is a particular kind of heuristic-basedmethodol-
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ogy, devised with the idea of being able to solve many different problems without the need of
changing the algorithms basic framework. For this purpose, metaheuristic techniques employ
a series of generic procedures and abstractions aimed to improve a set of candidate solution
iteratively. With that being said, metaheuristics are often praised due to their ability to find
adequate solutions for most problems independently of their structure and properties.

1.1 Nature-inspiredmetaheuristics

The word “nature” refers to many phenomena observed in the physical world. It comprises
virtually everything perceptible to our senses and even some things that are not as easy to
perceive. Nature is the perfect example of adaptive problem solving; it has shown countless
times how it can solvemany different problems by applying an optimal strategy, suited to each
particular natural phenomenon. Many researchers around the world have become captivated
by how nature can adapt to such an extensive array of situations, and for many years they
have tried to emulate these intriguing problem-solving schemes to develop tools with real-
world applications. In fact, for the last two decades, nature has served as the most important
source of inspiration in the development of metaheuristics. As a result of this, a whole new
class of optimization techniques was given birth in the form of the so-called Nature-inspired
optimization algorithms. These methods (often referred as bio-inspired algorithms) are a par-
ticular kind of metaheuristics, developed with a single idea in mind: mimicking a biological
or a physical phenomenon to solve optimization problems. With that being said, depend-
ing on their source of inspiration, nature-inspired metaheuristics can be classified in four
main categories: evolution-based, swarm-based, physics-based and human-based methods
(Binitha and Sathya 2012; Mirjalili and Lewis 2016) (see Fig. 1). Evolution-based methods
are developed by drawing inspiration in the laws of natural evolution. From these meth-
ods, the most popular is without a doubt the Genetic Algorithms approach, which simulates
Darwinian evolution (Mitchell 1995). Other popular methods grouped within this category
include Evolution Strategy (Back et al. 1991), Differential Evolution (Storn and Price 1997)
and Genetic Programming (Sette and Boullart 2001). On the other hand, swarm-based tech-
niques are devised to simulate the social and collective behavior manifested by groups of
animals (such as birds, insects, fishes, and others). The Particle Swarm Optimization (Poli
et al. 2007a) algorithm, which is inspired in the social behavior of bird flocking, stands as
the most representative and successful example within this category, although other relevant
methods include Ant Colony Optimization (Dorigo and Stützle 2004), Artificial Bee Colony
(Karaboga and Basturk 2007), Firefly Algorithm (Yang 2010a), Social Spider Optimization
(Cuevas et al. 2013a), among others. Also, there are the physics-based algorithms, which are
developed with the idea of emulating the laws of physics observed within our universe. Some
of themost popularmethods groupedwithin this category are SimulatedAnnealing (Rutenbar
1989), Gravitational Search Algorithm (Rashedi et al. 2009), Electromagnetism-like Mech-
anism (Birbil and Fang 2003), States of Matter Search (Cuevas et al. 2013b), to name a few.
Finally, we can mention human-based algorithms. These kind of nature-inspired methods are
unique due to the fact that they draw inspiration from several phenomena commonly associ-
ated with humans’ behaviors, lifestyle or perception. Some of the most well-known methods
found in the literature include Harmony Search (Geem et al. 2001), Firework Algorithm (Tan
and Zhu 2010), Imperialist Competitive Algorithm (Atashpaz-Gargari and Lucas 2007), and
many more.

Most nature-inspired methods are modeled as population-based algorithms, in which a
group of randomly generated search agents (often referred as individuals) explore different
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Fig. 1 Classification of nature-inspired metaheuristics

candidate solutions by applying a particular set of rules derived from some specific natural
phenomenon. This kind of frameworks offer important advantages in both, the interaction
among individuals, which promotes a wider knowledge about different solutions, and the
diversity of the population, which is an important aspect on ensuring that the algorithmhas the
power to efficiently explore the design space while also being able to overcome local optima
(Yang 2008). Due to this and many other distinctive qualities, nature-inspired methods have
become a popular choice among researchers. As a result, literature related to nature-inspired
optimization algorithms and its applications for solving otherwise challenging optimization
problems has become extremely vast, with hundreds of new papers being published every
year.

In this paper, we present a broad review about nature-inspired optimization algorithms,
highlight some of the most popular methods currently reported on the literature as well as
some of its applications for solving real-world optimization problems and their impact on
the current research. The rest of this paper is organized as follows: in Sect. 2, we analyze
the general framework applied by most nature-inspired metaheuristics in terms of design.
In Sect. 3, we present nature-inspired methods according to their classification while also
reviewing some of themost popular algorithms for each case. In Sect. 4, we open a discussion
related to the performance of nature-inspired techniques, emphasizing on several observable
design characteristics which have a direct impact on this regard. In Sect. 5, we review some of
the most important areas of application where nature-inspired approaches have been applied
for solving real-world problems. In Sect. 6, we present a brief study concerning the growth
in the number of publications related to nature-inspired methods. In Sect. 7, we discuss some
of the current research gaps and areas of opportunity in this rather young area of science.
Finally, in Sect. 8, we present our conclusions and final thoughts.
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2 General framework of nature-inspiredmetaheuristics

With some exceptions, most of the nature-inspired metaheuristics currently reported on the
literature are modeled as population-based algorithms, which implies that the general frame-
work employed by most of these methods remains almost identical, independently of the
natural phenomenon from which the algorithm is inspired (Cuevas et al. 2016).

Usually, the first step of a nature-inspired algorithm involves the definition of a set of
N randomly initialized solutions X � {x1, x2, . . . , xN } (commonly referred as population),
and such that:

xi � [xi,1, xi,2, . . . , xi,d ] (1)

where the elements xi,n represent the decision variables (parameters) related to a given
optimization problem, while d denotes the dimensionality (number of decision variables) of
the target solution space.

From an optimization point of view, each set of parameters xi ∈ X (also known as an
individual) is considered as a candidate solution for the specified optimization task; as such,
each of these solutions is also assigned with a corresponding quality value (or fitness) related
to the objective function f (·) that describes the optimization task, such that:

fi � f (xi ) (2)

Nature-inspired methods usually follow an iterative search scheme, in which new candi-
date solutions are generated by modifying currently available individuals; this is achieved
by applying some previously specified criteria (usually devised by drawing inspiration from
an observed natural phenomenon). For most cases, this process may be illustrated by the
following expression:

x′
i � xi + �xi (3)

where x′
i denotes the candidate solution generated by adding up a specified update vector

�xi to xi . It is worth noting that the value(s) adopted by the update vector �xi depend on
the specific operators employed by each individual algorithm.

Finally, most nature-inspired algorithms include some kind of selection process, in which
the newly generated solutions are compared against those in the current population Xk (with
k denoting the current iteration) in terms of solution quality, typically with the purpose of
choosing the best individual(s) among them. As a result of this process, a new set of solutions
Xk+1 � {xk+11 , xk+12 , . . . , xk+1n }, corresponding to the following iteration (or generation)
‘k + 1’, is generated.

This whole process is iteratively repeated until a particular stop criterion is met (i.e., if a
maximum number of iterations is reached). Once this happens, the best solution found by the
algorithm is reported as the best approximation for the global optimum (Cuevas et al. 2016).

3 Nature-inspiredmetaheuristics

Nature-Inspired optimization algorithms have become so numerous and so varied that illus-
trating every single method in existence has become an undoubtedly challenging task.
However, several algorithms have become widely popular among researchers, either for
their fascinating characteristics or their ease of implementation. In this section, we present
some of the most popular nature-inspired optimization techniques currently reported on the
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literature. The algorithms presented in this section were chosen by considering a balance
between both classical and modern approaches. Also, in order to give the reader the facility
to understand, analyze and compare each of the described methods in the same terms, we
have taken some liberties regarding nomenclature and formulation presented on each case
so that it is consistent with the general framework of nature-inspired methods presented
in Sect. 2. While the introduced formulations may look slightly different to those reported
on their sources, we have made a special effort to keep the essence and particular traits
that distinguish each method unaltered; with that being said, the reader is always invited
to refer to the original paper(s) in order to get a deeper understanding of these techniques.
All approaches described in this section are presented according to the typical classification
of to nature-inspired metaheuristics (see Fig. 1): In Sect. 3.1., we center our discussion on
evolution-based algorithms; in Sect. 3.2, we dedicate our analysis to swarm-based optimiza-
tion methods; in Sect. 3.3, we analyze some of the most popular physics-based techniques;
finally, in Sect. 3.4, human-based techniques are brought up to discussion.

3.1 Evolution-basedmethods

Evolution-Basedmethods comprise a series of optimization algorithms developed by drawing
inspiration in the laws of natural evolution. In this kind of techniques, solutions are typically
represented by a set of individuals, which compete and combine in ways that allow only
the most suitable individuals to prevail. The process for modifying existent solutions in
evolution-based techniques often involve the implementation of a series of operators inspired
in several processes commonly observed in natural evolution, such as crossover, mutation,
and selection.

3.1.1 Differential evolution

The Differential Evolution (DE) approach is an evolutionary algorithm introduced by Storn
and Price (1997) and, along with Genetic Algorithms (GA), is one of the most popular
optimization approaches inspired in the evolution phenomena.

At each generation ‘k’, DE applies a series of mutation, crossover and selection operators
in order to allow a population of solutions X � {x1, x2, . . . xN } to “evolve” toward an
optimal solution. For DE’s mutation operation, new candidate (mutant) solutions mk

i �
[mk

i,1,m
k
i,2, . . . ,m

k
i,d ] are generated for each individual xi as illustrated as follows:

mk
i � xkr3 + F

(
xkr1 − xkr2

)
(4)

where r1, r2, r3 ∈ {1, 2, . . . , N } (and with r1 �� r2 �� r3 �� i) each denote a randomly chosen
solution index, while the parameter F ∈ [0, 2] is called differential weight, and is used to
control the magnitude of the differential variation

(
xkr1 − xkr2

)
.

Furthermore, for the crossover operation, DE generates a trial solution vector uki �
[uki,1, u

k
i,2, . . . , u

k
i,d ] corresponding to each population member ‘i’. The components uki,n

in such a trial vector are given by combining both the candidate solution xki and its respective
mutant solution mk

i as follows:

uki,n �
{
mk

i,n if(rand ≤ CR) or n � n∗
xki,n if(rand > CR) otherwise for n � 1, 2, . . . , d

(5)
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where n∗ ∈ {1, 2, . . . , d} denotes a randomly chosen dimension index, while rand stand for
a random number from within the interval [0, 1]. Furthermore, the parameter CR ∈ [0, 1]
represents the DE’s crossover rate which is used to control the probability of an element uki,n
being given by either a component from the candidate solution xki (x

k
i,n) or a component from

the mutant solution mk
i (m

k
i,n).

Finally, for DE’s selection process, each trail solution uki is compared against its respective
candidate solution xki in terms of solution quality (fitness) by applying a greedy criterion.
This means that, if the trial solution uki yields to a better fitness value than x

k
i , then the value

of the candidate solution for the next generation ‘k + 1’ takes the value of uki , otherwise, it
remains unchanged. This is:

xk+1i �
⎧⎨
⎩
uki if

(
f
(
uki

)
> if f

(
xki

))

xki otherwise
(6)

As one of themost popular Evolution-based algorithms currently reported on the literature,
DE has been extensively studied and applied by researchers inmany different areas of science
(Opara and Arabas 2017; Padhye et al. 2013;Mohamed et al. 2012; Das and Suganthan 2011;
Das et al. 2016; Piotrowski 2017).

3.1.2 Evolution strategies

Evolution strategies (ES) are a series of optimization techniques which draw inspiration from
natural evolution (Back et al. 1991). Thefirst ESapproachwas introducedby IngoRechenberg
in the early 1960s and further developed during the 1970s. The most straightforward ES
approach is the so-called (1 + 1)-ES (or two-membered ES). This approach considers the
existence of only a single parent x � [x1, x2, . . . , xd ], which is assumed to be able to
produce a new candidate solution (offspring) x′ � [x ′

1, x
′
2, . . . , x

′
d ] by means of mutation as

follows:

x′ � x + N(0, σ ) (7)

whereN(0, σ ) denotes a d-dimensional random vector whose values are drawn from a Gaus-
sian distribution of mean 0 and fixed standart deviation σ (although later approaches consider
a dynamic value based on the number of successful mutations) (Back et al. 1991).

Furthermore, the (1 + 1)-ES implements a selection operator which allows excluding the
individual with the least performance between the parent x and its respective offspring x′,
so that only the best of these solution is considered as the parent for the next generation
(iteration).

In later approaches, Rechemberg introduced the concept of population to ES by proposing
the first multimembered ES in the form of the so-called (μ + 1)-ES. In such an approach,
a population P � {I1, . . . , Iμ} consisting on μ > 1 parents Ii � {xi ,σi } (with xi �[
xi,1, xi,2, . . . xi,d

]
and σi � [σi,1, σi,2, . . . , σi,d ]) is considered. Furthermore, a discrete

recombination mechanism which considers information drawn from a pair of randomly cho-
sen parent is implemented to generate a new offspring I′ � {x′,σ′} as follows:

x
′
j �

{
xr1,n if(rand > 1/2)
xr2,n otherwise for n � 1, 2, . . . , d

(8)

σ
′
j �

{
σr1,n if(rand > 1/2)
σr2,n otherwise for n � 1, 2, . . . , d

(9)
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where r1, r2 ∈ {1, . . . , μ} denote two randomly chosen solution indexes corresponding to
the parents population, while rand stand for a random number from within the interval [0,1].

Similarly to (1 + 1)-ES, (μ + 1)-ES also implements a mutation operator which generate
a new offspring solution by perturbing a currently existing parent. Furthermore, a selection
operator which allows to choose the best μ solutions from among the population of parents
and offspring (generated through recombination and mutation) is also implemented to define
a new parents’ population for the next generation.

Later approaches, such as the (μ + λ)-ES and the (μ, λ)-ES were further proposed to
consider the generation of multiple offspring rather than a single one (Back et al. 1991).
Furthermore, several variations to the recombination and mutation processes employed on
classical ES have also been proposed, giving birth to some interesting variants such as (μ, λ)-
MSC-ES and CMA-ES, the latter of which is considered by many authors as the state-of-
the-art in ES (Bäck et al. 2013; Beyer and Sendhoff 2008; Auger et al. 2004; Salimans et al.
2017).

3.1.3 Genetic algorithms

Genetic algorithms (GA) is one of the earliest metaheuristics inspired in the concepts of
natural selection and evolution and is among the most successful evolutionary algorithms
(EA) due to its conceptual simplicity and easy implementation (Mitchell 1996). GA was
initially developed by John Henry Holland in 1960 (and further extended in 1975) with the
goal to understand the phenomenon of natural adaptation, and how this mechanism could be
implemented into computers systems to solve complex problems.

In GA, a population of N solutions xi � [xi,1, xi,2, . . . , xi,d ] is first initialized; each
of such solutions (called chromosomes) comprises a bitstring (this is, xi,n ∈ {0, 1}), which
further represents a possible solution for a particular binary problem. At each iteration (also
called generation) of GA’s evolution process, the chromosome population is modified by
applying a set of three evolutionary operators, namely: selection, crossover and mutation.
For the selection operation, GA randomly selects a pair of chromosomes xp1 and xp2 (with
p1, p2 ∈ {1, 2, . . . , N } and p1 �� p2) from within the entire chromosome population, based
on their individual selection probabilities. The probability Pi for a given chromosome ‘i’
(xi ) to be selected depends on its quality (fitness value), as given as follows:

Pi � f (xi )∑N
j�1 f (x j )

(10)

Then, for the crossover operation, the bitstring information of the selected chromosomes
(now called parents) is recombined to produce two new chromosomes, xs1 and xs2 (referred
as offspring) as follows:

xs1,n �
{
xp1,n if(n < l)
v otherwise

xs2,n �
{
xp2,n if(n < l)
xp1,n otherwise for n � 1, 2, . . . , d

. (11)

where l ∈ {1, 2, . . . , d} is a randomly selected pivot index (usually referred as locus).
Finally, for the mutation operation, some elements (bits) of the newly generated offspring

are flipped (changed from 1 to 0 or vice versa). Mutation can occur over each bit position in
the string with a particular probability Pm (typically as low as 0.001), as given as follows:

xsr ,n �
{
x̄sr ,n if(rand < Pm)

xsr ,n otherwise for n � 1, 2, . . . , d
(12)
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where xsr ,n (with r ∈ {1, 2}) stand for the j th element (bit) of the sr th offspring, while rand
stand for a random number form within the interval of 0 and 1.

This process of selection, crossover, and mutation of individuals takes place until a popu-
lation of N new chromosomes (mutated offspring) has been produced, and then, the N best
chromosomes among the original and new populations are taken for the next generation,
while the remainder individuals are discarded (Sayed et al. 2017; McCall 2005; Yadav and
Prajapati 2012; Pham et al. 2013).

