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ABSTRACT: This study explores the use of reinforce-
ment learning (RL) to model social distancing behaviors
in artificial agents, aiming to minimize disease trans-
mission in a two-dimensional environment. Inspired by
natural behaviors observed in species like ants, agents
exchange health information and adapt their movements
to avoid infected individuals. We investigate how differ-
ent reward structures, such as collision-based penalties
and external tasks like wall-touching, influence agent
behavior and the emergence of social distancing. Results
show that agents trained with RL exhibited increased
separation between healthy and infected agents, reducing
infection spread. The findings suggest that RL can be
a powerful tool for simulating disease dynamics and
informing swarm robotics and public health strategies.

I. INTRODUCTION

The spread of infectious diseases presents a significant chal-
lenge to both human and animal populations, prompting the
development of mechanisms to minimize transmission. Social
distancing, an adaptive behavior where organisms avoid in-
fected individuals, has been observed across various species,
providing an evolutionary advantage in disease mitigation.
During the COVID-19 pandemic, social distancing became a
key public health strategy, prompting interest in how such
behaviors might emerge in artificial agents.

Modeling disease transmission and social distancing behav-
iors in simulated environments can provide valuable insights
for fields like epidemiology, robotics, and swarm intelligence.
Traditional methods often rely on predefined rules, limiting
the complexity and adaptability of agent behaviors. Reinforce-
ment learning (RL), however, offers a flexible framework where
agents learn to adapt based on reward structures, fostering
more organic behaviors that evolve in response to environmen-
tal pressures.

In this study, we used RL to model social distancing behav-
iors in agents within a two-dimensional environment. By adapt-
ing their interactions based on health information exchanged
with one another, agents aim to minimize disease transmission.
Building on predator-prey dynamics in multi-agent RL frame-
works, we explored how different reward structures and network
adaptations contribute to the emergence of social distancing,
where agents autonomously avoid infected individuals.

Our goal was to deepen the understanding of social distanc-
ing behaviors in adaptive multi-agent systems, with potential
applications in disease transmission modeling, swarm robotics,
and public health simulations.

II. RELATED WORK

In Predator—prey survival pressure is sufficient to evolve
swarming behaviors |1], the authors used reinforcement learn-
ing (RL) to model predator-prey dynamics in a coopera-
tive-competitive multi-agent framework. Predators are re-
warded for catching prey, and prey for avoiding capture, al-
lowing agents to develop adaptive behaviors such as swarming
and predator dispersion. Unlike traditional rule-based models,
RL enables emergent, flexible behaviors that better reflect real-
world complexity. Drawing from this, we adapted RL methods

to model disease spread, tuning agent parameters and rewards
to simulate social distancing behaviors.

Social distancing as a natural response to disease is further
explored in Infectious diseases and social distancing in nature
[3], which examines how animals instinctively adjust interac-
tions to reduce transmission. These behaviors arise through
precautionary actions by healthy individuals or physiological
responses in infected ones. Meanwhile, Romano et al. 2], in
The trade-off between information and pathogen transmission
in animal societies, highlight the balance between minimizing
infection risk and maintaining critical social connections. They
proposed “network plasticity” as a mechanism enabling popu-
lations to optimize this trade-off, offering insights into decision-
making within social groups.

Together, these studies provide frameworks for modeling
adaptive behaviors under environmental pressures. Leveraging
these insights, we use RL to simulate the dynamics of disease
transmission, focusing on how agent interactions influence so-
cial distancing and infection spread.

III. METHODOLOGY

Our objective is to simulate the spread of infectious diseases
within a population of agents navigating a two-dimensional
environment, exploring how they can autonomously learn to
minimize transmission by adapting their interactions based on
health information exchanged with others.

A. Simulation Environment

This study employed a multi-agent reinforcement learning
(RL) framework, adapted from the environment developed by
Li et al. (2023) [1]. The simulation takes place in a two-
dimensional continuous space with periodic boundary condi-
tions, meaning that agents crossing one edge of the square
environment reappear on the opposite edge, retaining their
velocity.

