Please show **all** your work! Answers without supporting work will not be given credit. Be concise and precise! You have 75 minutes to complete this exam. To pass: a minimum of eight (8) * and four (4) \checkmark . Grading: $\geq 13pt = 7$, $\geq 14pt = 8$, $\geq 16pt = 9$, otherwise 6. Optional oral test if $\geq 16pt$ (+0 or +1 grade).

(1) Let $(\Omega, 2^{\Omega}), \Omega = \{1, 2, ..., 10\}$. Is $\mu(A) = |A|^2, A \in 2^{\Omega}$, a measure on $(\Omega, 2^{\Omega})$? (1pt, *)

- (2) Write Boole's inequality (also known as the union bound). (1pt, *)
- (3) Give a concrete example of an algebra that is not a σ -algebra. (1pt, *)
- (4) Write the def. of an abstract integral of a non-negative simple function. (1pt, *)
- (5) Write the properties of a cumulative distribution function (CDF). (1pt, *)
- (6) Write the probability mass function (PMF) of the binomial distribution. (1pt, *)
- (7) Show that an estimator can be unbiased but not consistent. (1pt, \circledast)
- (8) Write the definition of correlation. (1pt, *)
- (9) Write the central limit theorem. (1pt, *)
- (10) Write Markov's inequality. (1pt, *)

(12) We have two independent standard normal RVs X and Y. Let Z = 2X - Y and W = -X + Y. Find f_{ZW} the joint PDF of RVs Z and W. You may follow these steps for partial credit:

- (a) Determine the transformation and find its inverse. (1pt, \checkmark)
- (b) Find the Jacobian of the transformation (or inverse). (1pt, \checkmark)
- (c) Find f_{ZW} using the rule for transforming jointly continuous RVs. (1pt, \checkmark)
- (13) Let X and Y be independent Uniform(0, 1). Find the CDF and PDF of Z = XY. (1pt, \checkmark)

(14) Show that the Normal distr. is a conjugate prior for the Normal likelihood mean parameter for the case where the variance is a known constant (not a parameter!). (1pt, \checkmark , \circledast)

(15) We have a system with 200 components. In the observed time period a component will fail with probability $\frac{1}{10}$, independent of other components. There is some redundancy in the system - the system will fail if and only if 100 or more of its components fail. Provide an upper bound for the probability of the system failing using Chebyshev's inequality. (1pt, \checkmark)

(16) If X is uniformly distributed over (0, 1), find the density function of $Y = e^X$. (1pt, \checkmark)

(17) Let a be drawn from Uniform(0, 1). Compute the expectation $E[\max\{a, 1-a\}]$. (1pt, \checkmark)

⁽¹¹⁾ We have *n* integer observations $y_1, ..., y_n$ and we assume that they come from a Poisson distribution with unknown rate λ : $y_i \sim_{\text{iid}} \text{Poisson}(\lambda)$.

⁽a) Derive the maximum likelihood estimator θ_{MLE} of θ . (1pt, \checkmark)

⁽b) Derive Fisher information. $(1pt, \bullet)$