3.1.4 Genetic programming

Genetic programming (GP) is a unique optimization technique proposed by John R. Koza in
1992 (Sette and Boullart 2001). The development of GP is closely related to popularization
gained by evolutionary algorithms between the 1960s and 1970s. In essence, GP can be
considered an extension of evolutionary methods such as Rechenberg’s Evolution Strategies
(ES) orHolland’sGeneticAlgorithms (GA).Different to said traditionalmethods, however, is
the fact that inGP solutions are represented by a set of operations or computer programs; this is
that, instead of finding a set of decision variables that optimize a given objective function, the
outputs of GP are computer programs specifically tailored (evolved) to perform optimally on
predefined tasks. Traditionally, solutions in GP are represented as tree structures which group
a set of functions andoperands, althoughother representations are also common.Furthermore,
GP is also distinctive due to its variable-length representation of output solutions, which
drastically differs to the fixed-length representations adopted by most traditional techniques
(Khu et al. 2001; Poli et al. 2007b; Harman et al. 2013; Gerules and Janikow 2016; Vanneschi
et al. 2014).

Typically, most GP approaches are comprised of the following four fundamental steps:

1. Generating an initial population of computer programs, composed by the available func-
tions and terminals (operands).

2. Execute each program in the population and assign it a fitness value according to how
well it solves a given problem.

3. Generate a new population of programs by:

a. Copying the current best computer programs (reproduction).
b. Creating new offspring programs by randomly changing some parts of a program

(mutation).
c. Creating new offspring programs by recombining parts from two existent programs

(crossover).

4. If a specified stop criterion is met, return the single best program in the population as the
solution for the pre-specified problem. Otherwise, return to step 2.

3.2 Swarm-basedmethods

Swarm-based optimization algorithms comprise a series of techniques which draw inspira-
tion from the collective behavior manifested by a wide range of living organisms, such as
birds, insects, fishes, and others. In this kind of techniques, search agents are modeled by a
population of individuals (usually from the same species) which are capable of interacting
with each other and the environment that surrounds them. While the movement of search
agents in swarm algorithms is often based on simplified behavioral rules abstracted from
those observed in nature, the collective manifestation of these individual conducts allows the
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entire population to exhibit global and complex behavioral patterns, thus allowing them to
explore an extensive amount of candidate solutions.

3.2.1 Ant colony optimization

The ant colony optimization (ACO) algorithm is one of the most well-known nature-inspired
metaheuristics. The ACO approach was first proposed by Marco Dorigo in 1992 under the
name of ant systems (AS) and draws inspiration in the natural behavior of ants (Dorigo and
Blum 2005). In nature, ants move randomly while foraging for food, and when an appropriate
source is found, they return to their colony while leaving a pheromone trail behind. Ants are
able to guide themselves toward previously found food source by following the path traced
by pheromones left by them or other ants. However, as time passes, pheromones start to
evaporate; intuitively, the more time an ant takes to travel down a given path back and forth,
the more time the pheromones have to dissipate; on the other hand, shorter paths are traversed
more frequently, promoting that pheromone density becomes higher in comparison to that on
longer routes. In this sense, if an ant finds a good (short) path from the colony to a food source,
others members are more likely to follow the route traced by said ant. The positive feedback
provided by the increase in pheromone density through paths traversed by an increasing
number of ants eventually lead all members of the colony to follow a single optimal route
(Dorigo and Stützle 2004).

The first ACO approach was conceived as an iterative process devised to handle the task of
finding optimal paths in a graph (Dorigo and Blum 2005). For this purpose, ACO considers
a population of N ants which move through the nodes and arcs of a graph G(N ,P) (with
N and P denoting its respective sets of nodes and arcs, respectively). Depending on their
current state (node), each ant is able to choose from among a set of adjacent paths (arc) to
traverse based on the pheromone density and length associated to each of them. With that
being said, at each iteration ‘k’, the probability for a given ant ‘i’ to follow a specific path
‘xy’ (which connects states ‘x’ and ‘y’) is given by the following expression:

pki(xy) �
(
α · τ k(xy)

)(
β · ηk(xy)

)

∑
z∈Yx

(
α · τ k(xz)

)(
β · ηk(xz)

) (13)

where τ k(xy) denotes the pheromone density over the given path ‘xy’, while ηk(xy) stand for
the preference for traversing said path, which is relative to its distance (cost). Furthermore,
Yx represent the set of all adjacent states for the given current state ‘x’. Finally, α and β are
constant parameters used to control the influence of τ k(xy) and ηk(xy), respectively.

By applying this mechanism, each ant moves through several paths within the graph until
a specific criterion is met (i.e., that a particular destination node has been reached). Once this
happens, each ant backtracks its traversed route while releasing some pheromones on each
the paths they used. In ACO, the amount of pheromones released by an ant ‘i’ over any given
path ‘xy’ is given by:

�τ ki(xy) �
{
Q/Li if “the ant used the path xy in its tour”
0 otherwise

(14)

where Li denotes the length (cost) associated to the route taken by the ant ‘i’, while Q stand
for a constant value.

Finally, ACO includes a procedure used to update the pheromone density over all paths in
the graph for the following iteration (k + 1). For this purpose, it considers both, the amount
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of pheromones released by each ant while backtracking its traced route and the natural
dissipation of pheromones which takes place as time passes. This is applied by considering
the following expression:

τ k+1(xy) � (1 − ρ) · τ k(xy) +
N∑
i�1

�τ ki(xy) (15)

where ρ is a constant value known as pheromone evaporation coefficient, while �τ ki(xy) stand
for the amount of pheromones released by an ant ‘i’ over a specific path ‘xy’ (as given by
Eq. 14).

3.2.2 Artificial Bee Colony

Bees are among themostwell-known example of insectswhichmanifest a collective behavior,
either for food foraging or mating. Based on this premise, ma researchers have proposed
several different swarm intelligence approaches inspired by the behavior of bees. In particular,
the Artificial Bee Colony (ABC) approach proposed by Karaboga and Basturk (2008) is
known to be among the most popular of these bee-inspired methods.

In the ABC approach, search agents are represented as a colony of artificial honey bees
which explore a d-dimentional search space while looking for opmal food (nectar) sources.
The locations of these food sources each represent a possible solutions for a givenoptimization
problem and their amount of nectar (quality) is related to the fitness value associated to each
of such solutions. Furthermore, the members of the bee colony are divided in three groups:
employed bees, onlooker bees and scout bees. Each of these groups of bees has distinctive
functions inspired in the mechanics employed by bees while foraging for food. For example,
the employed bees comprises the members of the colony which function is to explore the
surroundings of individually-known food sources in the hopes of finding places with greater
amounts of nectar. In addition, employed bees are able to share the information of currently
known food sources with the rest of the members of the colony, so that they can also exploit
them. With that being said, at each iteration ‘k’ of ABC’s search process, each employed bee
generates a new candidate solution vi around a currently known food source xi as follow

vki � xki + φ
(
xki − xkr

)
(16)

where xki denotes the location of the food source remembered by a particular employed bee
‘i’ while xkr (with r �� i) stands for the location of any other randomly chosen food source.
Furthermore, φ is a random number drawn from within the interval [−1, 1].

On the other hand, onlooker bees can randomly visit any food source known by the
employed bees. For this purpose, each available food source is assigned with a certain prob-
ability of being visited by an onlooker bee as follows:

Pk
i � f (xki )∑N

j�1 f (xkj )
(17)

Similarly to the employed bees, once an onlooker bee has decided to visit a particular
food source, a new candidate solution vki is generated around the chosen location xki by
applying Eq. (16). Furthermore, any candidate solution vki generated by either an employed
or an onlooker bee is compared against its originating location xki in terms of solution quality,
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and then, the best among them is chosen as the new food source location for the following
iteration; this is:

xk+1i �
⎧
⎨
⎩
vki if

(
f
(
xki

)
< f

(
vki

))

xki otherwise
(18)

Finally, scout bees are the members of the colony whose function is to explore the whole
terrain for new food sources randomly. Scout bees are deployed to look for new solutions
only if a currently known food source is chosen to be “abandoned” (a thus forgotten by all
members of the colony). In ABC, a solution is considered to be abandoned only if it cannot
be improved by either the employed or onlooker bees after a determined number of iterations,
indicated by the algorithm’s parameter “limit”. This mechanism is important for the ABC
approach since it allows it to keep the diversity of solutions during the search process.

In general, ABC’s local search performance may be attributed to the neighborhood explo-
ration and greedy selection mechanisms applied by the employed and onlooker bees, while
the global search performance is mainly related to the diversification attributes of scout bees.

3.2.3 Bat Algorithm

The Bat Algorithm (BA) is a bio-inspired metaheuristic proposed by Yang (2010b). The BA
approach draws inspiration on the behavior manifested by certain species of bats (particu-
larly, microbats). In nature, most bats are equipped with a type of biologic sonar known as
echolocation. In simple terms, the echolocation consists of two steps: the emission of loud
frequency-modulated sound pulses and the reception (listening) of the echoing sounds that
bounce back from surrounding objects, which essentially allows building a three-dimensional
scenario of the immediate environment. Typically, bats use this specialized sonar system to
assist themselves in several tasks, such as prey detection, obstacle evasion or even locating
their roosting places.

In the BA approach, search agents are modeled as a swarm of bats whose position within
the d-dimensional search space represent a possible solution for a given optimization prob-
lem. Furthermore, each bat is assumed to use echolocation to assist its movement toward
a particular prey (modeled as the global best solution). For this purpose, the BA algorithm
considers three sets of parameters whose values are constantly adjusted as the search process
goes on: frequencies, loudness and pulse emission rates. In the case of the frequencies, these
are modeled by a set of d-dimensional vectors, each associated to a given bat ‘i’ and whose
values are randomly adjusted at each iteration ‘k’, such that:

Fk
i � Fmin + β · (Fmax − Fmin) (19)

where the parameters Fmin and Fmax denote the minimum and maximum frequencies,
respectively. Finally, β is a vector of random numbers each from within the interval [0, 1].

On the other hand, the loudness and pulse emission rates Ai . and ri , respectively, comprise
a set of parameters whose initial values A0

i and r
0
i are defined during the algorithms initial-

ization. As the search process evolves, the values of these parameters are modified according
to the following expression:

Ak+1
i � αAk

i , r
k+1
i � r0i (1 − exp(−γ k)) (20)

where α < 1 and γ < 1 are constant parameters.
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With regard to the position update operators, the BA algorithm applies the following
movement rule to update the location of each bat ‘i’ for the currentteration ‘k’:

xki � xk−1
i + vki (21)

where xk−1
i represents the position of the i th bat at the previous iterations (k − 1), while vki

stands for the velocity of said bat, as given by the following expression:

vki � vk−1
i + fi ·

(
xki − xbest

)
(22)

where xbest denotes for the current global best solution found during the search process, while
Fk
i represents frequency vector associated to bat ‘i’, as given by Eq. 19.
Furthermore,BAalso includes a local search scheme inwhich, at each iteration, a randomly

chosen individual among the current best solutions is further refined by performing a random
walk as follows:

xk∗ �
{
xki + εAk

i if
(
rand > rki

)
xki otherwise

(23)

where the parameters Ak
i and rki denote the loudness and pulse emission rates associated

to the randomly chosen bat ‘i’, while rand. stand for a random number drawn from within
the uniformly distributed interval [0, 1]. Finally, it is worth noting that the newly generated
solution xk∗ is accepted as the new position for bat ‘i’ (xki ) only if certain conditio met;
particularly:

xk∗ �
{
xk∗ if

(
rand < Ak

i and f
(
xki

)
< f

(
xk∗

))
xki otherwise

(24)

3.2.4 Crow search algorithm

The Crow Search Algorithm (CSA), as proposed by Askarzadeh (2016), is a nature-inspired
optimization method which draws inspiration in the behavior of flocking crows. Crows are
considered by many as the most intelligent of birds; they are mainly known for hiding
their excess food in specific locations around their environment, and when needed they can
accurately remember the location of their hidden food sources. Crows are also known for its
tendency to commit thievery. To do so, they observe and followother crows to find their hiding
places, and then, they steal their resources once its owner leaves. Also, from their experience
as thieves, crows are able to develop different tactics to prevent their hiding places from being
pilfered by other crows, such as moving their hiding places to other locations or even tricking
other birds to follow them to a different place.

In CSA, search agents aremodeled as a flock comprised by N crows, eachwith a particular
positions xi � [xi,1, xi,2, . . . , xi,d ] within a feasible d-dimentional solution space. Each of
these crows is also assumed to have a memory, which allows them to remember the location
of their respective food hiding places. For this purpose, CSA assigns each crow ‘i’ with a
memory solution mi � [mi,1,mi,2, . . . ,mi,d ], which represents the best solution found so
far by said crow ‘i’. The movement operators employed by CSA to update the position of
each crow considers two different possibilities: (1) the case where a crow ‘i’ follows some
randomly chosen crow ‘ j’ to their hiding place, and (2) the situation in which said crow ‘i’
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is deceived by crow ‘ j’ into moving to a different location. With that being said, at each
iteration ‘k’, CSA updates the position of each crow as follows:

xk+1i �
⎧⎨
⎩
xki + ri · f lki ·

(
mk

j − xki
)

if
(
rand ≥ APk

j

)

ri if
(
rand < APk

j

) (25)

where APk
j denotes awareness probability of crow ‘ j’ at iteration ‘k’, whereas rand stand for

a random number drawn from a uniform distribution within the interval [0, 1]. The position
update operator applied when rand(0, 1) ≥ APk

j denotes the situation in which a crow ‘ j’
is not aware that a crow ‘i’ is following it and, as a result, crow ‘i’ approaches toward the
hiding place of sais crow ‘ j’ (mk

j ). In this sense, the parameter f lki denotes the maximum
flight length (step size) of crow ‘i’, while ri ∈ [0, 1] stand for a random step factor. On the
other hand, if rand < APk

j , it is assumed that crow ‘ j’ is aware that it is being followed by
the crow ‘i’, and in response, it will fool said pilferer into moving to a different location.
With that being said, the position of crow ‘i’ is updated to ri , which stand for a randomly
generated solution within the feasible decision space.

3.2.5 Cuckoo search

Cuckoo birds are well-known due to they’re aggressive, yet fascinating reproduction strate-
gies. In particular, a good number of cuckoo species are known to resort to brood parasitism
as part of their life-cycle. Essentially, cuckoos secretly lay their eggs in the nest of other
birds (typically of a different species) in the hopes of deceiving the host into thinking that
such eggs are their own. Should these alien eggs succeed to be undetected by the host bird,
they are almost guaranteed to hatch into new cuckoo chicks; otherwise, the host bird may
opt to remove such aliens eggs of their nest or even abandon the nest to build a new one
somewhere else. Inspired by this intriguing behavior, in Yang and Deb (2009) proposed the
nature-inspired algorithm known as Cuckoo Search (CS).

In theCS approach, solutions aremodeled as a set of N host nests. To simulate the situation
in which a cuckoo bird chooses a host nest to lay their own eggs, at each iteration ‘k’, new
candidate solutions are generated around randomly selected host nests ‘i’ by applying a
random walk as follows:

xknew � xki + α · Lévy(λ) (26)

where Lévy(λ) denotes a random walk via Leví flights (Yang 2008), while α > 0 stand for
a vector of step sizes related to the scale of the objective solution space.

Once a new candidate solution has been generated, its quality (fitness) is compared to that
of the solution represented by the randomly selected host nest. If the quality of a candidate
solution xknew is better than xki related to the host nest ‘i’, then xknew replaces xki for the next
iteration. This is:

xk+1i � xknew (27)

Furthermore, after new solutions have been generated and evaluated for each randomly
selected host nest, a fraction pa of the worst remaining solutions are eliminated, and then,
replaced by an equal amount of randomly generated solutions. This mechanism is intended
to simulate the nest abandonment behavior manifested by host birds once they discover the
presence of cuckoo eggs within their nest, which further promotes them to build a new nest
on a different place.
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An important trait about the CS approach is that the definition of host nest can further
be modified so that each of them represents a set of solutions (multiple eggs within each
nest) instead of a single one which could effectively allow CS to be extended into a type
meta-population algorithm, and thus, be applied to solve even more complex optimization
problems.

3.2.6 Firefly Algorithm

The FireflyAlgorithm (FA), as proposed byYang (2010a, b), is a swarm intelligence approach
inspired by the light-emitting behavior observed in fireflies. In the FAapproach, search agents,
modeled as a swarm of fireflies, are assumed to be able to interact with each other through its
characteristic bioluminescent glowing. In particular, such interactions are modeled as attrac-
tions toward other conspecific individuals within the target solution space. The attractiveness
of each firefly is considered to be proportional to its light intensity, which in turn is also
said to be equivalent to their quality (fitness). Furthermore, it is also assumed that fireflies
are only attracted toward brighter individuals; this is, that for any two flashing fireflies, the
less bright one will be attracted toward the brighter one (regardless of their gender). Also,
it is also assumed that the attractiveness “perceived” by a particular firefly ‘i’ toward any
other individual source ‘ j’ decreases as the distance that separates them increases. Such pha
enomenon is simplified by the following expression:

βi j �
{

β0 j · e−γ r2i j si f
(
x j

)
> f (xi )

0 otherwise
(28)

where ri j � x j − xi stand for the Euclidian distance computed with regard to the pair of
fireflies ‘i’ and ‘ j’, while β0 j denotes the attractiveness of individual ‘ j’. Furthermore, the
parameter γ stand for the so-called light absorption coefficient which is used to further vary
the overall attractiveness toward the individual ‘ j’.

Finally, the attraction movement performed by a firefly ‘i’ toward any given individual
‘ j’ may be given by the following expression:

�xi j � xi + βi j · (
x j − xi

)
+ α · εi (29)

where εi denotes a d-dimensional vector denoting a random movement, while α stands for a
randomization parameter, which values are typically within the interval [0, 1].