Agents were modeled to resemble ants (changed from uni-
cycles like in Figure , with their body consisting of three
connected circles (the back circle being slightly larger) and
six legs. Their behavior is driven by a combination of active
and passive forces. Active forces, controlled by the agents,
include a forward movement force (aF') aligned with their
heading direction and a rotational force (aR) enabling changes
in heading. Passive forces, inherent to the environment, include
drag force (F'd), simulating resistance opposing the agent’s
velocity, and repulsive force (Fa), which prevents agents from
overlapping by pushing them apart. At each simulation step,
the agents’ positions and velocities are updated by summing
all acting forces, with the dynamics governed by:
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where z is the agent’s position, v its velocity, 6 its heading
angle, h the unit vector for heading direction, and m the agent’s
mass. The agents along with the forces acting on them are
illustrated in Figure[I]

To tailor the framework to our objectives, we implemented
several modifications: 1) changed agent visualization from uni-
cycles to ant-like figures and adjusted movement parameters; 2)



@R 0 7
h /fv ’
v fa

Figure 1. Active (left) and passive (right) agent forces. |1]
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incorporated health status perception for each agent; 3) tracked
agent interactions for network evaluation; and 4) redefined the
reward policy to align with disease-spread mitigation goals.

B. Basic Reward Policy

Our initial reward policy aimed to produce social distancing
patterns in agent behavior is based on direct collisions between
agents as the primary form of information exchange. Colli-
sions between agents of the same status (healthy-healthy or
infected-infected) were rewarded to encourage grouping behav-
ior. In contrast, collisions between agents of different statuses
(healthy-infected or vice versa) were penalized to discourage
close contact to limit disease spread.

The above mention policy is demonstrated in isolation with
all healthy agents in Figure 2] On the left simulation we
penalized each agent upon collision with a —1 reward, while
on the right simulation we rewarded each colliding agent with
a +1 reward. This demonstrates how a very simple change in
the reward policy effects the learned behavior.
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Figure 2. Demonstration of simple reward policies - penalize (left)
or reward (right) collisions.

We tried a few approaches to augment the simple reward

policy:

1) Diminishing Reward for Interactions — To reduce
agent clustering, consecutive interactions were progres-
sively penalized based on recent interactions (h(z) —
health status of agent ).

Y if h(a) # h(b)

+o *v(1 — recent(a, b))

reward(a, b) = { otherwise

2) Wall Collision Penalty — In non-periodic environ-

ments, we penalized agents for colliding with walls.
—)\ if a collides with any wall
0 otherwise.

reward(a) = {

3) Energy Control Penalty — A control penalty was
introduced to simulate energy consumption, penalizing
the magnitude of the agent’s control inputs.

reward(aF, aR) = —(a|aF| + BlaR)|)

However, we found these approaches too engineered for our
goals and ultimately decided to stick with a simpler reward
policy.

What we did find to vastly improve visualization results
was the introduction of an external task. This task added
complexity that better reflected real-world dynamics. Agents
alternated between touching the left and right walls, with
each agent initially assigned a wall. They were rewarded +0.1
for moving in the correct direction and +1 for reaching the
assigned wall. After completing the task, agents switched to
the opposite wall, requiring them to continuously adapt their
movement strategy. This task significantly enhanced the agents’
performance and provided clearer insights into their behavior.

C. Alternative Information Ezchange

Our main exploration of agent interaction (information ex-
change) was on the basis of collisions. As an alternative, we
also considered a pheromone-based system inspired by ant
behavior, where agents perceived "safety" or "danger" through
accumulated, decaying concentrations. While promising in the-
ory, this approach performed poorly compared to integrating
movement-based tasks. The core issue was the lack of a clear
relationship between pheromone observations and the actions
needed to maximize rewards. This underscores the importance
of designing observation mechanisms that directly guide action-
able, reward-driven behavior.

IV. RESULTS
A. Interaction Network Observations

To assess the emergence of social distancing behaviors, we
convert agent interactions into a network as described in
Stroeymeyt et al. (2018) [4]. During each evaluation step,
interactions are recorded in an n X n matrix, where n is the
total number of agents. A collision between agents is considered
an interaction. After each evaluation, the matrix is normalized
to create the network, where nodes represent agents and edges
form if interaction values exceed a 0.01 threshold. Edge weights
correspond to interaction values, and nodes are labeled with the
agents’ health status.

