
Sheepdog Driven Algorithm for
Sheep Herd Transport
Vid Cesar, Gašper Habjan, Matic Hrastelj, and Žan Korošak

Collective behaviour course research seminar report
GitHub: https://github.com/mh4043/CollectiveBehavour-GroupC

January 7, 2024

Iztok Lebar Bajec | associate professor | mentor

Collective behaviour

In computer and information science, collective
behaviour refers to the study of how groups of
agents, such as individuals or entities, interact
to exhibit coordinated patterns that emerge
from their collective actions. This concept finds
application in various fields, including artificial
intelligence and robotics, where researchers
seek to develop algorithms inspired by the col-
laborative behaviours observed in nature. One
concrete application of collective behaviour is the
design of sheep herd transport algorithms, which
draw inspiration from the coordinated movement
of herding animals like sheep. The goal in this
specific scenario is to create an algorithm that
mimics the way a shepherd guides and controls
a flock. For instance, this could enable a swarm
system of agents, such as drones or robots, to
navigate collectively and efficiently. By under-
standing and harnessing collective behaviour,
researchers aim to develop advanced algorithms
that can enhance the coordination, adaptability,
and overall performance of swarm systems.

Collective Behaviour | Swarm Systems |
Shepherd | Sheepdog | Herding | Algorithm

We explore the field of collective behaviour in this work. It refers to the study and implementation
of algorithms or systems that mimic the self-organized and coordinated actions, observed in nat-
ural phenomena. We manage to tackle the concrete problem of sheep herd transport algorithms.
Firstly, we successfully re-create one of the existing algorithms in the field of shepherding. We
then present the methods used and the results obtained. Afterwards, we develop some new ideas
for upgrades, extensions and improvements. In the end, we create few variations of the basic
algorithm, by applying some minor improvements. In each variation of the algorithm, sheepdog
successfully leads sheep to the desired goal.

Collective Behaviour | Swarm Systems | Shepherd | Sheepdog | Herding | Algorithm

The analysis of a sheep flock’s behavior serves as an extensively explored example
of collective animal behavior. In an effort to reduce individual risk, sheep instinc-

tively move towards the group’s center, causing the flock to constrict. There is usually
a single agent, which is in most cases a dog (sheepdog), and is tasked with herding
a flock of sheep to an enclosure or any desired goal point. However, these sheep act
as a swarm system, that tries to evade the shepherding dog, while maintaining flock
cohesion [1]. Collective behaviour along with the shepherding problem is very tightly
connected with computer and information science even if it might not look like it on
the first ball. As a system guidance problem, shepherding has diverse applications,
such as robotic sheep herding, crowd control, oil spill cleanups and safeguarding air-
craft. In security and military contexts, it’s studied for unmanned vehicle maneuvers
in combat, terrain searching for intruders and mine collection [2].

Our work aims to not only replicate the established algorithm by Liu et al. [3],
but also to provide innovative extensions that enhance its functionality. By leverag-
ing foundational concepts from collective behavior in computer science, our research
contributes to the evolution of shepherding algorithms, introducing advancements in
efficiency and adaptability.

Related work. Bat-Erdene et al. [4] presents an algorithm and design for a multi-robot
system engaged in shepherding, demonstrating its applicability in the context of Mon-
golian herding. It also employs two types of shepherding multi-robots (corner and
sideline mobile robots), showcasing their effectiveness in herding sheep. The study
introduces a simple system structure and algorithm for controlling these connected
mobile robots, emphasizing the need for high mobility to navigate uneven terrain. A
very similar problem has been earlier tackled by Miki et al. [5], who also ended up
proposing a simple but effective shepherding algorithm. By following their method, it
is possible to control a flock with about 25 members by a single shepherd and about
30 members by two shepherds. Furthermore, the autonomous cooperation for two
shepherds can be generated by the proposed rules.

One of the popular approaches to the challenge we’re facing, has also been pre-
sented by Strömbom et al. [6]. In their work, they suggest a heuristic algorithm that
divides the shepherding task into two distinct subtasks: driving and collecting. They
observe that, during the process of guiding a herd towards a designated goal, the
sheep often exhibit a tendency to separate along the midpoint. In response to this
behavior, the authors incorporate an additional subtask dedicated to gathering stray
sheep that venture too far from the focal point of the flock.

We have taken work by Liu et al. [3] as our starting point. The work mainly deals
with the interplay between an agent and a swarm system. A reverse semi-circle recip-
rocation algorithm is introduced, which is designed to emulate the actions of a sheep-
dog. In proposed algorithm, the sheepdog orients itself towards either the rightmost or
leftmost sheep, ensuring the cohesion of the herd while steering it towards the desired
destination.

We can notice that this field is very interesting and popular. The authors offer
different approaches to useful solutions.