As noted by its author, the attraction behaviors represented in FA enables search agents
to explore the solution space of a given optimization problem more effectively. Another
interesting property of FA is that it can effectively locate both global and local optima, which
could be an important advantage on certain implementations.

3.2.7 Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA) is another popular optimization method in Yang’s
showcase of nature-inspired metaheuristics. First proposed in 2012, the FPA approach is
well-known for drawing inspiration in the intriguing pollination process observed in most
species of flowers (Yang 2012).

In the FPA approach, solutions are modeled as individual flowers (or pollen gametes).
Furthermore, FPA considers two natural pollinationmethods in order to establish a set of valid
movement rules: cross-pollination, which refers to the flower reproduction process in which
pollen is carried over long distances by pollinators (such as insects, birds, or other animals)
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as a way to ensure the reproduction of fittest plants, and self-pollination, which emphasize
the fertilization process that occurs among flowers in the absence of viable pollinators. In the
context of swarm intelligence, FPA considers cross-pollination as a global search process,
while self-pollination is seen as a local search approach. Furthermore, it also assumes that
at each iteration ‘k’ each particular flower is only able to produce a single pollen gamete per
iteration. By considering these idealized characteristics, the FPA’s position update operators
may be illustrated as follows:

xk+1i �
{
xki + L

(
x∗ − xki

)
if (rand > P)

xki + ε(xkj − xkq ) if (rand ≤ P)
(30)

where rand denotes a random number from within the interval [0, 1].
The position update rule appliedwhen rand > P (with P denoting a probability threshold)

stand for a global pollination movement rule. In this case x∗ denotes the current global best
solution, while L represents a scaling parameter known as pollination strength, which value
is given from a Levy distribution, as given by:

L ∼ λΓ (λ) · sin(πλ/2)

π
(
s1+λ

) , (s 
 s0 > 0) (31)

where Γ (λ) stand for the standard gamma function (with regard to the constant parameter
λ), while s stand for a user-defined step size.

On the other hand, the movement operator corresponding to the case when rand ≤ p
represents a local pollinationmovement rule, which can be essentially considered as a random
walk. In such a case, xkj and x

k
q (with j �� q) represent the positions of two randomly chosen

flowers (different to xki ), while ε is a random value drawn from within the interval [0, 1].

3.2.8 Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) is a nature-inspired metaheuristic proposed by Mirjalili
et al. (2014). As its name may imply, GWO’s design is inspired by the distinctive hunting
behaviors and social hierarchy observed in packs of grey wolves. Grey wolves are known
to be organized in a very strict social dominant hierarchy composed of alpha, beta delta,
and omega wolves. The alpha wolves (typically comprised by a male and a female member)
are the leaders of the pack and are responsible for all decisions related to hunting, resting
and moving. The beta wolves, which comprise the second level on the pack’s hierarchy, are
subordinate to the alpha wolves but can give commands to lower-level wolves. Similarly,
delta wolves are subordinate to both alpha and beta members, yet they dominate over the
all other wolves. Finally, the omega wolves, which are the lowest-ranked members, play
as subordinates to the dominant wolves (alpha, beta, and delta), and as such follow their
instructions (especially while hunting). Another important trait observed in grey wolves is
related to their cooperative hunting tactics in which wolves start to chase an identified prey
until it is encircled, and then they proceeded to attack the prey until it is finally killed.
These distinctive traits are mathematically modeled in GWO for the task of solving global
optimization problems (Mirjalili et al. 2014).

Analogous to the social hierarchy observed in real grey wolves, GWO identifies each
search agent as either alpha, beta, delta or omega wolf depending on their current fitness;
in particular, the individual xi which represent the fittest solution is considered as the alpha
wolf (α). Similarly, the second and third best solutions are designated as beta (β) and delta
(δ) respectively, while all remaining wolves are labeled as omega members (ω). Also, WOA
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considers a hierarchy-based search scheme in which lower-ranked wolves move based on
information shared by higher-ranked individuals. As such, at each iteration ‘k’, each wolf
updates their position for the following iteration ‘k + 1’ as follows:

xk+1i � αk
i + βki + δki

3
(32)

where αk
i , β

k
i and δki each denote the position update applied to wolf ‘i’ (xki ) with regard to

the positions occupied by the α, β and δ wolves, respectively, and are given by:

αk
i � xkα − Ak ·

∣∣∣Ck · xkα − xki

∣∣∣ (33)

βki � xkβ − Ak ·
∣∣∣Ck · xkβ − xki

∣∣∣ (34)

δki � xkδ − Ak ·
∣∣∣Ck · xkδ − xki

∣∣∣ (35)

where xkα , x
k
β and xkδ denote the current positions of the α, β and δ wolves, respectively, and

where:

Ak � 2 · ak · rk1 − ak (36)

Ck � 2 · rk2 (37)

where ak denotes a coefficient vector whose values linearly decreases from 2 to 0 over the
course of iterations, while rk1 and r

k
2 represent random vector whose values are given by the

uniformly distributed interval [0, 1].

3.2.9 Krill Herd Algorithm

The optimization techniques known asKrill HerdAlgorithm (KHA)was devised byGandomi
and Alavi (2012). As its name implies, the KHA method is inspired by the natural herding
behavior commonly observed on small crustaceans known as krill.

In KHA, solutions are modeled as a group of krill individuals which move through a fea-
sible solution space while herding and foraging for food. Furthermore, KHA considers three
distinctive kinds of herding movements: (1) The motion induced by other krill individuals,
which represents a tendency to move toward other members of the aggregation aimed to
keep a high density of individuals; (2) A foraging movement, which purpose is to guide krill
toward the estimated location of a given food source; and (3) A physical diffusion movement,
which represents a random process mainly used to keep the diversity of solutions. With that
being said, at each time-step ‘t’, the position of each individual krill is updated as follows:

xt+1i � xti + �t
dxti
dt

(38)

where
dxti
dt denote a speed vector corresponding to the i th krill individual. In the KHA

approach, such a speed vector is represented by the following Lagrangian model:

dxti
dt

� Ni + Fi + Di (39)

with Ni , Fi and Di denoting each of the three distinctive krill herding movement, namely:
1. The motion induced by other krill individuals (Ni ), 2. Foraging movement (Fi ), and 3.
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Physical diffusion movement (Di ) (Gandomi and Alavi 2012). Furthermore, the value �t
stand for a speed scale factor, as given by the following expression:

�t � Ct
d∑

n�1

(ubn − lbn) (40)

where lbn and ubn each denote the lower and upper bounds of the nth variable (dimension),
respectively, whereas Ct ∈ [0, 2] is a constant parameter used to control the intensity of the
search process.

Another important trait regarding the implementation of the KHA approach is the incorpo-
ration of genetic operators (such as crossover and mutation) which, according to the authors,
aids to further improve the algorithms overall performance (Gandomi and Alavi 2012).

3.2.10 Moth-Flame Optimization Algorithm

TheMoth-Flame Optimization Algorithm (MFO) is novel nature-inspired metaheuristic pro-
posed byMirjalili (2015). TheMFO approach is inspired by the night-navigation mechanism
employed by moths in nature. Such a mechanism, known as transversal orientation, consist
of moths flying by maintaining a fixed angle to a particular light source. While for distant
light sources (such as the moon) this method allow moths to fly in a straight line for very
long distances effectively, nearby artificial lights (such as light bulbs or even the flame of a
candle) are easily able to hamper such navigation method, causing moths to fly in a spiraling
pattern toward such light sources. Such distinctive behaviors are mathematically modeled in
MFO to perform global optimization tasks.

In MFO, search agents are represented by a population of NM moths, each with a par-
ticular positions Mi � [

mi,1,mi,2, . . . ,mi,d
]
within a given solution space. Furthermore,

the MFO approach also considers a set of NF flames (or artificial lights) randomly dis-
tributed around such solution space, so that each of them also has a particular position F j �[
f j,1, f j,2, . . . , f j,d

]
. Akin to how moths are “attracted” toward nearby light sources, each

moth ‘i’ is assumed to fly in a spiraling pattern toward a given flame ‘ j’. In this sense, while
the positions of both moths and flames represent solutions, only the moths are actual search
agents while the flames stand for the best NF solutions found so far by MFO search process.
By considering this, at each iteration ‘k’, each moth is first assigned to a particular flame, and
then, a movement operator modeled after a logarithmic spiral is applied in order to update
the position of each search agent as follows:

Mk+1
i � Dk

i j · ebl · cos(2πl) + Fk
j (41)

where Dk
i j �

∣∣∣Fk
j − Mk

i

∣∣∣. Furthermore, b denotes a constant parameter, while l stand for a

random number drawn from within the interval [r , 1] (with r being linearly decreased from
− 1 to − 2 over the course of iterations).

Also, MFO employs a mechanism in which the number of available flames NF within the
search space is reduced as the iterative process goes on.With that being said, at each iteration
‘k’, the number of available flames is updated by considering the following expression.

Nk+1
F � round

(
N 0
F − k · N

0
F − 1

K

)
(42)

where N 0
F denotes the initial (maximum) number of flames, while K stand for the maximum

number of iterations which comprise the whole search process.
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Initially, since moths move around by considering the positions of NF best solutions
(flames), exploration over the search space is highly promoted, while exploitation is mini-
mal. However, as the number of available flames is reduced, exploration intensity is slowly
decreased, while exploitation is gradually favored, thus, balancing the exploration and
exploitation of solutions.

3.2.11 Particle Swarm Optimization

Devised by Kennedy and Eberhart (1995), the Particle Swarm Optimization (PSO) method
draws inspiration in the behavior of flocking birds, collectively foraging for adequate food
sources. In PSO, search agents (also referred as particles) are each composed by a set of
three d-dimensional vectors: the particle’s current position, its previous best position and its
velocity. Also, each member within the swarm of particles is assumed to have knowledge of
the global best position reached by its immediate neighborhood during the search process.
With that being said, in the traditional PSO, the position update for each particle ‘i’ is given
by the following expressions:

xk+1i � xki + vk+1i (43)

where k denotes the current iteration. Furthermore, vk+1i stand for the velocity of particle ‘i’
at iteration ‘k + 1’, and is given as follows:

vk+1i � vki + c1 ·
(
rk1 ·

(
pki − xki

))
+ c2 ·

(
rk2 ·

(
gki − xki

))
(44)

where pki denotes the previous best position of particle ‘i’ (also called the personal best of
‘i’), while gki stand for the current global best position within an specific neighborhood of
particles, fromwhich individual ‘i’ belongs; here, the word “neighborhood” makes reference
to a specific subset (topology) of particles (although, in its most simple form, it may refer
to the whole swarm of particles) (Poli et al. 2007). Furthermore, rk1 and rk2 each denote a
d-dimensional vector composed by random numbers drawn from the interval of [0, 1], while
the values c1 and c2 are known as cognitive and social parameters, respectively.

Due to its simplicity and easy implementation, the PSO method (as well as its many
variations) has been extensively studied and applied into a wide variety of engineering areas
and, as a result, has become one the most popular swarm intelligence approaches currently
available for solving complex optimization problems.

3.2.12 Social Spider Optimization

The Social Spider Optimization (SSO) is a swarm intelligence approach proposed by Cuevas
et al. (2013a). The SSO approach draws inspiration into several collective behaviors observed
within a colony of social spiders. A social spider colony is mainly composed by two com-
ponents: its members, which may be further distinguished by their gender (either male or
female) and a communal web which serves as a medium for both interaction and commu-
nication among such members of the colony. One important characteristic of most social
spider colonies is the predominance of female spiders within its population. Furthermore,
in a social spider colony, each member, depending on their gender, is assigned to cooperate
in several different activities, such as building and maintaining the communal web, cap-
turing prey, mating, etc. Another important trait about social spiders lies in their capacity
to perceive vibrations transmitted through the communal web. Social spiders employ these
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vibrations to gain specific information, such as the size of trapped preys or the characteristics
of neighboring members.

In the SSO approach, candidate solutions are modeled as a group of N spiders (each with
a corresponding position si � [s1, s2, . . . , sd ]), interacting within a d-dimensional solution
space (properly referred as the communal web). Furthermore, spiders are assumed to be able
to communicate through a series of vibrations, emitted by each member and transmitted
though the threads which conform the communal web. In this sense, the stimulus perceived
by a particular spider ‘i’ as a result of the vibrations transmitted by some other spider ‘ j’ are
modeled as follows:

Vibi, j � ws j · e−r2i j (45)

where ri j � si − s j denotes for the Euclidian distance between the spiders ‘i’ and ‘ j’.
Furthermore, ws j represents the weight corresponding to the j th spider as given by:

ws j � f
(
s j

) − fworst
fbest − fworst

(46)

where fbest and fworst each denote the current best and worst fitness values from among all
spiders within the communal web.

Also, each spider within the communal web is designated with a specific gender (either
male or female). Depending on their gender, spiders are able to manifest several different
behaviors. In the case of female spiders, for example, an attraction or dislike toward other
members of the colony is displayed (irrespective of their gender), which depend on several
factors such as reproduction cycle, curiosity and other random phenomena. In SSO, such
behavior is modeled as either an attraction or repulsion movement toward other prominent
individuals within the communal web. With that being said, at each iteration ‘k’, the position
of a given female spider fki (with fki � skj , j ∈ [1, 2, . . . , N ]) is updated by applying the
following movement rules:

fk+1i �
⎧
⎨
⎩
fki + α · Vibci

(
skci − fki

)
+ β · Vibbi

(
skb − fki

)
+ δ · (

γ − 1
2

)
if P > Pf

fki − α · Vibci
(
skci − fki

) − β · Vibbi
(
skb − fki

)
+ δ · (

γ − 1
2

)
if P ≤ Pf

(47)

where skci denotes the position of the nearest best (nearest heavier) member to the spider
‘i’, while skb stand for the position of the best (heaviest) spider within the communal web.
Furthermore, Vibci and Vibbi denote the vibrations perceived by the spider ‘i’ with regard to
skci and skb, respectively (see Eq. 45), while α, β, δ, γ and P each denote a random number
within the interval [0, 1]. Finally, Pf stands for a probability threshold used to define the
kind of movement the female spider will perform (either an attraction or a repulsion).

On the other hand, male spiders, which are said to manifest an exclusive attraction toward
female members, are further classified as either dominant or non-dominant male spiders.
Typically, dominant male spiders have better qualities (i.e., a greater size or weight) in
comparison to non-dominant male spiders. Furthermore, while dominant male spiders are
usually attracted toward their closest female spider within the communal web, non-dominant
male spiders tend to concentrate toward the center of the male population as a strategy to take
advantage of resources that are wasted by dominant males. In SSO, these male-characteristic
behaviors are modeled by first considering the median weight of all male spiders. At each
iteration ‘k’, the weight of each male spider is compared to such median value in order to
classify them as either dominant (weight above the median) or non-dominant (weight equal
or lower to the median) male spiders, an then, an appropriate movement rule is applied to
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update the position mk
i (with mk

i � skj , j ∈ [1, 2, . . . , N ]) of each of such male spiders, as
illustrated as follows:

mk+1
i �

⎧
⎪⎨
⎪⎩
mk

i + α · Vib fi

(
skfi − mk

i

)
+ δ · (

γ − 1
2

)
if wk

mi
> M(wm)

mk
i + α ·

(∑Nm
h�1 m

k
h ·wk

mh∑Nm
h�1 wk

mh

− mk
i

)
if wk

mi
> M(wm)

(48)

where wk
mi

denotes the weight of the male spider ‘i’, whereas M(wm) denotes the median
value with regard to the weights of all male spiders. Furthermore, skfi stand for the position

of the nearest female spider tomk
i , while Vib fi stand for the stimulus perceived by the male

spider ‘i’ as a result of the vibrations emitted by its nearest female member (see Eq. 45).
Also, the values α, δ, and γ each denote a random number within the interval [0, 1].

Finally, the SSO approach employs a mating mechanism in which female spiders and
dominant male spiders are used to construct new candidate solutions. For such a procedure, a
dominant male spider is first selected, and then, a set female spiders within a particular “range
of mating” (which depends on the size of the target solution space) are further selected to
perform a mating operation, in which a new individual is formed by combining the position
information of each involved member. In this case, individuals possessing heavier weights
(or higher fitness values) are more likely to influence the newly produced solution while
those with lower weights tend to be of less relevance Cuevas et al. (2013a).

3.2.13 Whale Optimization Algorithm

InMirjalili and Lewis (2016) proposed a novel bio-inspired metaheuristic calledWhale Opti-
mizationAlgorithm (WOA). TheWOAapproach draws inspiration on the predatory behavior
observed in humpback whales which, different to other species of whales, distinguish them-
selves for employing a unique cooperative hunting maneuver known as bubble-net feeding.
In such a hunting method, a group of whales (typically formed by two or three individuals)
coordinate their efforts to encircle a group of small prey (such as schools of krill or small
fishes) by swimming in a spiraling fashion around their quarry. While moving beneath the
surface in such a distinctive pattern, each whale starts to exhale a burst of bubbles from their
blowhole to form encircling bubble barrier (also referred as bubble-net), which prevents prey
from escaping. As prey gets corralled into a tighter circle, one whale sounds a feeding call
to the other whales, at which point all individuals simultaneously swim to the surface with
their mouths open to feed on the trapped prey.

