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This project investigates the emergence
of swarming behaviors in predator-prey
dynamics using reinforcement learning.
Despite challenges in replicating swarming
behaviors, the work establishes a foundation
for exploring the impact of environmental
obstacles and additional species on sur-
vival strategies. By expanding the model
to include interspecies interactions and
complex environments, this study provides
a framework for future research into col-
lective behavior and adaptive strategies in
multiagent systems.
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Collective animal behaviour, especially swarming in predator-prey dynamics, offers insights into
survival strategies that emerge under evolutionary pressures. This report outlines the initial
objectives and foundational concepts for simulating predator-prey. Inspired by previous work,
we examined how survival pressures can drive emergent group behaviours in prey through
reinforcement learning. Our primary objective was to recreate a reinforcement learning-based
model where predator-prey interactions lead to swarming and evasion behaviours. Unfortunately,
we have not been able to observe any swarming behaviour. We suspect that the rewards used
in the model lead to suboptimal results. With different learning parameters we might be able to
achieve desired results, but so far we have not been able to do so. The model was then extended
to include environmental obstacles and an additional species, to provide framework for future
work on interspecies interactions and new survival strategies.
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The sudden emergence of swarming behaviours in animals is one of the most strik-
ing examples of collective animal behaviour. These behaviours have been exten-

sively studied for their implications for the evolution of cooperation, social cognition
and predator–prey dynamics [1]. Swarming, which appears in many different species
like starlings, herrings, and locusts, has been linked to several benefits including en-
hanced foraging efficiency, improved mating success, and distributed problem-solving
abilities. Furthermore, they are hypothesized to help with improving group vigilance,
reducing the chance of being encountered by predators, diluting an individual’s risk
of being attacked, enabling an active defence against predators and reducing predator
attack efficiency by confusing the predator [2].

In this project we took the inspiration from the work of Li et al. (2023) [2] to ex-
plore how simple survival pressures can drive the emergence of swarming behaviour.
The first goal was to create a realistic simulation where both prey and predators learn
to adapt through reinforcement learning based on their drive to survive. Unfortu-
nately, we have not yet been able to recreate the same results as in [2] or at least ob-
serve any swarming behaviour.

Nevertheless, we then extend our work by providing framework for the introduc-
tion of new environmental obstacles and new species with the desire to observe how
interspecies interactions lead to new survival strategies [3].

Methods

Our proposed methodology aimed to simulate swarming behaviours in a predator-prey
environment using reinforcement learning (RL). We defined and tested a RL-based
model where agents, such as prey and predators interacted within a two-dimensional
space. The goal was to observe collective behaviours like swarming, evasion, and
strategic movement.

We implemented our own environment setup, which we wanted to compare with the
model from Li et al. (2023) [2].

Environment Setup. The simulation took place in a 2D environment with open space,
meaning that agents reappeared on the opposite side when they crossed the boundary.
Such setup with periodic boundaries serves as an approximation of an infinite space,
where agents are allowed to move freely without encountering physical borders. Later
on, we introduced a new species to the environment and placed random obstacles,
which simulated more realistic and complex space that challenged the agents to adapt
their movement and coordination.

Agent Dynamics. Agents in our simulations were subject to both active and passive
forces.

Active forces are self-generated by agents to drive their movement. These forces
consist of two components:

• Forward Propulsion: Drives the agent in the direction of its heading. This
force is represented as aF .
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• Rotational Force: Allows the agent to rotate its heading within a threshold
value. This force is denoted as aR, where aR controls the angular velocity.

Passive forces act on agents due to interactions with the environment and other
agents. These include:

• Dragging Force: Acts opposite to the agent’s velocity, simulating frictional
effects. It is proportional to the magnitude of the velocity v.

• Elastic Forces Between Agents: When agents are in contact, elastic forces
prevent overlap and simulate collision dynamics. These forces follow Hooke’s law
and are represented as fa.

The RL framework aimed to optimize the agents’ use of active forces aF and aR to
maximize their survival behaviors.

Agent Types and Behaviour.

• Prey: Prey aims to survive by avoiding predators and moving as a group.

• Predators: Predators are designed to pursue and catch prey.

• Super Predators: We introduced a third type of agent called super predators.
The aim of super predators is to catch predators, while not caring about the
prey. This would simulate a real world food chain, where predators would have
to choose between catching prey or avoiding super predators.

Reinforcement Learning Framework. At first we wanted to use the Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) algorithm [2, 4], but we had a hard time
writing it from scratch. Hence, we later decided to use Proximal Policy Optimization
(PPO) algorithm [5].

We followed the same reward structure as in Li et al. (2023) [2], where the reward
for prey is set to −1 if it is caught by a predator and the predator is awarded +1 if it
catches a prey. As in the original article we also added small penalty of −0.01|aF | −
0.1|aR| which mimics the cost of movement. When adding super predators, we fol-
lowed the same reward structure for the interaction between predators and super
predators. We also added obstacles and added a toggable negative reward if any agent
touched it, so we could observe it’s effects.

Agents were trained through episodic simulations, allowing them to learn and adapt
from each episode’s interactions. We varied parameters to try and get the best results,
but so far we have not been successful.

Proposed Methodology for Verification. To verify the behavior of our model, we adopted
the methodology described in Li et al. (2023) [2], utilizing two key metrics: the Degree
of Alignment (DoA) and the Degree of Separation (DoS).