BMA-Computer and Information Science | FRIteza | 2023/24 | CB:C | 1–4

https://github.com/mh4043/CollectiveBehavour-GroupC

Methods

As mentioned previously, we’ve chosen and implemented the model presented by Liu et
al. in [3]. In the following subsections we take a look at how the original model works
and what are its’ core parameters and equations. Then, we go through the process of
how we implemented presented model (workflow). At the end, we provide explanations
on how we implemented the improvements, which we decided for – combing and two
sheepdogs.

Model. Firstly, we need to define the motion of both entities. The equations pi(k +
1) = pi(k) + Tvi(k) and q(k + 1) = q(k) + Tu(k) denote the motion of the i-th
sheep and sheepdog respectively, where pi(k) and q(k) denote the position, vi(k) and
u(k) denote the velocity, and T denotes the sampling period. From this statement,
we get the displacement between the i-th sheep and the sheepdog with the following
equation: pq

i (k) = pi(k)− q(k). We can divide the equation for velocity of the i-th sheep
vi = vdi(k) + R(θi(k))vsi(k) into three parts. The θi(k) is the rotation angle, R is the
rotation matrix, vdi(k) represents the reaction of the sheepdog and vsi(k) represents
the reaction of other sheep. Detailed equations of these three parts are available on
our GitHub repository and in the original article.

The model also takes into account vision blocking between sheep and the sheepdog.
If the i-th and j-th sheep have the same heading, and if the distance between the j-th
sheep and the sheepdog is smaller than the distance between the i-th sheep and the
sheepdog, then the i-th sheep is vision-blocked by the j-th sheep from the viewpoint of
the sheepdog. If the distance between the j-th sheep and the sheepdog is smaller than
the vision radius of the sheepdog (ρv), then that sheep is visible to the sheepdog.

Following that, we can calculate the estimated center of the sheep herd pc(k), by
averaging the positions of visible sheep with the number of visible sheep. We then con-
struct the sheep herd polygon Ps(k) and the sheepfold Pd with the following equation:
Pd = {p|p ∈ R2, ||p− pd|| ≤ ρo} (a set of positions that are in the sheepfold), where ρo is
the radius of the sheepfold and pd is the center of the sheepfold.

Finally, the task is to calculate the u(k) (velocity of the sheepdog), such that for
the initial condition of d(q(0),Ps(k)) > 0 (distance between sheepdog and sheep herd
polygon), we get d(pi(k),Pd) = 0 (distance between sheep and sheepfold), for every
sheep at the end of the algorithm.

These are all the basics. The more complex equations of parameters are available
and described on our GitHub page and in the original article.

Implementation of the algorithm. We decided to use programming language Python,
because it is somewhat fast, easy to use and offers some basic graphical tools that
would suffice for our need.

The algorithm takes as input a plethora of user defined and initialization param-
eters. Most of them are used as weights or thresholds in equations. It also takes as
input all of the positions of entities (sheep, sheepdog, sheepfold) and their radii. In-
side the loop, at each step, the algorithm checks if the goal has been reached, i.e. all
the sheep are in the sheepfold area. If there is at least one that hasn’t reached the
goal, the algorithm calculates the velocity of the sheepdog(s), where it checks whether
all sheep have reached their goal. If yes, then the sheepdog stops, else the algorithm
calculates all the visible sheep and the center point of them. If the sheepdog has no
sheep in sight, then the combing mechanism kicks in. Combing is described in the
next subsection. But if the sheepdog sees at least one sheep, then the algorithm checks
if all the visible sheep are on the right side of the sheepdog, if so, it then gets the right
most visible sheep and by using one of the threshold parameters, it decides whether to
chase or not. And vice versa if the sheep are on the left hand side. After calculation
of velocity, the sheepdog then moves in the calculated direction. The algorithm then
calculates the velocities of the sheep. If a sheep has reached its’ goal, then it just slows
down, else the velocity gets calculated using the equations, described in the previous
subsection. After calculation of velocity, the sheep then move in the calculated direc-
tion. The algorithm stops if all the sheep have reached their goal or if the number of
steps have surpassed the maximum amount of steps.

Improvements. For the improvements, we decided to implement the combing mecha-
nism and two sheepdogs, and then compare the results with the basic algorithm.

Combing. In the basic algorithm, if we have an edge case, where the sheepdog will not
detect any sheep in a certain step due to its detection radius being smaller than the
distance to the closest sheep, it will lead the algorithm to a premature stop, since
the sheepdog will not be able to choose any sheep to chase. To solve this issue, we
have designed a "fail-safe" workaround, which will send the sheepdog into a search for
sheep.

2 | Cesar et al.

The sheepdog will start going downwards, until it sees the edge. It will then turn
90° to the to the left and go in that direction for the length of its vision radius. Then,
it will stop and turn 90° to the left again, and will go upwards until it sees an edge.
There, it will turn 90° to the right and go in that direction for the length of its vision
radius. After that, it will turn 90° to the right and redo the cycle. When it reaches the
edge, it will turn back and start going the other way. If at any point sees a sheep, it
will stop combing and start chasing it.