InWOA, such unique bubble-net feeding behavior is mathematically modeled and applied
to solve global optimization problems by first considering a group of search agents, repre-
sented by N whales. Moreover, WOA’s search process is divided in two phases: exploration
and exploitation phase. For the exploration phases, whales are assumed to be randomly
searching for prey. This process is modeled as movements toward a randomly chosen mem-
ber. With that being said, at each iteration ‘k’, the position of each whale is updated by
applying the following equation:

xk+1i � xkrand − Ak · Dk (49)

where xkrand denotes the position of a randomly chosen whale and where:

Ak � 2 · ak · rk1 − ak (50)

Dk �
∣∣∣
(
2 · rk2 · xkrand

)
− xki

∣∣∣ (51)
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where ak is a coefficient vector whose values linearly decreases from 2 to 0 over the course
of iterations, while rk1 and r

k
2 denote random vectors whose values are drawn from within the

uniformly distributed interval [0, 1].
On the other hand, the exploitation phase emphasizes the situation in which the group

of whales has already identified their prey. To represent such behavior, the WOA approach
considers two distinctive movement rules: prey encircling and bubble-net attacking method.
For the prey encircling behavior, whales are assumed to move to positions around the target
prey, while for the bubble-net attacking method step each whale moves in a spiraling fashion
around such targeted prey to corral it. These two behaviors are represented by the following
position update operators:

xk+1i �
{
xk∗ − Ak · Dk if p < 0.5
Dk∗ · (

eb·l · cos(2πl)) + xk∗ if p ≥ 0.5
. (52)

where xk∗ denotes the position of the current best solution from among all search agents
(which further represent the targeted prey), whereas Dk∗ � ∣∣xk∗ − xki

∣∣. Furthremore p stands
for a random number drawn from within the interval [0, 1], while the value ‘0.5’ stands for
a probability threshold. The operator applied for p < 0.5 correspond to the prey encircling
movement rule, while the operator applied when p ≥ 0.5 represent the bubble-net attacking
meod operator, fittingly represented by the model of a logarithmic spiral whose shape is
controlled by the constant parameters b and a random value l ∈ [−1, 1].

3.3 Physics-basedmethods

The nature-inspired techniques known physics-based methods comprise a series of optimiza-
tion algorithms which design is inspired by the laws of physics that govern our universe. In
this sense, themovement that search agents canmanifest in this kind of algorithmic structures
are usually based on some observable physical phenomenon, such as themovement caused by
gravitational forces, the interaction between electrically charged particles, thermodynamical
processes, light refraction, among others.

3.3.1 Electromagnetism-like mechanism

In Birbil and Fang (2003) proposed a population-based metaheuristic known as
Electromagnetism-like Mechanims (EM) to solve global optimization problems. The EM
approach was designed based on the laws of physics which govern the movement of charged
particles within a given space (notably, the Coulomb’s laws).

In EM, search agents are represented as electrically charged particles, interacting within
a feasible solution space. Each of these particles is assigned with an individual charge value,
associated to the quality (fitness) of the solution they represent. With that being said, for
a given iteration ‘k’ the charge value associated to a specific particle ‘i’ is given by the
following expression:

qki � exp

⎛
⎝−d

f
(
xki

) − f
(
xkbest

)
∑N

j�1

(
f
(
xkj

)
− f

(
xkbest

))
⎞
⎠ (53)

where xkbest denotes the current best solution found so far by the algorithm’s search process,
while d stand for the dimensionality of the target solution space.
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Furthermore, as illustrated by the Coulomb’s law, each of these particles is assumed to be
subjected to a series of electrostatic forces, which depend on themagnitude of their individual
charges and the distance between them. Furthermore, these electrostatic forces may be either
of attraction or repulsive, depending on the sign of each charge. In the EM approach, the
total electrostatic force experimented by a given particle ‘i’ with regard to all other particles
is modeled as:

Fk
i �

N∑
j ��i

⎧
⎪⎪⎨
⎪⎪⎩

(
xkj − xki

) qki q
k
j

rki j
if f

(
xkj

)
< f

(
xki

)
(
xki − xkj

) qki q
k
j

rki j
if f

(
xkj

)
≥ f

(
xki

) (54)

where rki j � xkj − xki denotes the Euclidian distance between the particles ‘i’ and ‘ j .
Intuitively, as a result of such attraction/repulsion forces, each particle is forced to change

their position at each time instant. In EM, the position update rule applied to each of such
particles is given by the following equation:

xk+1i � xki + λ · F̂ki · mk
i (55)

where λ denotes a d-dimensional vector of random numbers drawn from within the inter-
val [0, 1], while F̂

k
i � Fk

i /F
k
i stand for the normalized electrostatic force of to the i th

particle’s at iteration ‘k’. Finally, mk
i denotes a movement vector whose components(

mk
i �

[
mk

i,1,m
k
i,2, . . . ,m

k
i,d

])
depend on those of F̂k

i

(
F̂k
i �

[
F̂
k
i,1, F̂

k
i,2, . . . , F̂

k
i,d

])
, as

illustrated as follows:

mk
i,n �

⎧⎨
⎩
ubn − xki,n if F̂k

i,n > 0

xki,n − lbn if F̂k
i,n ≤ 0

(56)

with xki,n denoting the nth component of the particle’s position xki , while lbn and ubn stand
for the lower and upper fitness function bounds at the nth dimension, respectively.

3.3.2 Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) is a population-based metaheuristic proposed
by Rashedi et al. (2009). The GSA design is mainly inspired by the laws of gravity, which
establishes the inherent interaction between different objects (or masses) as a result of the
gravitational forces experienced by them.

In GSA, search agents are modeled as N individual masses, subjected to constant inter-
action within d-dimensional solution space (also referred as a system). At each iteration ‘t’
(also referred as time), each individual mass ‘i’ is assigned with a particular mass Mi , which
value depends on its current solution quality (fitness), such that:

Mt
i � mt

i∑N
j�1 m

t
j

(57)

wheremt
i denotes the normalized fitness value corresponding to the i th mass, as given by the

following expression:

mt
i � f (xti ) − f tworst

f tbest − f tworst
(58)
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where f tbest and f tbest each denote the current best and worst fitness values at time ‘t’, respec-
tively.

Furthermore, akin to the law of gravity, each of these masses is assumed to be in constant
interaction with each other as a result of the gravitational forces exerted by each of them.
In GSA, the total gravitational force experienced by a particular mass ‘i’ with regard to all
other masses is given by the following equation:

Ft
i �

N∑
j ��i

(
G(t)

Mt
i · Mt

j

r ti j + ε

(
xtj − xti

)
· rand

)
(59)

where r ti j � xtj − xti stand for the Euclidian distance between masses ‘i’ and ‘ j’, while ε

is a small value used to prevent singularities. Furthermore, rand denote a d-dimensional
vector of random numbers drawn from within the interval [0, 1]. Finally, G(t) represents the
so-called gravitational constant, whose value depends on the current time ‘t’ as follows:

G(t) � G0e(
−α t

T ) (60)

with G0 denoting the initial gravitational constant value, α standing for a constant parameter
and T representing the total iteration numberwhich comprises thewholeGSA search process.

Finally, as a result of such gravitational interactions, masses are also assumed to be able
to experience a movement. With that being said, in GSA, the following position update rule
is applied:

xt+1i � xti + vt+1i (61)

where vt+1i denotes the velocity of the i thmass at the time ‘t+1’, as expressed by the following
equation:

vt+1i � rand · vti + ati (62)

where ati � 1
Mt

i
Ft
i stand for the acceleration experienced by the mass ‘i’ at such time ‘t’.

3.3.3 Simulated annealing

Simulated annealing (SA) comprises one of the earliest and most successful local search
methods specially devised to tackle complex discrete (and to a lesser extend continuous)
optimization problems. As first introduced by Kirkpatrick et al. (2007), the SA approach is
mainly inspired in the physical process of annealing (a process typically aimed to achieve an
alteration on the physical properties of crystalline solids through heat treatment). In particular,
a solid is first heated until it reaches a certain temperature, and then it is allowed to cool down
slowly; if properly done, this process enables said material’s microstructure to achieve a
better crystal lattice configuration, and as such, superior structural integrity.

SA is essentially an iterative local search process, in which a given candidate solution is
iteratively modified by implementing a computational procedure inspired by the temperature
transition schememodeled on a typical annealing process. As such, SA starts by first defining
an initial solution (state) s and cooling schedule T � {t0, t1, . . . , tn}, where the elements tk
each represent a finite transition temperature in the annealing process and such that:

ti > 0 and lim
k→+∞ ti � 0 (63)

Each temperature ti in the cooling schedule is applied for a finite number of iterations
of the SA’s search process. With that being said, SA also defines a repetition schedule
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M � {M0, M1, . . . , Mn}, where the elements Mi dictate the number of iterations a given
temperature ti will be applied.

Once the SA algorithm completes its initialization step, it starts an iterative search process
in which, at each iteration ‘k’, a neighboring solution s′ around the current best solution sk is
generated, either randomly or by following a particular criterion. After that, both solutions
are compared in terms of fitness value and, depending on the outcome of such a comparison,
there is a certain probability to accept said neighbor solution as the current best solution; for
a minimization problem, for example, this probability is given by:

Pk �
⎧⎨
⎩
exp

(
−

(
f (s′)− f

(
sk

))
tk

)
if f

(
s′
) − f

(
sk

)
> 0

1 if f
(
s′
) − f

(
sk

) ≤ 0
(64)

where tk ∈ T denotes the transition temperature that is applied at given iteration ‘k’.
As one of the earliest metaheuristics, the SA algorithm has been a subject of constant

study and improvements. Some of the most well-known variants of SA involve changes to
either the cooling schedule model, the neighborhood selection method, and even its learning
mechanism (Siddique and Adeli 2016).

3.3.4 Sine Cosine Algorithm

The Sine CosineAlgorithm (SCA) is a population-basedmetaheuristic developed byMirjalili
(2016), which design is based on the properties of sinusoidal functions.

SCA consider a set of N search agents each with a corresponding position xi �
[xi,1, xi,2, . . . , xi,d ] within a given d-dimensional solution space. In SCA, each available
search agent updates their positions by applying one of two different movement operators,
each modeled after some particular sinusoidal function (namely, the sine and cosine func-
tions). With that being said, at each iteration ‘k’, the position update operator applied to each
individual xki is given by:

xk+1i �
⎧
⎨
⎩
xki + r1 · sin(r2) · ∣∣r3 · pti − xki

∣∣ if r4 < 0.5

xki + r1 · cos(r2) · ∣∣r3 · pti − xki
∣∣ if r4 ≥ 0.5

(65)

where r1 � a − k(a/T ) (with a being a constant value and K denoting the maximum
number of iterations for the whole search process), while r2, r3 and r4 are random numbers
drawn from within the uniformly distributed intervals [0, 2π], [0, 2] and [0, 1], respectively.
Furthermore, pti stand for the current destination point, which is given by the position of best
solution found so far by SCA’s search process.

3.3.5 States of matter search

In Cuevas et al. (2013b) proposed a novel metaheuristic approach coined States of Matter
Search (SMS). The SMS approach draws inspiration on the physical principles of thermal-
energy motion, manifested by the molecules of a substance as it transitions from one state of
matter to another.

In SMS, search agents are represented by individual molecules, in constant motion within
the target d-dimentional solution space. A unique trait of SMS is that the whole evolutionary
process is divided into three different stages, inspired by the three classic states ofmatter: (1) a
gas state inwhichmolecules are assumed to experiment constantmovement and collisionwith
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other molecules; (2) a liquid state in which a significant reduction of molecular movement
occurs as a result of a descent on the available thermal-energy; and (3) a solid state in
which the bonding force among the molecules becomes so strong that their movement is
almost completely inhibited. Each of such stages occurs in sequence as the SMS iteration
process goes on, with each of them taking place for a finite number iterations. Under this
considerations, each molecule moves with a particular “intensity”, which depends on the
current transitory state (gas, solid or liquid). In general, at each iteration ‘k’, each molecule
updates its position by applying the following movement rule:

xk+1i � xki + vki · rand · (ub − lb) ∗ ρ (66)

where lb � [lb1, lb2, . . . , lbd ] and ub � [ub1, ub2, . . . , ubd ] each denote the lower and
upper bound vectors of the target solution space, respectively, while rand stand for a random
vector whose values are drawn from the interval [0, 1]. Furthermore, ρ ∈ [0, 1] denotes a
scalar factor which value depend on the current SMS stage (Cuevas et al. 2013b). Finally, vti
denotes the velocity of the i th molecule at iteration ‘k’, as given by the following expressions:

vki � vini t ∗ dki (67)

where vini t denotes the magnitude of the initial velocity, as given as follows:

vini t � β ∗
∑d

n�1(ubn − lbn)

d
(68)

where lbn and ubn each denote the lower and upper objective function bounds at the nth
dimension, respectively, while β ∈ [0, 1] denotes a scalar factor which, which similarly to ρ

in Eq. (66), depends on the current SMS stage (Cuevas et al. 2013b). On the other hand, dki
stand for a direction vector corresponding to the i th, and is given by the following equation:

dki � dk−1
i ∗ 0.5

(
1 − k

K

)
+ aki (69)

with K denoting the maximum number of iterations which compose the whole SMS’s search
process. Also, aki denotes a unit vector oriented toward the current global best solution (x

k
best),

as given by the following expression:

aki � (xkbest − xki )

xkbest − xki
(70)

Another important trait present of SMS’s is the inclusion of a collision mechanism, which
causes molecules to exchange their directions. Essentially, a collision is said to occur among
a pair of molecules ‘i’ and ‘ j’ (with i �� j) if their Euclidian distance xi − x j is shorter than
a given distance threshold. Once a collision occurs, the directions di and d j corresponding
to such molecules ‘i’ and ‘ j’ are exchanged, such that:

if
(
xki − xki < r

)
→ dki � dkj

dkj � dkj
(71)

where the distance threshold r (also known as collision radius), and is given by the following
expression:

r � α ·
∑d

n�1(ubn − lbn)

d
(72)

where α ∈ [0, 1] is a scalar factor which, similarly to β and ρ in Eqs. (66) and (68), depends
on the current SMS stage (Cuevas et al. 2013b).
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3.4 Human-basedmethods

Human-based optimization algorithms are a special class of methodologies which design
draws inspiration from several phenomena related to the behavior and the lifestyle of human
beings. With that being said, this kind of techniques may be designed based on, either some
cognitive process applied by humans to solve problems, or even on certain activities com-
monly related to the way in which human beings live.

3.4.1 Fireworks Algorithm

In Tan and Zhu (2010) proposed a novel optimization framework known as the Fireworks
Algorithm (here referred as FWA). Interestingly, the inspiration for the FWA approach comes
from the observation of several properties observed in the flashy explosions created by fire-
works. In general, once a firework is set off, the resulting explosion creates a shower of sparks
which spreads around a local radius around the denotation’s location. In the context of swarm
intelligence approaches, the way in which such sparks spread around the firework’s explosion
radius is seen as a specific case of a local search process around the location in which the
firework was set off, and thus, is presented as a useful mechanism to perform optimization.

In the FWA approach, at each iteration ‘k’, a set of N locations within the feasible d-
dimensional search space are chosen to set off individual fireworks. In the context of the
fireworks explosion metaphor, explosions can be distinctively identified as either good or
bad explosions. In this sense, good explosions create numerous centralized sparks and are
assumed to be the result of well manufactured fireworks. On the other hand, bad explosions,
which result from badly manufactured fireworks, generate fewer sparks and these scatter
around a much larger local space. With that being said, after a firework is set off, several
sparks are assumed to be spread within a fixed local area around the explosion´s location.
Each generated spark is treated as a local search agent and evaluated with regard to the target
objective function. Furthermore, for the given iteration ‘k’, the number of generated sparks
ski and the amplitude of explosion Ak

i for each deployed firework ‘i’ are said to depend on the
quality of its manufacture, which is further represented by the quality (fitness) at its respective
explosion location xi , as given by the following expressions:

ski � m · f kworst − f
(
xki

)
+ ξ∑N

i�1

(
f kworst − f

(
xki

))
+ ξ

(73)

Ak
i � Â · f

(
xki

) − f kbest + ξ∑N
i�1

(
f
(
xki

) − f kbest
)
+ ξ

(74)

where m and Â each denote the fireworks’ maximum number of sparks and amplitude of
explosion, respectively. Furthermore f kbest and f kworst each denote the fitness values corre-
sponding to the current best and worst solutions among the N fireworks, respectively, while
ξ stand for a small value used to prevent singularities while computing either ski or Ak

i . Fur-
thermore, in order to avoid the overwhelming effects of “splendid” fireworks, bounds are
defined for ski with regard to a set of constant parameters a and b as follows:

ŝki �
⎧
⎨
⎩
round(a · m) if si < a · m
round(b · m) if si > b · m, a < b < 1
round

(
ski

)
if otherwise

(75)

Finally, for each firework ‘i’, each of the ŝki generated sparks are randomly distributed
around the local area defined by the amplitude of explosion Ak

i . In FWA, this is achieved by
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randomly selecting a number of affected directions (dimensions) for each individual spark,
and then, a displacement magnitude is calculated within the explosion amplitude Ak

i . This
could be effectively seen as a type of random walk, and as such, other similar methods could
may be applied to define the locations of the generated sparks.

3.4.2 Harmony Search

The harmony search (HS) method, as proposed by Geem et al. (2001), is a metaheuristic
approach inspired on the principles behind the process of harmony improvisation, in which
musicians are said to compose a harmony by combining different music pitches stored in their
memory, this with the purpose of finding the perfect harmony . In HS, the process of finding
the perfect harmony is seen as an analogy to finding the optimal solution in an optimization
problem.

