
Sheepdog-Driven Algorithm for
Sheep Herd Transport
Idora Ban, Simon Hehnen, Iva Idzojtic, and Lukas Pucher

Collective behaviour course research seminar report

January 10, 2025

Iztok Lebar Bajec | izredni professor | mentor

This project explores the Sheepdog-Driven Algorithm for Sheep Herd Transport, which demon-
strates how a single agent can guide and control a swarm from one location to another using
simple local interactions. The goal was to replicate and evaluate the algorithm’s performance in
directing a herd with a single controlling agent. A simulation and 3D visualization were devel-
oped to model and analyze the interactions between the sheepdog and the herd. The algorithm
effectively demonstrated realistic behaviors, including attraction, repulsion, and visibility-based
interactions, showcasing how local rules can influence collective movement. However, chal-
lenges in implementation prevented the herd from consistently reaching the target, highlighting
areas where further refinement is needed.

Sheepdog-Driven algorithm | Swarm systems | Controlling agent

Introduction

Animal behavior-inspired algorithms enable efficient, adaptive solutions to complex
problems by mimicking the coordinated actions of animals, swarm behaviours,

such as flocking or schooling. This project explores the Sheepdog-Driven Algorithm
for Sheep Herd Transport by Liu et al., 2021 [1], that moves beyond traditional swarm
systems, where collective behavior emerges naturally within a group, to address a
reverse problem: how a single agent (a "sheepdog") can control and direct a swarm
(a "herd of sheep") from one location to another. The objective is to replicate and
evaluate this sheepdog-inspired approach, focusing on how a single controlling agent
can dynamically influence the herd to accomplish transport tasks. The aim is to im-
plement the algorithm from scratch, which allows for a deeper understanding of its
mechanics and provides a more flexible, library-free approach to controlling the herd.

Related Work. Recent studies have advanced the understanding of collective behavior
and herding control among autonomous agents. Reynolds (1987) [2] introduced the
"boids" model, using local rules to simulate group dynamics like flocking and schooling.
This work laid the foundation for modern swarm robotics algorithms and decentralized
animal behavior simulations.

Strömbom et al. (2014) [3] addressed the "shepherding problem," proposing meth-
ods for guiding groups with a single "shepherd" agent. Their approach emphasizes
adaptive switching between collecting dispersed agents and driving cohesive groups, re-
sembling real-world herding. It also highlights the importance of visual feedback, such
as agent spacing, to maintain cohesion and target movement. This method applies to
robot-assisted herding, crowd control, and environmental cleanup.

Bayazit, Lien, and Amato (2002) [4] proposed a global roadmap approach for man-
aging group behavior in complex environments. By embedding behavior rules into
roadmaps, agents dynamically make decisions based on location and state. This mir-
rors the Sheepdog-Driven Algorithm, where the sheepdog adjusts its behavior based
on the herd’s position and obstacles, balancing local interactions with global guidance
to efficiently direct herds in complex scenarios.

Together, these studies form a comprehensive base for understanding swarm and
herding behaviors, which informs the development of adaptive and efficient algorithms,
such as the Sheepdog-Driven Algorithm, and supports a comparative analysis of its
performance across various environments and control requirements.

Methods

The practical component of this project is divided into two primary tasks: implement-
ing the simulation algorithm in Python and developing a visualization system in Unity.
The methodology section outlines the approach taken to develop these components,
along with the processes for testing, refining, and analyzing results.

The Algorithm. The algorithm defines the sheepdog’s movement as a backward semi-
circular trajectory, allowing it to drive the sheep herd from behind [1]. The sheepdog
operates within a two-dimensional plane, using an xx-yy coordinate system to track
both its own location and that of each sheep. The sheepdog aims to guide the herd
toward a designated target area by pushing them forward in a controlled manner.

frača: FRIteza/201516.130 BM-RI | FRIteza | 2024/25 | CB:G1 | 1–4

http://fraca.si/FRIteza/201516.130

Key aspects of the algorithm include the sheepdog’s field of view, which restricts
its awareness to only those sheep within its line of sight. Consequently, the sheepdog’s
response is dynamically adjusted based on the position and behavior of visible sheep,
meaning it does not always have complete information about the entire herd.