Two sheepdogs. The other improvement is the ability to use two sheepdogs. Here, we
basically just added another sheepdog in a different position on the sheep fold. There
is the same logic behind them when it comes to calculating velocity and moving.

Results

Figure 1 represents initial positions of the sheepdog (red dot), radius of the sheepdog
(cyan circle), sheep (blue dots) and the radius of the sheepfold (red circle), where the
sheepdog has to herd all of the sheep. Figures 2 and 3 represent step 3580 and step
4460 respectively. Figure 4 represents the final step of the algorithm, where all of the
sheep are in the sheepfold (based on their center). From the first two figures, we can
see combing in action, where the sheepdog firstly combs the area until it sees the first
sheep.

Figure 1. Initial positions of the agents (step 0). Figure 2. Step 3580 of the algorithm.

Figure 3. Step 4460 of the algorithm. Figure 4. End of the algorithm (step 6196).

Figures 5, 6, 7 and 8 represent the extension to the basic setup, that is incorpora-
tion of two sheepdogs (purple and red dot). The number of steps is usually expected
to be lower with two sheepdogs, but that is not always the case. When they start com-
ing closer to each other, the number of steps is similar to the basic algorithm with one
sheepdog. The main advantage takes place when we have sheep spread around the
map and sheepdogs start further apart.

Cesar et al. BMA-Computer and Information Science | FRIteza | 2023/24 | CB:C | 3

Figure 5. Initial positions of the agents (step 0). Figure 6. Step 440 of the algorithm.

Figure 7. Initial positions of the agents (step 0). Figure 8. End of the algorithm (step 1873).

Discussion

In our work, we have managed to successfully re-create the basic algorithm, proposed
in the baseline article, by Liu et al. [3]. We have also introduced and implemented two
extensions to the basic algorithm. The first one includes tecnhique of combing and the
second one includes incorporation of the second sheepdog. We are satisfied with the
results obtained. Sheepdog successfully accomplishes his job, which is to lead sheep to
the declared goal point. However, there is a variety of options to improve behaviour,
but the algorithm serves as a good springboard for further work.

For the final part, let us come up with some further suggestions for improvements
and expansions. We also tried to implement some of these, but unfortunately failed.
The introduction of obstacles within the field emerges as a realistic and valuable ex-
tension, providing insights into the algorithm’s adaptability in diverse environments.
The behaviour of two sheepdogs could also be improved, in the sense of better com-
municating with each other. Their behavior could also be improved in such a way as
to narrow their field of view, as this would theoretically bring them closer to reality.
Dogs are supposed to see around them in an angle of about up to 240°, but currently
we have it made so that the dog can see a whole circle, which has also been suggested
by the reference paper. These potential upgrades could not only enrich the fundamen-
tal algorithm, but also pave the way for practical experimentation to observe their
effectiveness and applicability.

CONTRIBUTIONS. The analysis of the baseline paper was done by all members together. GH
wrote the abstract, introduction, made a review of the field and related works. In the end, he
discussed work achievements. MH described the methods and model, facilitated the interpre-
tation of the equations and done some research on the wandering algorithm. ŽK and VC took
care of the actual implementation of the algorithm and summarized the results. Polishing of
the report and grammar check has been done by all members together.

Bibliography
1. Lien JM, Bayazit O, Sowell R, Rodriguez S, Amato N (2004)

Shepherding behaviors in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004.
Vol. 4, pp. 4159–4164 Vol.4.

2. Long NK, Sammut K, Sgarioto D, Garratt M, Abbass HA (2020)
A comprehensive review of shepherding as a bio-inspired
swarm-robotics guidance approach. IEEE Transactions on
Emerging Topics in Computational Intelligence 4(4):523–537.

3. Liu Y et al. (2021) Sheepdog driven algorithm for sheep herd
transport in 2021 40th Chinese Control Conference (CCC). pp.

5390–5395.
4. Bat-Erdene B, Mandakh OE (2017) Shepherding algorithm

of multi-mobile robot system in 2017 First IEEE International
Conference on Robotic Computing (IRC). (IEEE), pp. 358–361.

5. Miki T, Nakamura T (2006) An effective simple shepherding
algorithm suitable for implementation to a multi-mmobile robot
system in First International Conference on Innovative Comput-
ing, Information and Control - Volume I (ICICIC’06). Vol. 3, pp.
161–165.

6. Strömbom D et al. (2014) Solving the shepherding problem:
heuristics for herding autonomous, interacting agents. Journal
of the royal society interface 11(100):20140719.

4 | Cesar et al.

http://dx.doi.org/10.1109/ROBOT.2004.1308924
http://dx.doi.org/10.1109/TETCI.2020.2992778
http://dx.doi.org/10.23919/CCC52363.2021.9549396
http://dx.doi.org/10.23919/CCC52363.2021.9549396
http://dx.doi.org/10.1109/ICICIC.2006.411
http://dx.doi.org/10.1109/ICICIC.2006.411

	Related work
	Model
	Implementation of the algorithm
	Improvements
	Combing
	Two sheepdogs

	contributions