HS is initialized by considering a set of N randomly generated solutions, collectively
referred as the HS Memory. At each iteration ‘k’ of the HS search process, a new candidate
solution xc � [xc,1, xc,2, . . . , xc,d ] is generated (improvised) and then evaluated against
currently existing solutions; in particular, if the quality (fitness) of the proposed candidate
solution xc is better than that of the current worst solution in the HSMemory, then such worst
solution is replaced by xc. Each component xc,n of the improvised solution xc is generated
depending on the value of the Harmony Memory Considering Rate (HMCR), as illustrated
as follows:

xc,n �
{
xr ,n + rand(−1, 1) · bw if rand(0, 1) < HMCR
rand(lbn, ubn) if rand(0, 1) ≥ HMCR

(76)

where xr ,n denotes the nth component corresponding to a randomly chosen solution xr
within the HSMemory, whereas the parameter bw represent the so called distance bandwidth
(essentially a step size value). Furthermore, rand(a, b) stand for a random number from
within the interval [a, b] (i.e., rand(0, 1) correspond to a random number between 0 and 1),
while lbn and ubn are the objective function’s lower and upper bounds at the nth dimension,
respectively.

3.4.3 Imperialist Competitive Algorithm

In Atashpaz-Gargari and Lucas (2007) proposed a novel population-based metaheuristic
known as Imperialist Competitive Algorithm (ICA). Said optimization technique is inspired
by imperialism (or neocolonialism); that is the actions taken by individual countries to extend
their power (typically through the acquisition of other territories).

At the initialization step, ICAstarts by randomly generating a set of N search agents (called
countries), each with an individual solution xi � {xi,1, xi,2, . . . , xi,d} representing as a set
of socio-political characteristics (such as culture, language, economy, religion, etc.). After
generating such set of solutions, these are then classified as either imperialists or colonies.
For this purpose, the best Nimp countries (according to fitness quality) are designated as
imperialists countries (i1, i2, . . . , iNimp ), while the remaining Ncol � N − Nimp countries
are labeled as colonies (c1, c2, . . . , cNcol ). Afterwards, each of the available Ncol colonies
are proportionally distributed among the Nimp imperialists in order to form the empires. The
number of colonies assigned to each imperialist is proportional to their respective imperialist
power, as given by the following expression:
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poweri �
∣∣∣∣∣∣

costi∑Nimp
j�1 costi

∣∣∣∣∣∣
(77)

where ci denotes the normalized imperialist cost of the i th imperialist, as given by:

costi � max
j

{
f (i j )

} − f (ii ) (78)

By considering the previous, the total number of colonies that are assigned to each imperialist
is given by:

NCi � round(poweri · Ncol) (79)

Once ICA’s initialization process has been performed, the algorithm starts an itera-
tive search process comprised of four main steps (1) Assimilation, (2) Revolution, (3)
Intra-imperialistic competition and (4) Inter-imperialistic competition. For the assimilation
process, each colony belonging to an empire is assumed to be influenced by the socio-political
elements (culture, economy, religion, etc.) of its respective imperialist country. Said influ-
ence is represented as a movement from said colony ci j toward is respective imperialist i j ,
as given as follows:

c∗
i j � ci j + rand(0, β) · (

i j − ci j
)

(80)

where the value β is typically set to be between 1 and 2.
Then, in the revolution step, some randomly chosen colonies are assumed to experience

some changes in their socio-political characteristics.Akin to themutation operator inmethods
such as genetic algorithms (GA), the purpose of the revolution step is to apply sudden changes
to some of the colonies in order to favor diversity of solutions, and thus preventing premature
convergence or being trapped into local optima.

Furthermore, at the intra-imperialist, colonies that have performed a movement (either by
assimilation or revolution) compete for the position of imperialist. Essentially, if any country
ci j within an empire has a better quality than that of their respective imperialist i j , then ci j
is labeled as the new imperialist, while i j is considered as a colony. Finally, for the inter-
imperialist step, one of weaker the colonies within the weakest empire is given to another
empire based on competition. For this purpose, a probability for possessing said weak colony
is first assigned to each empire as follows:

Pj �
∣∣∣∣∣

NTC j∑Nimp
i�1 NTCi

∣∣∣∣∣ (81)

where NTC j denotes the normalized total cost of the j th empire as given by:

NTC j � max
i

{TCi } − TC j , TC j � f
(
i j

)
+ ζ · mean

{
f
(
ci j

)}
(82)

where the value ζ ∈ [0, 1] represents the influence that the mean power of the colonies has
when determining the empire’s total power.

After a possessing probability Pj has been assigned to each empire, an appropriate selec-
tion method, (such as the roulette selection approach) is applied to decide which empire will
take charge of the disputed colony. This process is applied at each iteration of ICA’s search
process. As a result of the inter-imperialistic competition, weaker empires suffer a gradually
decrease in power as they lose their colonies over time, while stronger empires increase
their power as they take possession of said colonies. This eventually lead weaker empires to
collapse over time until only a single strongest empire remains.
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4 Performance of nature-inspiredmetaheuristics

Nowadays, nature-inspired metaheuristics have become so numerous and varied in terms of
design and applications. From such an abundant variety of techniques, the main question to
be addressed is: Which metaheuristic technique performs the best overall? This question,
present since the formulation of the first of such algorithms, has been surprisingly hard to
answer, and up to this day, it remains as an open concern in this area of science (Neumann
and Witt 2010). One widely accepted theory in this research field is that metaheuristic algo-
rithms perform best over a broad spectrum of problems when a proper balance between
exploration and exploitation is present in their mechanism. In general terms, exploration
refers to the ability of search agents to visit entirely new regions of a search space, while
exploitation emphasizes on the capabilities of these agents refine currently known “good”
solutions (Črepiňsek et al. 2013). While the importance of such a balance is recognized as
essential in most new proposals, it is often loosely implied given the lack of appropriate anal-
ysis tools that allow understanding how an algorithm search mechanisms affect it. Another
factor that highly affects this balance is the selection of parameters (tuning) designed to con-
trol the exploration and exploitation pressure of each algorithm. However, this process is not
straightforward, and it highly depends on the algorithm and the problem to solve. Also, there
is the so-called ‘No-free-lunch (NFL) theorem’ proposed by Wolpert and Macready (1997),
which states that any algorithm will on average perform equally well as a random search
algorithm over all possible functions. For this reason, it is assumed that statistical methods
can be applied to find the dominance of one algorithm over others on a specific problem;
however, as of today, there is no objective way to point out which algorithm is the overall
best and the reasons of such superiority, if existent (Lin et al. 2012). In this section, we open a
discussion about the several observable characteristics of metaheuristic algorithms and how
these characteristics impact the performance of these methods (see Table 1).

4.1 Computational complexity

An in-depth analysis of the mechanisms implemented on nature-inspired metaheuristics
allows pointing on several characteristics which have a direct impact on the expected com-
putational complexity of these methods (Avigad and Donnelly 2004). Depending on their
search strategy, for example, some algorithms may require to sort the available candidate
solutions with regard to their fitness value, either to find the best members from the popu-
lation (as in GA), select several good solutions to implement their search strategy (as done
in GWO), or even as a tool for efficient implementation (as in the case of FA). Although
population sorting can be implemented using several sort algorithms, for most cases it is
also important to consider their implied computational cost. In the case of the default sort
function employed by MatLab® (QuickSort), for example, the computational complexity of
the sorting operation is O(Plog(P)) in the average case scenario. The additional complexity
these operations add breaks the desired linear complexity that is often sough when develop-
ing optimization algorithms, especially when sorting is required on each iteration (although
this becomes a real burden only if the population size is too large). On the other hand, some
algorithms may require to calculate some kind of population-related measurement(s) as part
of their search mechanisms. A measurement commonly computed in several nature-inspired
algorithms is the Euclidian distance between individuals within the search space. As seen
in the case of GSA, for example, such distance measurements are used to compute a sum
of weighted attraction between solutions. On the other hand, in algorithms such as SMS,
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the Euclidian distance between individuals is compared with some sort of distance thresh-
old in order to establish conditions for the movement of search agents. While the Euclidian
distance often proves to be useful for the purpose of modeling complex search strategies,
the added computational complexity that this implies must always be considered. Under
the supposition that Euclidian distances are needed to be calculated with regard to every
single pair of individuals in the population (worst case scenario), this will require at least
as it requires O(P∧2) root square calculations (although this can be reduced under certain
conditions). Finally, while it is common to find optimization algorithms that perform a fixed
number of fitness function computations (given by the product between the population size
and the maximum number of iterations that comprise the search process), there are several
metaheuristic algorithms that break this rule. In methods such as ABC, for example, scout
bees are deployed to explore new solutions within the search space once it is determined
that any of the currently known solutions cannot be improved, hence requiring an additional
FFC for each abandoned solution. Similarly, in the CS algorithm, a secondary mechanism
devised to generate new random solutions is implemented as a mean to increase diversity,
adding additional FFCs in the process.

4.2 Memory efficiency

All the population-basedmetaheuristic required aminimummemorywith size O(N ∗(D+1))
(with N denoting the number of elements D their dimensionality) to store each of the available
solution vector solution plus their correspondently fitness value, and (N ∗(D+1)+a∗(D+1))
(with a ∈ {1, 2}) if memorizing the best and/or worst solution(s) is required. Furthermore,
some nature-inspired algorithms are known to require extra memory space to store some kind
of additional data that is required as part of their search strategy. Some examples of algo-
rithms that required such extra information include SMS, KH andGSA, wheremeasurements
such as the Euclidian distances are constantly computed. In these algorithms, such distance
measurements are store in memory in order to reduce the number root squares calculations
that are needed at each iteration, instead of performing the calculation as they’re required
(Yang and He 2013). Another algorithm with a more complex demand of memory is the ICA
that require the calculation of the distance between colonies and empires, and their proposed
costs on each iteration. While these computational requirements may represent no issue for
today standard computers, this can severally limit their application on hardware with limited
resources (such as those developed with the idea of portability in mind).

4.3 Exploration versus exploitation

Although seemingly trivial, questions about how exploration and exploitation is achieved are
still an open subject, and it’s often a source of disagreement among researchers (Ghazali et al.
2018; Yang et al. 2015); however, it is commonly accepted among the research community
that a good ratio between exploration and exploitation is essential to ensure good perfor-
mance in metaheuristic search algorithms. The question here is: how can we find a proper
balance between these two crucial characteristics? Answering this question is not trivial
given that metaheuristic optimization algorithms can be very different in terms of search
strategy, so it is necessary to understand first what type of mechanisms are implemented in
these methods. In the case of population-based metaheuristics, for example, these usually
include selection mechanisms that allow them to collect prominent solutions from among
the entire population, either to make them prevail for the next iteration of the search process
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or to implement some solution update strategy. Although selection operators do not modify
or generate new solutions in the population, they play an important role in balancing elitism
and diversity (Du et al. 2018). In the case of a greedy selection mechanism, for example, this
ensures that the most fitting individuals among candidate solutions remain intact for the next
generation. Thus, this type of selection is often used to improve fast convergence on meta-
heuristic algorithms toward promising solutions. Another type of elitism (individual greedy
selection) can be observed in algorithms like DE or HS, where a new solution is accepted
only if it directly improves the solution that originates them. This strategy has the appeal
of potentially improves the exploration–exploitation ratio by forcing a highly diverse initial
population to improve individually from its starting point, and as such this kind of selection
method is often preferred in metaheuristic optimization methods, especially when these are
meant to deal with multimodal problems (Huang et al. 2017). Also, some algorithms do not
implement any kind of selection strategy at all. In the case of methods like PSO or GWO,
these do not enforce the selection of prominent individuals, accepting every new solution
independently of its quality. In this case, the lack of elitism is preferred to accent explo-
ration over exploitation; however, this methods also implement additional behaviors in order
balance the exploration–exploitation rate as is, for example, “attractions” toward the best
know solution. Speaking of attractions, it is not uncommon to find some kind of attraction
strategy implemented as a part of the search mechanisms of nature-inspired algorithms. As
previously implied, attractions are usually applied as an exploitation mechanism that seeks to
improve currently known solutions by moving other solutions toward the location of seem-
ingly “good” individuals. Choosing which solutions are to be considered as attractors, and
how other solutions will be attracted to these attractors is entirely dependent on the design of
the algorithm itself. In the case of PSO, for example, particles are attracted toward the global
best solution at the current iteration of the search process; however, individuals modeled in
PSO also implement a series of attractions toward the best solutions recorded by each particle
as the search process evolves (personal best solution). This approach is usually considered
as a more balanced attraction mechanism regarding convergence and solutions diversity;
however, implementing this kind of strategy requires the allocation of additional memory,
which could be undesired depending on the intended application(s). Also, some algorithms
apply attraction mechanisms which consider the composite effect of more than one attractor
to discover new potential solutions. These attractors can be comprised by a subset of mem-
bers from the current population of solutions, or even, by the whole set of available candidate
solutions. As previously noted, in PSO both the best-known solution of the population and the
best personal record of each solution are considered to modify the velocity of each particle;
this could be considered an example of such multiple-attractors phenomenon. On the other
hand, there are methods that implement more complex attraction schemes, which consider
very specific members of the entire population as well as other particular properties. In FA,
for example, the attractiveness between individuals is set to be inversely proportional to the
distance that separates them, hence, the longer the distance, the lower the attraction (Yang
et al. 2015). Similarly, GSA attractiveness is dictated by “gravitation force” exerted among
particles in the available search space, but the magnitude of such attraction also depends
on the fitness value of each particular solution. While these mechanisms have proven to be
effective for maintaining higher diversity on the population, it is worth noting that model-
ing these behaviors requires to constantly calculate of the distance between several pairs of
solutions, increasing the computational complexity to these the algorithms. Also, it’s been
observed that this kind of mechanisms tend to slow-down the convergence of the algorithm,
a fact that must be considered is execution time is a priority (Yang et al. 2015). Furthermore,
some algorithms do not contemplate any type of attraction as part of their search strategy;
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instead, these methods generate new solutions by means pure random walks (as in the case
of HS) or by considering other criterions (such as the distance between solutions, as in the
case of DE). In evolutionary algorithms like GA, for example, some solutions are generated
by “mixing” the information of randomly chosen solution (crossover), whereas others are
generated by adding perturbations to currently existing solutions (mutation). In this regard,
it’s also worth mentioning that, while crossover and mutation operators in evolutionary algo-
rithms are often perceived as exploration and exploitation operators, respectively, a deeper
observation of crossover behaviors suggest that at the beginning of the evolutionary process
(where the population is still diverse), crossover operators favor the exploration of solutions,
whereas, toward the end of the search process (where population has lost diversity), explo-
ration capabilities are dramatically reduced. Similarly, mutation operators that consider large
amounts of perturbations for modifying existing solution could very easily be considered as
exploration mechanisms, as solutions could be generated over much larger proportions of
the feasible solution space. Under this considerations, it is hard to roughly classify crossover
and mutation as either exploration or exploitation operators, as they intended behavior could
be altered by adjusting their crossover and mutation rates, respectively. Finally, it worth not-
ing that there are several algorithms which consider the iterations stop criterion (maximum
number of iterations), as well as the iterations progress as part of their search strategy. Such
mechanisms are mostly used to adjust the exploration–exploitation rate as the search process
evolves with the purpose of avoiding premature convergence. However, this strategy often
prevents the algorithm to converge quickly toward currently known best solutions, which
could be undesired depending on the situation.

4.4 Implementation

As mention in Sect. 2, most metaheuristic algorithms share a general framework indepen-
dently of the inspiration. Therefore the main difference is present in their mechanism to
generating new solutions and selecting those that will remain to the next iteration. Among
the algorithms presented in this work, some have a high level of simplicity that can be trans-
lated onto computational code with relative ease, while others may be relatively complex to
program given the kind of behaviors and rules these intend to model. In other words, it could
be said that the number of lines of code required to program a given metaheuristic algorithm
increases as more sophisticated mechanisms are integrated to these methods. In this sense,
algorithms such as SCA can be considered among the most straightforward algorithms to
code as all of the population is directly attracted toward the best solution, without the need of
sorting the population or excessive memory assignation. HS may be as well considered ease
to code given how simple is for it to generate new candidate solutions (generating random
values, values from known solutions, or slight perturbations of currently existing ones). How-
ever, the fact that HS resort to a greedy selectionmechanism demands it to perform population
sorting, slightly increasing its coding difficulty, and by extension its computational complex-
ity. Leaving aside the performance that a given algorithm could have when applied to solve
problems, the degree of coding complexity that relates to these computational approaches is
plagued by two particular concerns (Piotrowski and Napiorkowski 2018): (1) A higher risk
for some of its elements to introduce structural biases, making the algorithm more prone to
explore several parts of the optimization landscape more frequently than others without an
actual justification (Piotrowski and Napiorkowski 2016); and (2) The discouragement this
coding complexity could cause to its potential users. Besides, most (if not all) metaheuristic
algorithms are designed to work as black boxmodels, thus being problem independent. How-
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ever, regarding implementation, users often require to invest additional time to specify other
essential characteristics, such as the formulation of the fitness function that describes the
problem, the codification (representation) of the solutions and, if necessary, the parameters
tuning for the algorithm in question. Speaking of parameter tuning, it is important to remem-
ber that its relevance lies on the fact that it allows to change the exploration–exploitation
ratio of the algorithm, potentially allowing it to perform better over certain tasks. The main
problem here though, is that there is no universal agreement on howmetaheuristic algorithms
should be tuned to work optimally over specific optimization problems (which is not surpris-
ing given that most algorithms are comparably different); in fact scientists and practitioners
are for the most part used to tune metaheuristics by hand, guided only by their experience
and by some rules of thumb, hence, tuning metaheuristics is often considered to be more
of an art than a science. Although, there are several efforts aimed to provide frameworks
to mechanically and objectively select these parameters finding the optimal tuning for these
parameters is still an open problem (Yang 2018; Sipper et al. 2018). Another issue related to
parameter tuning in metaheuristic algorithms is the number tuning parameters itself. While
some algorithms like GA or PSO have only a reduced number of parameters (two in both
cases), other methods such as ICA or SMS requires the user to set several more parame-
ters, needed by the algorithm in order to control their behavior. However, as the number of
parameters to set increases, understanding how these values influence the performance of
the algorithm becomes more complex, thus, making the algorithm harder to analyze overall.
Finally, it is worth noting that there are algorithms that do not have any parameters to tune at
all. Methods such as WOA and SCA integrate mechanisms devised to automatically adapt
the exploration–exploitation rate as they progress over the available iterations, but these do
not need the user to set any parameters for it to work. Methods like these offer inexperienced
users the ability to easily implement and understand the mechanisms behind metaheuristic
algorithms, although these private more experimented users from studying its behavior in a
more complex perspective.