Figure 1. Example of dog’s field of view.[1]

The control process of the sheepdog is divided into two phases:

1. Initialization: This phase involves setting key design parameters such as viewing
angles, approach distances, and thresholds for direction adjustments. A time
limit is also set for the operation.

2. Iteration: In the main phase, the algorithm evaluates the position of the sheep
relative to the target and adjusts the sheepdog’s movement accordingly. The
sheepdog decides whether to move directly toward the herd or to take a detour
based on the herd’s overall position. When detouring, it aligns itself with the
rightmost or leftmost visible sheep, adjusting its angle to efficiently steer the
herd without unnecessary deviation from the target path.

The algorithm operates through a series of conditions to ensure energy efficiency
and maintain herd cohesion, continuing until all sheep are guided to the target area or
the time limit is reached.

Object-Oriented Approach. To simulate the behavior of the sheep and the dog, we
employed an object-oriented programming approach using Python.

The core of the simulation is encapsulated within the Simulation class. All fixed
parameters, such as the number of sheep, the destination position (sheepfold), the
attraction radius, and the safety radius, are defined as class variables. Additionally,
the current positions of the sheep and the dog are stored as NumPy arrays, ensuring
efficient computation and manipulation.

Simulation. The simulation operates as a series of discrete steps. At the beginning of
each step, the algorithm checks if convergence has been achieved—specifically, whether
all sheep are within the destination circle. If this condition is met, the algorithm ter-
minates. Otherwise, the simulation proceeds to calculate the updated positions of the
dog and sheep.

1. Dog Movement: A velocity vector is computed for the dog. This velocity is
scaled by a sampling period T and added to the previous position of the dog
to determine its new position.

2. Sheep Movement: Each sheep’s velocity is calculated based on its current state.
This velocity is then transformed using a rotation matrix and added to its previ-
ous position.

After updating the positions, the step counter is incremented, and the old positions
are stored. This historical data is essential for generating visualizations, as it provides
the trajectory of both the sheep and the dog.

A simple visualization was implemented during development as a Python scatter
plot. In this plot, the sheep and dog are represented by points of different colors, pro-
viding an intuitive view of their movements.

2 | frača: FRIteza/201516.130 Hehnen et al.

http://fraca.si/FRIteza/201516.130

Figure 2. A simple visualization of the starting phase of herding.

Visualization. The more polished and informative visualization component of the
project was developed in Unity to render movement data generated from the Python
simulation, offering an interactive and insightful format for analyzing the algorithm’s
behavior. The goal was to create an intuitive environment where the guiding of the
herd by the sheepdog under various conditions could be observed.

Path data from the Python simulation was imported into Unity to initiate the visu-
alization. This data, in the form of .json files, represented the movement of each entity
(sheep and sheepdog) and enabled the creation of animated paths that reflected their
interactions over time. A virtual environment was constructed in Unity to visually
simulate the conditions modeled in Python.

The scene was managed by a core object called the "Manager", which dynamically
generated all entities based on the .json data. This included determining the number
of sheep, dogs, their starting positions, and the destination points. Parameters such
as simulation speed and the visualization of entity paths were able to be adjusted
during runtime. A graphical representation of the dog and sheep was included, with
the option to replace these models.

A flat terrain with textures and painting details was created using Unity’s tools
to ensure a realistic environment. A skybox featuring a 360° photo of the FRI cam-
pus in Ljubljana was included, setting the stage for a more realistic and interesting
simulation.

Multiple techniques were employed to highlight critical aspects of the algorithm.
Path trails, speed indicators, and field-of-view displays were used to emphasize the
dynamics between the sheepdog and the herd. The LineRenderer, assigned by the
Manager, rendered each entity’s path. As the simulation progressed, entities moved
at the same speed from one coordinate to the next, with smooth transitions between
points. The rotation of each entity was updated so that they faced the direction in
which they moved, using linear interpolation for smooth transitions.

In addition to the core functionality, five different camera modes were implemented,
with smooth transitions between them. These modes allow the user to switch between
perspectives such as the dog’s point of view and a top-down view of the simulation.

Figure 3. Example of a dog per-
spective view.

Figure 4. Example of a top down
view.

Figure 5. Example of a cinematic
view.

Figure 6. Example of a free flow
view.

Figure 7. Example of a static
camera view.