We evaluated our trained model over a 10,000-step episode
using both a random, untrained network and a trained network,
constructing interaction networks to analyze agent behavior.
The random network lacked structure, forming a mostly fully
connected graph. In contrast, the trained network exhibited
separation, with infected agents interacting less with healthy
ones while maintaining interactions with other infected agents.
When edges were weighted by interaction frequency, these
patterns became clearer, as shown in Figure [3]

We calculated network metrics such as clustering, modu-
larity, and density to quantify agent interactions. Modularity
increased from —0.0005 (random) to 0.25 (trained), and cluster-
ing rose from 0.056 to 0.066, indicating greater group separation
and the emergence of social distancing. These changes align
with reduced infection spread, as suggested in [5].

To study pathogen-induced changes, we ran 10 experiments
using the best-performing model. In each, agents were desig-
nated as infected, and a baseline 10,000-step evaluation was
conducted without actual infections. Metrics were recorded
before and after introducing infections. Results in Figure []
show increased modularity as infected agents segregated and
decreased network efficiency, consistent with reduced pathogen
spread. However, clustering unexpectedly decreased due to the



Figure 3. Filtered learned interaction network.

high connectivity of the initial infection-free network, where
agents formed dense groups with a clustering coefficient of
0.138.
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Figure 4. Changes in interaction network properties when introduc-
ing infected agents.

The results, shown in Figure [4 reveal a significant increase
in modularity, as infected agents became more segregated
from the healthy population. Additionally, network efficiency
decreased, suggesting an increase in the shortest paths within
the network, which is consistent with reduced pathogen spread.
However, contrary to expectations, clustering decreased. This
anomaly can be explained by the initial lack of infected agents,
resulting in a highly connected network with a high clustering
coefficient of 0.138 due to the agents’ tendency to form dense
groups.

B. Simulation Visualization Observations
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Figure 5. Environment simulation visualization: start (left) vs. end
(right).

Figure [5] illustrates a simulation of our best-performing pol-
icy. Orange ants represent infected agents, while black ants rep-
resent healthy ones. The left image (frame 25) shows the start of
the simulation, and the right image (frame 1300) depicts a later
stage. A clear separation between the two groups is observed,
minimizing contact between agents of different health statuses.
Notably, this separation only emerged after introducing the
additional left-to-right movement task. Without this task, while
the interaction network properties remained similar, the visual
separation was far less pronounced.

V. DIscussION

This study used reinforcement learning (RL) to model social
distancing behaviors in artificial agents, aiming to minimize dis-
ease transmission in a two-dimensional environment. Inspired
by natural behaviors like those of ants, agents exchanged health
information and adapted their movements to avoid infected
individuals, simulating social distancing.

Results showed that agents trained with a basic reward policy
increased the separation between healthy and infected agents,
as reflected in network metrics like modularity and clustering.
These metrics indicated that agents successfully minimized dis-
ease transmission by avoiding contact with infected individuals.

We also examined the impact of reward components, includ-
ing diminishing rewards, control penalties, and wall collision
penalties, which refined agent behavior and encouraged more
efficient movement patterns. Additionally, agents alternated be-
tween touching walls, promoting more structured behavior and
facilitating social distancing. In contrast, a pheromone-based
exchange system was less effective due to its misalignment with
reward-driven actions.

Our findings suggest RL can effectively model disease spread
and social distancing behaviors. Future research could build on
these results by incorporating more complex disease dynamics,
improving agent interactions, and applying the model to public
health simulations and swarm robotics.

CONTRIBUTIONS: LT prepared/fixed the environment
setup and did the basic avoid/touch experiments, INS and
AZ did the reward policy experiments and the network
statistics, NL did the alternative interactions experiment and
organized/polished the report. Each member wrote their own
parts of the report.

The source code for this project is accessible on the |GitHub
Repositoryl
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