5 Nature-inspiredmetaheuristics and their applications

In recent years, nature-inspired metaheuristics have become popular choices for solving a
wide-range of optimization-related problems in many different areas of application such as
engineering design, digital image processing, and computer vision, networks and commu-
nications, power, and energy management, data analysis and machine learning, robotics,
medical diagnosis, and many others (Osman and Laporte 1996). In this section, we will dis-
cuss several implementations of nature-inspired algorithms for solving real-world problems
in different areas of application.

5.1 Engineering design

Applications of nature-inspired metaheuristics to engineering design are as varied as the
multidisciplinary areas of science currently on existence. For example, in the area of networks
and communications, a popular design problem is the design of antennas. Notably, in Goudos
(2017) the author presented a study where this design problem is tackled by applying several
discrete-codedmetaheuristics, including GA, DE, and PSO, demonstrating competence in all
cases (Goudos et al. 2017). Another representative area of applications is aeronautics, where
the most common design problems are related to aircrafts design. In Keshtegar et al. 2017, for
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example, the authors proposed an optimization framework for the design of aircraft panels
based on an adaptive dynamic HS (ADHS). This design approach was compared in terms of
performance against those found in other variants of HS, ultimately demonstrating ADHS to
be the superior method (Keshtegar et al. 2017). Another common design application is the
design of truss structures. As examples, we can mention the works presented in Bekdaş et al.
(2015) and Khatibinia and Yazdani (2017), where algorithms such as FPA and GSA were
successfully applied to solve this design problem (Bekdaş et al. 2015; Khatibinia andYazdani
2016). Another interesting application is reported in Shukla and Singh 2016, where the FA
algorithm is implemented to aid on the selection of parameters for advanced machining
processes with good results (Shukla and Singh 2016). Other classical engineering design
problemswhere nature-inspired algorithms have been successfully applied include the design
of tension/compression springs, welded beams, pressure vessels, gear trains, to name a few
(Mirjalili and Lewis 2016; Askarzadeh 2016; Mirjalili et al. 2014; Kaveh and Khayatazad
2012; Camarena et al. 2018).

5.2 Digital image processing and computer vision

Nature-inspired metaheuristics have also found interesting applications in the area of dig-
ital image processing and computer vision. One typical application in this regard is image
segmentation by multilevel thresholding, in which the optimization algorithm is applied to
found a set of optimal gray-level threshold that maximizes some kind of image measurement
(Mesejo et al. 2016). Prominent examples this kind of applications includes those presented
in Horng and Jiang (2010), Ouadfel and Taleb-Ahmed (2016), El Aziz et al. (2017), He and
Huang (2017), Khairuzzaman and Chaudhury (2017a, b), were algorithms such as ABC,
SSO/FPA, WOA/MFO, FA, GWO have been successfully implemented. Also, in Cuevas
et al. (Cuevas et al. 2013a, b), Oliva et al. (2014) and Zhang and Zhou (2017), the task
of template matching based on nature-inspired metaheuristics have been explored, where
techniques such SMS, EMO, GWO have been implemented to good results (Khairuzzaman
and Chaudhury 2017a; Horng and Jiang 2010; Ouadfel and Taleb-Ahmed 2016; El Aziz
et al. 2017; He and Huang 2017). Also, in Olague and Trujillo 2012, the authors proposed
to use a Multi-Objective GP (MO-GP) approach for the task of synthesizing operators for
the detection of interest points in digital images, where the optimization problem is repre-
sented regarding three properties (stability, point dispersion, and information content). The
experimental results presented by the authors suggest that their proposed approach is able
to construct interest point detection operators adapted to different performance criteria, thus
making it promising for a wide variety of computer vision applications (Olague and Trujillo
2012). Another interesting application is reported in Kiranyaz et al. 2015, where PSO is
applied to assist on the task of perceptual dominant color extraction, presenting promising
results when compared to some traditional methods (Kiranyaz et al. 2015).

5.3 Networks and communications

Applications of nature-inspired metaheuristics to this area include the Optimal Sensor
Deployment (OSD) for Wireless Sensor Networks (WSNs), a task that consists on find-
ing an optimal distribution for a set of sensing devices designed to collect some kind of
physical data. One recent application for this is reported in Zhou et al. 2017, where the
authors proposed an optimal sensor deployment scheme based on the SSO algorithm. The
reported experiments suggest that the performance of SSO, when applied for OSD inWSNs,
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is superior to that of methods based on Virtual Force Algorithm (VFA) (Zou et al. 2003),
GA, and PSO (Zhou et al. 2017a, b). Another similar application is reported in Deif et al.
(2017), where ACO is applied as the optimization method of choice. In this work, there is
a special emphasis not only on maximizing the sensor networks’ coverage area, but also
other important requirements inWSNs, such as minimum level of reliability and deployment
cost (Deif et al. 2017). In similar terms, in Alia and Al-Ajouri (2017), the HS algorithm
is applied for solving the problem of minimum cost OSD, comparing its performance in
this case with that of a random deployment scheme (Alia and Al-Ajouri 2017). Mann and
Singh (2017) managed to improve the performance of the ABC algorithm by implementing
the Student’s t-distribution as a sampling method and applied it to perform energy-efficient
clustering inWireless Sensor Networks, yielding to promising results (Mann and Singh et al.
2016). Other similar applications of nature-inspired methods for OSD inWSNs can be found
in Goyal and Patterh (2015) and Cao et al. (2012), where the techniques such as BA and FA
have been studied. Community detection in complex networks is another application that has
caught the interest of researchers as a candidate to be solved by metaheuristic techniques.
In Rahimi et al. (2018), for example, a novel multi-objective community detection scheme
based on PSO is proposed. The authors presented experimental results that consider both
synthetic and real-world environments and compared their results against those of other sim-
ilar approaches, showing an outstanding performance (Rahimi et al. 2017). Also, in Guerrero
et al. 2017, the problem of adaptive community detection is handled by applying a modifica-
tion of the GA algorithm coined Generational Genetic Algorithm (GGA+), which involves
efficient initialization methods and modularity-guided search operators, is applied and com-
pared against other GA variants, demonstrating superior performance (Guerrero et al. 2017).
Another interesting application of nature-inspired methods to this area is documented in
Bhardwaj et al. 2014, were the ABC algorithm is implemented for the detection of mali-
cious URLs (Bhardwaj et al. 2014). Also, in Din et al. (2016), the CS algorithm is applied
to perform Left Feedback Shift Registers (LFSR) cryptanalysis, a tool mainly employed in
information security (Din et al. 2016). Finally, E-mail Spam detection via nature-inspired
methods has also been a subject study. In Idris et al. (2015), for example, the authors pro-
posed an e-mail spam detection system based on a combination between Negative Selection
Algorithm (NSA) (Johny and Assistant 2017) and PSO, where the latter is applied to improve
the random detector generation phase in the former. The statistical data reported in this paper
suggest a significant improvement in performance when compared to a framework based
exclusively in NSA, thus proving the significance of the proposed modification (Idris et al.
2015).

5.4 Power and energymanagement

Applications of nature-inspired metaheuristics to the area of energy applications are quite
numerous. In Mesbahi et al. (2017), for example, the authors proposed an optimal energy
management strategy for hybrid energy storage systems based on PSO and the Nelder-Mead
simplex method, which show to have a significant improvement in both battery usage and
lifetime when compared to other conventional methods (Mesbahi et al. 2017). In You et al.
(2017), a home energymanagement system based on the SSO algorithmwas proposed, show-
ing interesting results when applied for the task of appliances load management. Guha et al.
(2016) presented an approach based on the GWO algorithm aimed to solve the problem of
load frequency control in interconnected power systems networks by tuning the parameters
of a PI/PID controller, showing to outperform schemes based on other similar metaheuristic
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techniques. In Prasad et al. (2017), a modification of the KHA, known as Chaotic Krill Herd
Algorithm (C-KHA) was implemented to solve the problem of Optimal Power Flow (OPF)
while also comparing its performance against other state-of-the-art metaheuristics, yielding
to favorable results (Prasad et al. 2017). Another interesting application was proposed in
Van Sickel et al. (2007), where the DE algorithm is used for the intelligent control of power
plants. In this work, DE is applied to both generate a set of optimal points for the monitoring
of a reference power governor and the parameter tuning of the same power plant controller.
Also in Al-Betar et al. (2018), an approach aimed to solve the problem of Economic Load
Dispatch (ELD) was proposed, in which an approach called β-Hill Climbing is applied to
minimize the total fuel cost of operation and emission from a set of generating units. The
proposed method was evaluated by considering several real-world ELD systems and com-
pared against other simlar approaches (including some based in metaheuristics such as GA,
ACO, HS and PSO), demonstrating β-Hill Climbing to be superior for solving this particular
problem (Al-Betar et al. 2018). Furthemore, in Babu et al. (2017), the authors proposed the
use of PSO for the reconfiguration of photovoltaic (PV) panels aimed to maximize power
extraction, presenting promisong results when compared to other similar approaches (Babu
et al. 2017). Related to the subject of PV-basesd power generation, another interesting appli-
cation represented by parameter identification in PV cells/modules. In Oliva et al. (2014),
for example, the Artificial Bee Colony (ABC) algorithm was implemented and compared
againts other similar techniques in terms of performance, showing promising results (Oliva
et al. 2014). Other similar applications for PV cells parameter identification can be found
in Askarzadeh and Rezazadeh (2012), Ma et al. (2013), Han et al. (2014), and Sarjila et al.
(2016), where algorithms such as FA, CS, AFSA, GSA where successfully implemented. In
Valdivia-Gonzalez et al. (2017a, b), an intelligent power allocation scheme for plug-in hybrid
vehicles (PHEVs) based on SMS was proposed, in which the objective is to adjust the power
distribution provided by PHEV’s charging infrastructures by taking into account customer
characteristics and restrictions. In Prakash and Lakshminarayana (2016), the authors prosed
to tackle the problem of optimal capacitor placement in Radial Distribution Networks by
applying an optimization scheme based in WOA, demonstrating to be much more effective
than most traditional techniques applied for this purpose. Other applications include those
presented in Massan et al. (2015) and Tolabi and Ayob (2014), where nature inspired meta-
heuristics such FA and a hybridization between SA andGA are applied for the task of optimal
wind turbines allocation (Massan et al. 2015) and solar radiation forecasting , respectively,
yielding to interesting results in both cases.

5.5 Data analysis andmachine learning

As for the area of data analysis and machine learning, some prominent application related
to these areas include feature selection. In Mafarja and Mirjalili (2016) proposed a series of
wrapper feature selection scheme based on hybridization between the WOA and SA algo-
rithms, where the former is used to promote exploration while the latter is applied to enhance
exploitation. The proposed approach was compared in terms of performance against other
similar methods based on metaheuristics, such as ALO, PSO, and GA, proving to have the
best performance regarding accuracy and average selection size (Mafarja andMirjalili 2016).
In the same year, Hafez et al. presented a feature selection approach based on the SCA algo-
rithm, and compared it in terms of performance against methods based in PSO and GA,
leading to favorable results. Similarly, in Emary et al. (2016) the authors published a fea-
ture selection methodology based on a binary GWO which was also successful regarding
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performance against PSO and GA. Also, in Moayedikia et al. (2016) proposed a feature
selection algorithm called SYMONwhich applies both symmetrical uncertainties along with
the HS algorithm to develop a strategy to rank features in high dimensional imbalanced class
datasets, proving to be superior when compared to other similar techniques. Other inter-
esting feature selection applications can be found in (Wu et al. 2011; Wang et al. 2015),
Another application related to data analysis is data clustering, where metaheuristics have
also been applied for good results. In Alswaitti et al. (2018) proposed a clustering method
based in PSO which integrates a density estimation technique based on Gaussian kernels
developed to address premature convergence as well as a method to estimate the best learn-
ing coefficients. The proposed approach was compared against other techniques commonly
used for data clustering and proved to be significantly better in terms of accuracy. Also, in
Zhou et al. (2017a, b) the SSO algorithm was modified to implement a Simplex method in
order to improve data clustering on higher dimensions, proving to be better than the original
SSO in terms of performance, while also showing its superiority over other similar meth-
ods. Furthermore, in Abualigah et al. (2016, 2017a, b) the authors proposed a clustering
technique based on a hybrid KHA that integrates the mechanisms of the HS algorithm as a
way enhance both exploration and exploitation of solutions. The algorithm was compared
regarding performance against traditional clustering methods and approaches based onmeta-
heuristic optimization algorithms demonstrating a higher performance in general (Abualigah
et al. 2017a). Other similar works are reported in (Abualigah et al. 2016, 2017b; Moham-
mad et al. 2015; Abualigah and Khader 2017), where algorithms like the standard KH, GA,
and PSO has been applied to improve text document clustering. Then, in Han et al. (2017)
proposed a clustering method based on a variant of GSA that integrates an update mecha-
nism devised to increase the diversity of solutions. This variant, called Bird Flocking GSA
(BFGSA) was compared against the standard GSA as well as methods based on ABC, PSO,
and FA, proving to be much more competent for the aforementioned task (Han et al. 2016).
Other approaches for data clustering include those reported in Shukla and Nanda (2016)and
Jadhav and Gomathi (2016), where methods such as SSO and a hybrid between GWO and
WOA were implemented to good results. Other interesting applications of nature-inspired
metaheuristics in this area involve their use as an alternative to train Artificial Neural Net-
works (ANN). In Sahlol et al. (2009), for example, the authors developed a feedforward
ANN based on the SCA algorithm to improve the prediction accuracy of liver enzymes on
fishes fed with certain compounds. In this approach the SCA algorithm is applied to find the
configuration of weights/biases that allows the proposed NN to achieve optimal performance,
yielding to much better results than those of previous prediction models (Sahlol et al. 2016).
In Rere et al. (2015), for example, the authors proposed to use the SA algorithm to train a
Convolutional Neural Network (CNN) for the classification of handwritten digits. Although
the proposed method comes with a significant increase in computation time, it also yields
a substantial increase in performance when compared to other methods commonly used to
train CNNs (Rere et al. 2015). Another interesting application is reported in Pereira et al.
(2016), where the SSO algorithm is used for both, feature selection and parameter tuning
for a Support Vector Machine (SVM) designed to aid on energy theft detection. The authors
compared the performance of their proposed approach against those based on PSO and a
variant of the HS algorithm known as Novel Global Harmony Search (NGHS), highlighting
their respective advantages (Pereira et al. 2016).
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5.6 Robotics