During the development of the simulation, challenges emerged in ensuring smooth
transitions between coordinates and preventing overflows. These challenges were re-
solved through custom code, which provided full control over the entities’ movement
and positioning.

Hehnen et al. BM-RI | FRIteza | 2024/25 | CB:G1 | 3

Results

The Sheepdog-Driven Algorithm for Sheep Herd Transport was implemented, recre-
ating the core framework described in the original paper. The interactions between
the sheepdog and the sheep were modeled using local interaction rules, with the dog
designed to guide the herd toward a target destination. Movement dynamics, including
attraction, repulsion, and visibility checks, were incorporated, and the agents’ posi-
tions were updated in real-time to simulate natural behavior.

A 3D visualization was developed to illustrate the algorithm’s dynamics, providing
an intuitive representation of the interactions between the sheepdog and the herd. The
visualization allowed for a detailed analysis of movement patterns and the algorithm’s
performance under varying conditions.

However, despite closely following the methodology, the simulation did not con-
sistently achieve the intended outcome of guiding the herd to the designated target.
While the sheep’s movements responded to the sheepdog as expected, the dog was
unable to reliably lead the herd to the goal. These results suggest potential areas for
refinement in the algorithm’s implementation, which are discussed further in the next
section.

Discussion

The implementation of the Sheepdog-Driven Algorithm revealed several challenges that
impacted the consistency of the results. A primary issue was the lack of clarity and
detail in the original paper, which introduced numerous terms and variables without
sufficient definitions or context.

To give a few examples, the terms Sr(pd − x) and Sl(pd − x), introduced in [1], were
not explained in terms of their practical computation. Similarly, the variable Dd

q (k),
intended to represent the direction from the sheepdog to the sheepfold, was not used
in subsequent equations or pseudocode, adding to the ambiguity.

While some terms, such as o(x) = x
|x| , were defined mathematically, their interac-

tions with other variables, like pi
q(k) and pi

d(k), were not fully clarified. Additionally,
the "sheep herd polygon" function Ps(k) was introduced but not explicitly utilized,
leaving its purpose unclear.

After following the algorithm as described, unexpected behavior was observed, with
the sheepdog initially moving away from the sheep rather than guiding them. A cor-
rection was made by reversing the sign in the o(q(k) − Dl(k)) function, which resolved
the issue and allowed the sheepdog to interact with the herd more effectively. However,
no justification for this adjustment was provided in the paper, and it remains unclear
if this modification aligns with the intended algorithm design.

The authors were contacted for clarification, but no response was received. This
lack of guidance required reliance on trial and error, independent research, and as-
sumptions to address the gaps in the paper. While this approach allowed for partial
implementation of the algorithm, some ambiguities remained unresolved. Moreover,
the paper itself is not so well-suited for direct implementation, and there is no open-
source implementation available.

Despite these challenges, the visualization highlighted the effectiveness of certain
behaviors, such as the sheep responding to the sheepdog’s position. However, the
inability to consistently guide the herd to the target suggests areas for further refine-
ment, including adjustments to the dog’s guidance strategy and cohesion dynamics
within the herd.

Contributions. IB and SH did the implementation, LP did visualizations, II did the
report.

Bibliography

1. Liu Y et al. (2021) Sheepdog driven algorithm for sheep herd
transport in 2021 40th Chinese Control Conference (CCC). pp.
5390–5395.

2. Reynolds CW (1987) Flocks, herds and schools: A distributed
behavioral model in Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’87. (Association for Computing Machinery, New

York, NY, USA), p. 25–34.
3. Strömbom D et al. (2014) Solving the shepherding problem:

heuristics for herding autonomous, interacting agents. Journal
of the Royal Society Interface 11.

4. Bayazit OB, Lien JM, Amato NM (2002) Better group behaviors
in complex environments using global roadmaps in Proceed-
ings of the Eighth International Conference on Artificial Life,
ICAL 2003. (MIT Press, Cambridge, MA, USA), p. 362–370.

4 | frača: FRIteza/201516.130 Hehnen et al.

http://dx.doi.org/10.23919/CCC52363.2021.9549396
http://dx.doi.org/10.23919/CCC52363.2021.9549396
http://dx.doi.org/10.1145/37401.37406
http://fraca.si/FRIteza/201516.130