• Degree of Sparsity (DoS): This metric measures the spatial aggregation of
agents, capturing how densely the agents cluster together. It is defined as:

DoS = 1
T ND

T∑
t=1

N∑
j=1

∥xj(t) − xk(t)∥

where: xj(t) is the position of the j-th agent at time step t, xk(t) is the position
of the nearest neighbor k = arg mink ∥xj(t) − xk(t)∥, T is the episode length, N
is the total number of agents, and D is the maximum possible distance between
two agents in the environment.
A smaller DoS value indicates denser clustering, while a value of 0 represents all
agents aggregating at a single point [2].

• Degree of Alignment (DoA): This metric quantifies the alignment of the
agents’ headings, assessing how consistently agents move in the same direction.
It is defined as:

DoA = 1
2T N

T∑
t=1

N∑
j=1

∥hj(t) + hk(t)∥

where: hj(t) is the heading of the j-th agent at time step t, hk(t) is the heading
of the nearest neighbor of agent j (the same nearest neighbor as in the DoS
calculation), T is the episode length, and N is the total number of agents.
Higher DoA values indicate stronger alignment in agent movement. It is impor-
tant to note that the DoA measures local alignment between neighboring agents
rather than the mean heading of the entire group, making it more suitable for
detecting relative alignment within swarms [2].
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Results

In the initial phase of our project, we implemented a basic model where we created
our environment with periodic borders and successfully populated it with agents which
followed a reward system following the article. At this stage we only implemented
active forces with fixed values. Our results looked promising.

Next we improved the model by first adding passive forces. We also fine-tuned
some parameters such as the agents’ speed, size and passive forces. The passive forces
included dragging forces and elastic forces between contacting agents. Then we ini-
tiated active forces as random instead of fixed valued. That was crucial for our next
step, since we were going to build our reinforcement model based on them.

Lastly we added a RL component. The RL component was built to fine-tune the
active forces af and af to enable the agents to move efficiently and maximize their
rewards. We tried implementing a MADDPG algorithm like in the article. However
after training our model numerous times over 1000 episodes, the results were not great.
Instead of the agents moving to maximize their reward, they ended up moving in
circles.

(a) (b) (c)

Figure 1. (a) Our model with no RL component, following the reward system and fixed active forces. (b) Our model with
no RL component, with added fixed passive forces and random initialization of active forces (c) Our model with RL, after
training.

Due to our unsatisfactory results, we decided to adopt the RL model from the Li et
al. article [2]. Using their code, we were able to successfully run simulations of their
model in our environment that can be seen in figure 2. This provided a functioning
baseline for comparison and further experimentation. Our results demonstrate signif-
icant progress in achieving swarming behaviours. Specifically, we achieved an impres-
sive Degree of Separation (DoS) value of 0.12. The prey agents were able to form tight
clusters while escaping the predators. However, the Degree of Alignment (DoA) results
remained suboptimal, with values consistently staying at around 0.3. This indicates
that while agents were able to group closely, they struggled to align their velocities
and directions cohesively. We failed to completely recreate their model. Even after
consulting with the original authors we didn’t get better results.

Figure 2. Visualization of simulation results showing agent behavior. The prey demonstrate successful swarming
behavior, as indicated by the tight clustering of prey, resulting in a low Degree of Separation. However, the also show
poor alignment, leading to low DoA numbers.

We tried modifying their code to add obstacles and the third species but we failed
to do so to the complex nature of their code. That is why we tried fixing our model
one last time. This time we used the PPO algorithm. Using the same reward struc-
ture we observed agents becoming stationary, but when we decreased the penalty for
movement, the agents began moving normally. Still we were not able to observe any
swarming behaviour. Visually, this model is much better than the previous one we
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have implemented, as the agents do not move in circles, but the results are still not
satisfactory. The fact that the agents become stationary with the original reward
structure is somewhat expected, as agents simply learn to avoid moving to avoid penal-
ties. This makes us thinking that using different training parameters might lead to
results similar to the ones in the article [2]. Unfortunately, we have not been able to
find the right parameters that would lead to the desired results.

On this model we also added obstacles and the third species. Learning in such
environment again did not produce any swarming behaviour. We were hopeful but the
DoA and DoS values were not great. The results can be seen in figure 3.

(a) (b) (c) (d)

Figure 3. (a) Final model before training. (b) Final model after training. (c) Final model before training with obstacles
and superior predator. (d) Final model after training with obstacles and superior predator.

Discussion

Our project had mixed results in simulating swarming behaviors in predator-prey
dynamics. While we implemented and tested several models, none achieved the desired
outcomes. The first model, which included reinforcement learning, showed agents
learning basic movement patterns, but the results were not promising as the agents
ended up moving in circles.

The second model, based on the code from the Li et al. article [2], showed low DoS
values, indicating clustering, but struggled with the DoA values. This revealed that
although agents successfully formed groups, they failed to coordinate their movements
effectively.

Introducing obstacles and a third species added complexity to the environment and
also highlighted significant challenges in balancing agent behaviors. Among the tested
methods, the PPO algorithm demonstrated the most promise. Although its DoA and
DoS values were not the best, it offered greater flexibility for future modifications,
such as customizing reward structures and modifying the environment.

We believe our work has value because it provides a framework for exploring predator-
prey interactions and collective behaviors in dynamic environments. While our re-
sults were not conclusive, they highlight important areas for improvement and lay the
groundwork for future studies.

CONTRIBUTIONS. AK worked on the first two models and writing agent dynamics and results,
TB worked on original model, results, discussion, VL worked on original model, implementing
PPO model and methods.
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