Implementations of nature-inspired optimization algorithms to the area of robotics usually
include tasks such as path planning and trajectory optimization. Perhaps the most popular
application in this regard is the autonomous navigation ofUnmannedAerial Vehicles (UAVs).
Interestingwork is reported inLi andDuan (2012),where an improvedGSA (IGSA) approach
is applied to develop a path planning strategy for Unmanned Aerial Vehicles (UAVs) devised
for military applications. The proposed I-GSA based path planning method was compared
against those based on the classic GSA and PSO, demonstrating much better performance
(Li and Duan 2012). Similarly, in Oz et al. (2013), path planning strategies for 3D environ-
ments based on GA and Hyper-Heuristics (HH) (Burke et al. 2013) that considers technical
constraints and mission-specific objectives are proposed. Both algorithms were evaluated
by considering other classical studies developed for UAV navigation, yielding to favorable
results (Oz et al. 2013). Then, in Behnck et al. (2015), the authors proposed a path planning
strategy based on a modified SA algorithm. The reported results demonstrate that the pro-
posed approach can calculate minimum distance paths for a pair of UAVs while also being
sufficiently simple to be implemented in an embedded platform (Behnck et al. 2015). Also, in
Xie and Zheng (2016), the problem of path planning in UAVs is handled by applying a search
strategy based on a hybrid CS algorithm that integrates the mutation and crossover operators
of GA, called Improved CS (ICS). As illustrated by the results presented in this work, the
ICS notably outperform the standard CS algorithm, demonstrating its competence for the
task in question (Xie and Zheng 2016). Outside of UAVs applications, metaheuristic opti-
mization approaches have also been successfully applied to solve the problem of navigation
in other kinds of robotic platforms. In Tsai et al. (2016), for example, a path planning scheme
based on a multi-objective GWO (MOGWO) approach is applied to aid on robot navigation
over environments consisting on fixed positions and obstacles. The proposed path planning
scheme was compared regarding performance against that based on a multi-objective GA
(MOGA), ultimately proving MOGWO to be slightly superior (Tsai et al. 2016). Further-
more, in Contreras-Cruz et al. (2017), a distributed path planned method for multi-robot
systems based on ABC (DPABC) was simulated and compared against a classic priority
planner scheme and another approach also based on ABC (PPABC). As suggested by their
experimental results, the proposed DPABC approach is favored as the better alternative for
solving this problem due to it being able to solve the task in a lower time and with a better
performance than that of the other compared methods (Contreras-Cruz et al. 2017). Another
interesting application documented in the literature is the development of controllers for
robotic platforms. In Silva et al. (2014), for example, GP was applied as an automatic search
method for motion primitives in a bipedal robot based on the exploration and exploitation of
its particular characteristics. Experimental results demonstrated a significant improvement
in performance on the applied robot’s locomotion, especially when compared to that of a
hard-tuned system (Silva et al. 2014). More recently, in Benkhoud and Bouallègue (2017),
the authors proposed a series of metaheuristic-based tuning strategies for a Linear Quadratic
Gaussian (LQG) controller, with application to a special class of UAV. The algorithms stud-
ied in this work include the HS algorithm, Water Cycle Algorithm (WCA) (Eskandar et al.
2012), and Fractional PSO-based Memetic Algorithm (FPSOMA). Furthermore, compar-
isons which consider tuning methods based on the standard PSO and ABC algorithms where
also developed, yielding to interesting results (Benkhoud and Bouallègue 2017).
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5.7 Medical diagnosis

Interestingly, nature-inspired metaheuristics have found a plethora of applications aimed
to develop tools to assist on medical diagnosis. Typical applications to this area include
diagnostic applications based on the digital image processing medical images. In Ibrahim
et al. (2012), for example, the authors proposed an approach to automatically measure ven-
tricular heart volumes on cardiovascular magnetic resonance (CMR) images by applying an
ACO-based approach that integrates iterative salient isolated thresholding (ACOISIT) to seg-
ment blood-myocardium borders and demonstrated promising results (Ibrahim et al. 2012).
Furthermore, in Ouaddah and Boughaci (2016), the authors proposed a methodology to per-
form image reconstruction from projections based on the HS algorithm. In this approach,
the HS algorithm is hybridized with a local search method to enhance its performance and
improve the quality of images reconstructed from tomographic images tomographies. Both
the original and hybrid HS, as well as two other traditional techniques implemented for image
reconstruction, were compared regarding reconstruction quality, demonstrating, in the end,
the proficiency of the proposed techniques (Ouaddah and Boughaci 2016). Later, in Chen
(2017), an image segmentation approach based on the ACO algorithm is proposed for the
detection of Lung Lesions in chest computed tomographies. To validate the proposed systems
the authors analyzed its accuracy by considering a specific database of lung patients, obtain-
ing favorable results (Chen 2017). Similarly, in Oliva et al. (2017), the authors proposed an
image segmentation method based on both cross entropy thresholding and the CSA algo-
rithm, with applications to the analysis of magnetic resonance brain images. Said approach
was compared against cross entropy segmentation techniques based onDE andHS, ultimately
demonstrating to be superior in terms of performance (Oliva et al. 2017). Other applications
of nature-inspired methods to medical diagnosis include the development of tools aimed to
aid on the analysis of specific medical data. As an example, we have the work reported in
Wang et al. (2015), where an Improved Electromagnetism-like Algorithm (IEA) is proposed
to develop a feature selection method for the prediction of diabetes mellitus. The proposed
approach was tested by considering an extensive number of pertinent datasets, and its perfor-
mance was compared with several other benchmark metaheuristic techniques reported in the
literature, yielding to interesting results (Wang et al. 2015). Furthermore, in Kora and Kalva
(2015), the authors developed and improved BA approach to extract features from Electro-
cardiogram (ECG) signals, with the purpose of feeding them to a neural network classifier
trained for the prediction of myocardial infarction on heart patients. Both the improved and
the standard BA algorithm were compared regarding performance by also considering other
possible classifiers, including NN, KNN, SVM, and others (Kora and Kalva 2015). Also, in
Nagpal et al. (2017), a feature selection approach based on GSA and k-nearest neighbor-
hood classification is proposed for the task of efficient feature selection. According to the
experimental results presented by the authors, the proposed method is able to reduce the
number of significant features in the processed data to an average of 66%, while also show-
ing a better performance than technique based on algorithms such as PSO and GA (Nagpal
et al. 2017). Then, in Sahoo and Chandra (2017), a variant of the GWO algorithm known
as Non-dominated Sorting GWO (NSGWO) and the Multi-Objective GWO (MOGWO) are
proposed to address the problem of feature selection to aid on the classification/detection of
cervix lesions. The authors compared their proposed feature selection methods with those
based on several multi-objective implementations of GA and FA, demonstrating the GWO
variants to be superior in all cases (Sahoo and Chandra 2017). Another interesting appli-
cation is reported in Alshamlan et al. (2015), were the ABC algorithm is applied to aid on
the task of gene selection for cancer classification using microarray datasets. The proposed
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Fig. 2 Annual number of publications in IEEE and Elsevier related nature-inspired metaheuristics

approach combines a filtering stage based on a Minimum Redundancy Maximum Relevancy
(mRMR) method and a wrapper method based in both BA and SVM, and it was compared
with two other similar approaches based in GA (mRMR-GA) and PSO (mRMR-PSO), show-
ing impressive results (Alshamlan et al. 2015). Similarly, in Alomari et al. (2017), a gene
selection methodology based in BA was presented and compared with other popular gene
selection methods, demonstrating to be more than competent for the task mentioned above.

6 Nature-inspiredmetaheuristics on the literature

In the last few years, works related to applications or modifications of nature-inspired meta-
heuristics for solving a wide range of optimization problems have become so numerous that
mentioning every single paper in existence has become an overwhelming task. In Fig. 2, the
number annual publications (as reported by IEEE and Elsevier) related to nature-inspired
metaheuristics for the last 36 years is shown. As evidenced by the data shown in said fig-
ure, the number of publications related to this kind of techniques started to increase at a
considerable rate around the 1990s. Nature-inspired optimization methods have become so
successful and so well-known on the literature and, as a result, the number of publications
per-year related to these techniques has reached astonishing levels, with essentiallymore than
1000 newpapers being published annually since 2010.While nature-inspired techniques have
been well received in the literature, some particular methods stand as popular choices among
researchers around the world. In Fig. 3, the annual publication statistics (as given by IEEE
and Elsevier publishers) related to the ten most cited nature-inspired optimization methods
is shown. In particular, some of the earliest nature-inspired methods such as GA, SA, PSO,
DE, and ACO stand as the most representative examples among these techniques, while
latest methods such as ABC, HS, CS, FA, and GSA have recently experienced an increase
on popularity. Furthermore, Table 2 shows specific data regarding each of these methods,
including its year of publication and its total number of citations up to the year 2016.
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Genetic Algorithms (GA)
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Fig. 3 Annual number of publications in IEEE and Elsevier related to the ten most cited nature-inspired
metaheuristics: GA, SA, PSO, DE, ACO, ABC, HS, CS, FA, and GSA

7 Research gaps and future directions

Undoubtedly, research on nature-inspiredmetaheuristic algorithms and their applications has
grown at an accelerated rate. However, while there exists an overwhelming amount of related
works reported on the literature, this research area is yet to reach the maturity level that other
areas of science currently have. There are still several research gaps and areas of opportunity
that are still to be explored by researchers on this rather young area of science. One of this
areas of opportunity arise due to the fact that, to this date, there is no single metaheuristic
optimization algorithm with the ability to effectively handle all existing problems (Wolpert
and Macready 1997); in fact, the literature suggest that there exist several techniques that
perform significantly better than other methods when applied to specific problems. In this
regard, we canmention the widely known 0–1 knapsack optimization problem (Vocking et al.
2011), onwhich numerous optimization techniques have been successfully appliedwith good
results; in the case of the work presented in Sapra et al. (2017), for example, a comparative
study of several metaheuristic algorithms applied to solve the knapsack problem is presented,
where methods such as Tabu Search (Pardalos et al. 2013), Scatter Search (Laguna andMartí
2003) and Local Search (Galinier et al. 2013) are the center of discussion. The experimental
results presented in this work suggest that Tabu Search has the least deviation from the best
known solution, suggesting it to be more reliable in this regard. However, this work also
suggest that Scatter Search presents the least time complexity, being the best option among
the three tested methods when execution time is crucial (Sapra et al. 2017). Another exam-
ple is given by Feng et al. (2017), where a novel Binary Monarch Butterfly Optimization
(BMBO) algorithmwas proposed to solve this problem, andwas further validated by compar-
ing it with binary-coded implementations of ABC, CS, DE, and GA, demonstrating BMBO
to have greater accuracy and convergence speed (Feng et al. 2017). Other commonly stud-
ied optimization problem is represented by the famous Traveling Salesman Problem (TSP)
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Table 2 Total number of citations (up to the year 2016) for some of the most popular nature-inspired meta-
heuristics

Algorithm Author(s) Year of publication Total number of citations

Genetic Algorithms (GA) J. H. Holland 1960 102,190

Simulated Annealing (SA) S. Kirkpatrick, C.D. Gelatt
& M.P. Vecchi

1982 44,711

Particle Swarm
Optimization (PSO)

J. Kennedy & R. Eberhart 1995 38,634

Differential Evolution
(DE)

R. Storn & K. Price 1996 38,632

Ant Colony Optimization
(ACO)

M. Dorigo 1992 14,472

Artificial Bee Colony
(ABC)

D. Karaboga 2005 4174

Harmony Search (HS) Z. W. Geem, J. H. Kim &
G. V. Loganathan

2001 3466

Cuckoo Search (CS) X.-S. Yang & S. Deb 2009 1843

Firefly Algorithm (FA) X.-S. Yang 2008 1807

Gravitational Search
Algorithm (GSA)

E. Rashedi, H.
Nezamabadi-pour & S.
Saryazdi

2009 1639

(Gutin and Punnen 2007). An interesting study can be found in the work present by Saji
and Riffi (2016), where a comparison between a novel Discrete Bat Algorithm (DBA) and
discrete coded modifications for PSO, CS, and GSA-ACS-PSOT (a hybrid approach based
on several metaheuristics) for solving the TSP is presented, demonstrating DBA to be the
overall best method to handle this problem (Saji and Riffi 2016). Similarly, in Zhou et al.
(2017a, b), the authors propose to solve several spherical TSP by applying a discrete greedy
Flower Pollination Algorithm (DGFPA), and compared it with several variants of GA and
Tabu Search, finally concluding that DGFPA performs the best in most cases. Finally, we
have the vehicle routing problem (VRP) (Pereira and Tavares 2009), a problem that nowadays
could be considered a benchmark real-problem for validating the performance of optimiza-
tion algorithms. While there are several variants to this particular problem, nature-inspired
metahueristic methods have been extensively applied for solving each of these (Yurtkuran
and Emel 2010; Wei et al. 2017; Marinaki and Marinakis 2016; Potvin 2009); in particular,
it is common to see implementations to this kind of problems based on enhanced/improved
implementations of well-known bio-inspired algorithms. One example of this is reported
in Xu et al.(2018), where Dynamic VRP is handled by applying an Enhanced ACO algo-
rithm (E-ACO). The proposed method was compared in terms of performance against the
standard ACO algorithm and another improved variant known as K-means ACO (K-ACO),
concluding E-ACO to be slightly superior (Xu et al. 2018). Similarly, In Zhang and Lee
(2015), an Improved ABC algorithm is applied to solve Capacitated VRP and was compared
in terms of performance against the standard ABC approach, yielding to a superior perfor-
mance. Another example is presented in Xiang (2016), where an improved PSO algorithim
(NPSO) which integrates Gauss Mutation is developed for solving the VRP and compared in
terms of performance with the original PSO, virtually outperforming it in both performance
and efficiency. From what was previously discussed, it must be concluded that the different
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degrees of performance on nature-inspired metaheuristics over certain problems is not only
heavily influenced by the specific search mechanisms and “adaptations” applied by each
applied method, but also by the particular challenges offered by each of these problems,
hence there is no way to establish a particular method as the absolute best, and as such there
is still a plenty of space for proposing new and innovative methodologies for solving these
problems or to modify existing ones with the purpose of enhancing their performance and
efficiency. In this sense, many researchers have proposed interesting ideas aimed to improve
the performance of nature-inspired metaheuristics. Some researchers, for example, suggest
that a hybridization of exact methods and metaheuristic-based techniques could lead to the
development of algorithms with enhanced efficiency and convergence capabilities (Jourdan
et al. 2009; Puchinger andRaidl 2005).While research in this regard is still somewhat limited,
there are several works on the literature which serve as examples of successful applications
of both kind of methods (Plateau et al. 2002; Yan et al. 2014; Portmann et al. 1998; Basseur
et al. 2004; Gomes and Oliveira 2006). Other interesting ideas can also be found on the work
presented by Zelinka (2015), were the author explore the possibility of improving that perfor-
mance and diversity of search operators by implementing specific control mechanisms (such
as deterministic chaos models) to alter the dynamics of swarm and evolutionary algorithms.
An example of a metaheuristic-based application that implement this kind of mechanism is
presented in Valdivia-Gonzalez et al. (2017a, b), where different chaos models were com-
bined with the search operators of the GSA algorithm in order to enhance its performance.
Similarly, in Cuevas et al. (2017a, b), deterministic chaos models where integrated to the
search operators of novel swarm-based algorithm known as Locust Search (LS) (Cuevas
et al. 2015a, b; González et al. 2017), with the purpose enhancing its performance for the
identification of parameters in fractional-order systems (Cuevas et al. 2017b). Also, in Hino-
josa et al. (2018), a Multi-Objective implementation of the CSA approach (MOCSA) was
modified to integrate chaotic behaviors in order to enhance its solution diversity, demonstrat-
ing a notable increase on performance. In the last few years, techniques aimed to improve
the efficiency of metaheuristic optimization algorithms by implementing surrogated mod-
els are gaining popularity among researchers from this area of science. In Regis (2013),
for example, the author proposed a surrogated-assisted optimization framework based on
PSO coined Optimization by particle swarm Using Surrogates (OPUS) with the purpose of
efficiently solving high-dimensional black-box optimization problems, and implemented it
to solve several real world problems, including groundwater bioremediation and watershed
calibration. Similarly, in Liu et al. (2016), an optimization approach based on Differential
Evolutionwhich implementGaussianProcess (GP) regressions in conjunctionwithOptimiza-
tion by Radial Basis functions Interpolation in Trust-regions (ORBIT) (Wild et al. 2008) was
developed to efficiently and reliably solve optimization problems. The performance of this
method, called Multi-fidelity Gaussian Process and radial basis Memetic Differential Evo-
lution (MGPMDE), was validated by considering a wide set of benchmark test functions, as
well as with its applications for data mining (Liu et al. 2016). While all of the previous sug-
gests that there are still plenty of areas of opportunity for the development and application of
nature-inspiredmetaheuristic optimization algorithms, perhaps the greatest gap in this area of
science is the absence of theoretical foundations that allows to objectively analyze important
characteristics of these techniques, such as convergence rate and efficiency. While there is a
general agreement in that the good performance of nature-inspired algorithms is attributed
to a proper balance between exploration and exploitation of solutions, the truth is that there
is barely a clear definition of what these two concepts truly represent. In fact, classifying the
search operators and strategies applied by nature-inspired methods is often an ambiguous
task, as many of these seems to contribute in some way to both the exploration and exploita-
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tion of solutions, and even then, there is currently no clear way to objectively measure the
rate of exploration/exploitation provided by these operators (Črepiňsek et al. 2013). In the
absence of mathematical analysis methods that could be applied to measure these properties,
the performance of nature-inspired metaheuristics is mostly evaluated by applying ad-hoc
methodologies based on the quantitative analysis of certain validation metrics such as error,
mean, median, standard deviation, and so on (Boussaïd et al. 2013). A recent attempt to
measure these factors over the most popular swarm metaheuristic is presented in (Ghazali
et al. 2018). They proposed a modified equation from (Cheng et al. 2014) that calculates the
diversity of the population using the distance between the solutions in the search space. This
diversity measurement calculates the averaged sum distance between all the solution to the
median of each dimension and solutions. Then, the exploration percent of each iteration is
calculated by dividing the diversity value between the maximum diversity value encounter
in the process, and its inverse is considered as the exploitation rate. However, this idea is
oversimplified, as it doesn’t provide any information related to the optimization landscape
itself, thus making it impossible to get objective conclusions in this regard. Also, it is of com-
mon knowledge that the performance of these methods is often evaluated over well-known
benchmark test functions, developed to represent in some way important characteristics of
real-world problems such as search space scale and imbalance. However, there is no theo-
retical evidence to prove if these test problems truly reflect on this important characteristics,
and as such, these performance evaluation frameworks are often criticized as well (Yang
2011, 2015). Finally, while the absence of theoretical foundations for proving the prowess of
metaheuristic algorithms is a major issue, it is also worth noting that the absence of standard-
ized frameworks for the implementation and comparison of this kind algorithms is virtually
absent as well (Boussaïd et al. 2013); this means that most of the time, researchers are forced
to implement algorithms coded by other researchers or, in the worst case scenario, code the
algorithm themselves. Whichever the case, the main problem here is the fact that algorithm
coded by different persons tend to be somewhat different in terms of implementation and by
extension they also tend to manifest different degrees of performance and efficiency (even
in those algorithms meant to represent the same optimization technique); with that being
said, for nature-inspired algorithms to be implemented and compared in fair terms, software
platforms devised to allow the implementation and evaluation of this methods, all in the same
terms, are also necessary.

