
Crowd modelling

Luc Brun, Manon Tregon, Cécile Luc, Alexis Mourier

Crowd path planning. What is it?

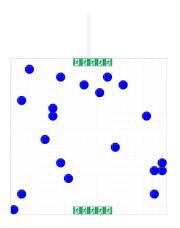
Why should it interest anyone?

Public safety

Evacuation planning

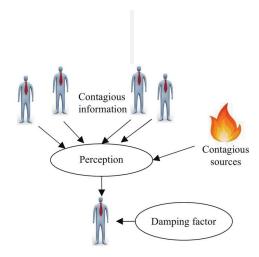
Ex : crowd movement (concert)

human dynamics & real world nuances

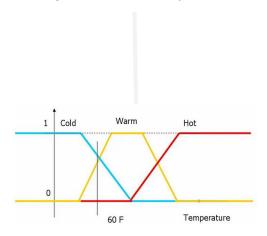


→ Emotion Contagion & Fuzzy Logic

3 mains stages


Crowd path planning model

Create the initial model in which agents among a crowd have to reach an exit.


Emotion Contagion

Improve the previous basic model by adding personalities to agents and by creating an emotion contagion phenomena.

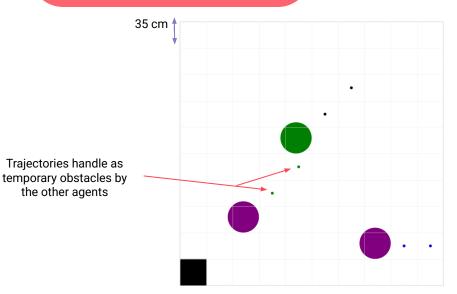
Fuzzy logic rules

Make the model even more realistic by translating "crisps" logic rules into fuzzy ones.

Achievements

Successful implementation of the crowd path planning model through the 3 previous stages.

Implementation of a basic but sufficient visualisation model.


Realisation of deep tests using different starting configurations (agent locations, personalities, exits, etc ...).

Key Challenges

Designing the core of our Assessing the Performance crowd dynamics Model of our Model

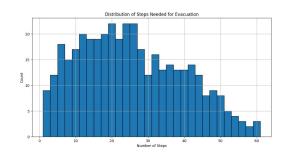
Designing the core of our crowd dynamics Model

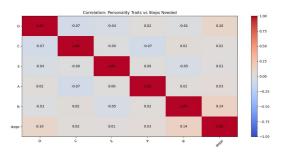
the other agents

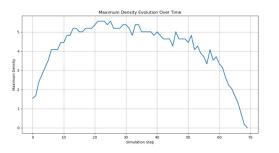
The choices we made:

- Grid Composed of 35 cm x 35 cm Cells
- Agents move asynchronously at each step, marking their path as a temporary obstacle to prevent collisions.
- Speed is represented as the maximum step size (in one direction) the agent can make in a single simulation step (between 1 and 3)

How to assess the performance of our Model?


Our approach


Varying model parameters using different detrics to see If we observe any interpretable differences


Here is the metrics we used:

- Maximum density over time
- Personality trait and number of step correlation matrix
- Distribution of step needed for evacuation
- Average step needed by agent with the same dominant trait
- Evacuation timeline (Proportion of Evacuated agents across time)

Examples of metrics/graphs we computed

Organization

What would you do differently, should you start all over again?

Deadlines

Regular Meetings

Task Distribution

Tools

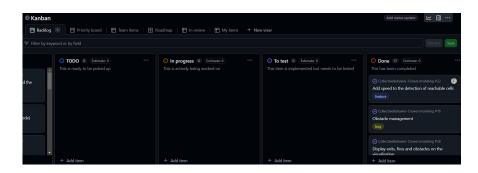
- Planned schedule
- Staying on track

- In person
- Online
- Working on whiteboard

- Kanban
- Tailored to the tastes, skills, and timetables of group members
- Even distribution

GitHub:

README


Specific branch ->

to_test -> main

Discord

Thanks for your attention:)