8 Conclusions and final thoughts

Nature is often praised by researchers as the perfect example of adaptive problem solving,
and as such, it is not surprising to see why metaheuristics optimization algorithms inspired
in natural phenomena have become so popular. These kinds of methods are designed with
the idea of mimicking some biological or physical phenomenon observed in nature with the
purpose of developing powerful tools that could be applied to solve optimization problems.
The main advantage of nature-inspired metaheuristics over traditional optimization meth-
ods, however, lies on their ability to handle a wide variety of problems independently of their
structure and properties. Due to this distinctive trait, these methods have become popular
choices for solving otherwise complex problems. As a result, these techniques have found
application in virtually every single area of science, including robotics, computer networks,
security, engineering design, data mining, finances, economics, and many others. In the last
few years, literature related to nature-inspired algorithms and its applications for solving opti-

123



From ants to whales: metaheuristics for all tastes

mization problems has experienced an almost exponential increase, with tons of new papers
being published every year. Methods such as GA, SA, PSO, DE, and ACO are among the
most successful and most cited optimization approaches currently reported on the literature
that are widely applied to solve numerous real-world problems. While there are still several
research gaps that remain to be explored for this area of science to reach maturity, these have
served as inspiration to researchers for the development of better techniques, suited to solve
an ever-increasing amount of complex real-world problems. In any case, there is no doubt
that nature-inspired metaheuristics have rightfully earned their place as powerful tools for
optimization, and as such, this line of investigation is expected to keep growing in the near
future.

Appendix

In Table 3, we present a list comprised of several nature-inspired metaheuristics currently
proposed on the literature. A total of 168 different algorithms, along with their respective
abbreviations, authors and its year of proposal, have been documented for this table (note that
some of the algorithms abbreviations might be repeated). Further information about these
methods may be found in (Reyna et al. 2017).

Table 3 List of nature-inspired metaheuristics

Algorithm Abbreviation Authors Year

Amoeboid Organism Algorithm AOA Y. J. Zhang, Z.L. Zhang & Y. Deng 2011

Ant Colony Optimization ACO M. Dorigo 1992

Ant Lion Optimizer ALO S.Mirjalili 2014

Artificial Bee Colony ACO D. Karaboga & B. Basturk 2007

Artificial Beehive Algorithm ABA M. A. Muñoz, J. A. López & E. Caicedo 2009

Artificial Chemical Process LARES R. Irizarry 2005

Artificial Cooperative Search Algorithm ACS P. Civicioglu 2013

Artificial Fish Swarm Algorithm AFSA X. Li et al. 2002

Artificial Immune System AIS J.D. Farmer, N. Packard & A. Perelson 1986

Artificial Physics Optimization APO L. Xie, J.ianchao Zeng & Z. Cui 2009

Artificial Reaction Algorithm ARA L. Astudillo 2013

Artificial Searching Swarm Algorithm ASSA T. Chen 2009

Artificial Swarm Intelligence ASI L. Rosenberg 2014

Artificial Tribe Algorithm ATA T. Chen, Y.Wang & J. Li 2012

Atmosphere Clouds Model
Optimization

ACMO Y. Gao-Wei & H. Zhanju 2012

Backtracking Search Algorithm BSA P. Civicioglu 2013

Bacterial Colony Chemotaxis BCC S.D. Muller, J. Marchetto, S. Airaghi &
P. Koumoutsakos

2002

Bacterial Colony Optimization BCO B. Niu & H. Wang 2012

Bacterial Foraging Algorithm BFA Kevin M. Passino 2002

Bar Systems BS E. Del-Acebo & J. L. De-la Rosa 2008
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Table 3 continued

Algorithm Abbreviation Authors Year

Bat Algorithm BA X.S. Yang 2010

Bat Intelligence BI B. Malakooti, H. Kim & S. Sheikh 2012

Bean Optimization Algorithm BeOA X. Zhang 2010

Bee Colony Optimization BCO D. Teodorovic, P. Lucic, G. Markovic &
M. D. Orco

2006

Bee Colony-inspired Algorithm BCiA S. Häckel & P. Dippold 2009

Bee Swarm Optimization BSO R. Akbari, S. A. Mohammadi & K.
Ziarati

2009

Bee System BS T. Sato & M. Hagiwara 1997

Bees Algorithm BA D.T. Pham, A. Ghanbarzadeh, et al. 2006

Bees Life Algorithm BLA S. Bitam 2012

Bees Optimization BO S. Nakrani & C. Tovey 2004

Big Bang–Big Crunch BB–BC O. K. Erol & I. Eksin 2006

Biogeography-based Optimization BBO D. Simon 2008

Bioluminescent Swarm Optimization BSO D. R. de Oliveira, R. S. Parpinelli & H.
S. Lopes

2011

Bionic Optimization BO R. Steinbuch & S. Gekeler 2011

Black Hole Algorithm BHA A. Hatamlou 2013

Blind, Naked Mole-Rats BNMR M. Taherdangkoo, M. H. Shirzadi & M.
H. Bagheri

2012

Brain Storm Optimization BSO Y. Shi 2011

Bumblebees Algorithm BA F.P. Comellas-Padró & J.
Martínez-Navarro

2009

Cat Swarm Optimization CSO S. C. Chu, P. Tsai & J.S. Pan 2006

Central Force Optimization CFO R. A. Formato 2009

Chaos Optimization Algorithm COA B. Li & W. S. Jiang 1998

Charged System Search CSS A. Kaveh & S. Talatahari 2010

Chemical-Reaction Optimization
Algorithm

CRO A. Y. S. Lam 2010

Clonal Selection Algorithm CSA L.N. de Castro & F. V. Zuben 2000

Cloud Model-Based Differential
Evolution

CMDE C. Zhu & J. Ni 2012

Cockroach Swarm Optimization CSO L. Cheng 2010

Collective Animal Behaviour CAB E. Cuevas, M. González, D. Zaldivar,
M. Pérez-Cisneros & G. García

2012

Cricket Behaviour-based Evolutionary CBBE M. Canayaz & A. Karci 2016

Cuckoo Optimization Algorithm COA R. Rajabioun 2011

Cuckoo Search CS X.S. Yang & S. Deb 2009

Cultural Algorithm CA R. G. Reynolds 1994

Cuttlefish Optimization Algorithm CFA A. S. Eesa, Z. Orman & A. M.
Abdulazeez-Brifcani

2014

Differential Evolution DE R. Storn & K. Price 1997

Differential Search Algorithm DSA P. Civicioglu 2012

Dove Swarm Optimization DSO Su, et al. 2009
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Table 3 continued

Algorithm Abbreviation Authors Year

Dragonfly Algorithm DA Se. Mirjalili 2016

Eagle Strategy ES X.S. Yang & S. Deb 2010

Electromagnetism-like Mechanism EM S. Ilker Birbil & S. C.Fang 2003

Elephant Herding Behaviour EHO G.G.Wang, S. Deb & L. S. Coelho 2015

Evolution Strategies ES I. Rechenberg & H. P. Schwefel 1964

Extremal optimization EO S. Boettcher & A. Percus 2000

Firefly Algorithm FA X.S. Yang 2008

Fireworks Algorithm FA Y. Tan & Y. Zhu 2010

Fish School Search FSS C. J. A. Bastos-Filho, F. B.
De-Lima-Neto, A. J. C. C. Lins, et al.

2009

Flock by Leader FL A. Bellaachia & A. Bari 2012

Flocking-based Algorithm FBA X. Cui, J. Gao & T. E. Potok 2006

Flower Pollination Algorithm FPA X.S. Yang 2012

Football Game Inspired Algorithm FGIA E. Fadakar & M. Ebrahimi 2016

Frog Calling Algorithm FCA A. Mutazono, M. Sugano & M. Murata 2009

Fruit Fly Optimization Algorithm FFOA W.T. Pan 2012

Galaxy-based Search Algorithm GbSA H. Shah-Hosseini 2011

Gases Brownian Motion Optimization GBMO M. Abdechiri, M. R. Meybodi & H.
Bahrami

2013

Genetic Algorithm GA J. H. Holland 1975

Glowworm Swarm Optimization GSO K. N. Krishnanand & D. Ghose 2009

Goose Optimization Algorithm GTO J. Wang & D. Wang 2008

Gravitational Clustering Algorithm GCA S. Kundu 1999

Gravitational Emulation Local Search GELS B. Barzegar, A. M. Rahmani, K.
Zamanifar & A. Divsalar

2009

Gravitational Field Algorithm GFA M. Zheng, G. Liu, C. Zhou, et al. 2010

Gravitational Interactions Optimization GIO J. J. Flores, R. López & J.Barrera 2011

Gravitational Search Algorithm GSA E. Rashedi, H. Nezamabadi-pour & S.
Saryazdi

2009

Great Deluge Algorithm GDA G. Dueck 1993

Grenade Explosion Method GEA A. Ahrari & A. A. Atai 2010

Grey Wolf Optimizer GWO S. Mirjalili, S. M. Mirjalili and A. Lewis 2014

Group Escaping Algorithm GEA H. Min & Z. Wang 2011

Group Leaders Optimization Algorithm GLOA A. Daskin & S. Kais 2011

Group Search Optimizer GSO S. He, Q. H. Wu & J. R. Saunders 2009

Harmony Elements Algorithm HEA Y. H. Cui 2009

Harmony Search HS Z. W. Geem, J. H. Kim, & G. V.
Loganathan

2001

Honey Bee Behavior HBB H.F. Wedde, M. Farooq & Y. Zhang 2004

Honey-bee Mating Optimization HBMO O. B. Haddad, A. Afshar & M. A.
Mariño

2006

Honeybee Social Foraging HSF N. Quijano, K.M. Passino 2007

Human Group Formation HGF A. Thammano & J. Moolwong 2010
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Table 3 continued

Algorithm Abbreviation Authors Year

Hunting Search HuS R. Oftadeh, M.J.Mahjoob &
M.Shariatpanahi

2010

Hysteretic Optimization HO G. Zaránd, F. Pázmándi, K. F. Pál, G. T.
Zimányi

2002

Immune-Inspired Computational
Intelligence

ICI P. Cortés, J. M. García, L.Onieva, et al. 2008

Imperialist Competitive Algorithm ICA E. A. Gargari & C. Lucas 2007

Integrated Radiation Optimization IRO C.L. Chuang & J.A. Jiang 2007

Intelligent Water Drops IWD H. Shah-Hosseini 2008

Invasive Weed Optimization IWO A.R. Mehrabian & C. A Lucas 2006

Krill Herd KHA A. H. Gandomi & A. H. Alavi 2012

Leaders and Followers Algorithm LFA Y. Gonzalez-Fernandez & S. Chen 2015

League Championship Algorithm LCA A. H. Kashan 2009

Light Ray Optimization LRO J. H. Shen & J. L. Li 2010

Magnetic Optimization Algorithm MFO M. H. Tayarani & M. R. Akbarzadeh 2008

Melody Search MS S. M. Ashrafi 2011

Membrane Algorithm MA T. Y. Nishida 2005

Method of Musical Composition MMC R.A. Mora-Gutiérrez, J.
Ramírez-Rodríguez & E.A.
Rincón-García

2014

Migrating Birds Optimization MBO E. Duman, M. Uysal & A. F. Alkaya 2012

Mine Blast Algorithm MBA A. Sadallah, A. Bahreininejad & M.
Hamdi

2012

Monkey Search Algorithm MS A. Mucherino & O. Seref 2007

Mosquito Host-Seeking Algorithm GMHSA X. Feng, X. Liu & H. Yu 2008

Moth-flame Optimization Algorithm MFO S. Mirjalili 2015

Multi-Verse Optimizer MVO S. Mirjalili, S. M. Mirjalili & A.
Hatamlou

2016

Natural Aggregation Algorithm NAA F. Luo, Z.Y. Dong, Y. Chen & J. Zhao 2016

OptBees OB R. D. Maia, L. De-Castro & W.M.
Caminhas

2013

Optics Inspired Optimization OIO A. H. Kashan 2015

Oriented Search Algorithm OSA X.Zhang, W. Chen 2008

Paddy Field Algorithm PFA U. Premaratne, J. Samarabandu & T.
Sidhu

2009

Particle Collision Algorithm PCA W. F. Sacco & C. R.E. de Oliveira 2005

Particle Swarm Optimization PSO J. Kennedy & R. C. Eberhart 1995

Photosynthetic Algorithm PA H. Murase & A. Wadano 1999

PoPMuSiC Algorithm PoPMuSiC E. Taillard & S. VoB 1999

Population Migration Algorithm PMA Y. Zhang 2009

Prey-Predator Algorithm PPA S. L. Tilahun & H. C. Ong 2015

Ray Optimization Algorithm ROA A. Kaveh 2012

River Formation Dynamics Algorithm RFDA P. Rabanal, I. Rodríguez & F. Rubio 2007

Roach infestation Optimization RIO T. C. Havens, C. J. Spain, N. G. Salmon
& J. M. Keller

2008
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Table 3 continued

Algorithm Abbreviation Authors Year

Sapling Growing Up Algorithm SGA A. Karci 2007

Search group algorithm SGA M. S. Gonçalves, R. H.Lopez & L. F.
Fadel-Miguel

2015

Seeker Optimization Algorithm SOA C. Dai, Y. Zhu & W. Chen 2006

Self-defense Techniques of the Plants SDTP C. Caraveo, F. Valdez, O. Castillo & P.
Melin

2016

Self-Organizing Migrating Algorithm SOMA I. Zelinka 2004

Shark Smell Optimization SSO O. Abedinia, N. Amjady & A. Ghasemi 2014

Shark-Search Algorithm SSA M.Hersovici, M. Jacovi, et al. 1998

Sheep Flock Heredity Mode SFHM K. Nara, et al. 1999

Shuffled Frog Leaping Algorithm SFLA M. E. Muzaffar & K. E. Lansey 2003

Simple Optimization SOPT O. Hasancebi, K.S. Azad 2012

Simulated Annealing SA S. Kirkpatrick, C. D. Gelatt & M. P.
Vecchi

1983

Simulated Bee Colony SBC J. D. McCaffrey 2009

Sine Cosine Algorithm SCA S. Mirjalili 2016

Slime Mould Algorithm SMA M. Shann 2008

Social Cognitive Optimization
Algorithm

SCOA Z. Wei, Z. Cui & J.C. Zeng 2010

Social Spider Algorithm SSA James J.Q. Yu & Victor O.K. Li 2015

Social Spider Optimization Algorithm SSO E. Cuevas, M. Cienguegos, D. Zaldivar
& M. Perez

2013

Society and Civilization Algorithm SCA T. Ray & K. M. Liew 2003

Space Gravitational Optimization SGO Y.T. Hsiao, C.L. Chuang, J.A. Jiang &
C.C. Chien

2005

Spiral Optimization Algorithm SpOA G. G. Jin 2010

States of Matter Search SMS E. Cuevas, A. Echavarría and M.A.
Ramírez-Ortegón

2014

Stem Cells Algorithm SCA M. Taherdangkoo, M. Yazdi & M. H.
Bagheri

2012

Stochastic Focusing Search SFS W. Weibo, F. Quanyuan & Z. Yongkang 2008

Superbug Algorithm SuA C. Anandaraman, A. V. M. Sankar &
R.Natarajan

2012

Swallow Swarm Optimization SSO M. Neshat, G. Sepidnam & M.
Sargolzaei

2013

Tabu Search TS F. Glover 1986

Teaching–learning-based Optimization TLBO R.V. Rao, V.J.Savsani & D.P.Vakharia 2011

Termite-hill Algorithm TA A. M. Zungeru, L.M. Ang & K. P. Seng 2012

Unconscious Search US E. Ardjmand & M. R. Amin-Naseri 2012

Virtual Bees Algorithm VBA X.S. Yang 2005

Virus Optimization Algorithm VOA Y.C. Liang & J. R. Cuevas-Juarez 2009

Vortex Search algorithm VS B. Dogan & T. Ölmez 2015

Wasp Swarm Optimization WSO G. Theraulaz, S. Goss, J. Gervet, and J.
L. Deneubourg

1991
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Table 3 continued

Algorithm Abbreviation Authors Year

Water Cycle Algorithm WCA H. Eskandar, A. Sadollah, A.
Bahreinineja & M. H. Abd-Shukor

2012

Water Flow Algorithm WFA S. Basu, C. Chaudhuri, M. Kundu & M.
Nasipuri

2007

Water Flow-like Algorithm WFA F.C. Yang & Y.P. Wang 2007

Water Wave Optimization WWO Y.J. Zheng 2015

Whale Optimization Algorithm WOA S. Mirjalili & A. Lewis 2016

Wisdom of Artificial Crowds WAC R. V. Yampolskiy, L. H. Ashby & L.
Hassan

2011

Wolf Pack Search WPS C. Yang, X. Tu & J. Chen 2007
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