
University of Ljubljana
Faculty of Computer and Information Science

Algorithm analysis: Exercises with solutions for
AAHPS tutorials

Matej Pičulin
Ljubljana, 2022

Contents
1 Introduction note 2

2 Time complexity review 3
2.1 Time complexity of code snippets 3
2.2 Streaming median . 10
2.3 Sorting functions . 11

3 Solving recurrences 12
3.1 Tree method . 12
3.2 Master method . 14
3.3 Akra-Bazzi . 15
3.4 Annihilators . 18
3.5 Substitution method . 23

4 Probabilistic analysis 24
4.1 Sum of n dice . 24
4.2 Hat-check problem . 24
4.3 Inversions . 25
4.4 Balls and bins . 25
4.5 Hire assistant . 28
4.6 Random generator . 28

5 Amortized analysis 29
5.1 Comparing methods . 29
5.2 Full analysis of dynamic tables 30

6 Appendix 34
6.1 Simplified Masters . 34
6.2 Masters . 34
6.3 Akra-Bazzi . 35
6.4 Extended Akra-Bazzi . 35
6.5 Annihilators . 36

1

1 Introduction note
A selection of exercises and solutions for the course Algorithm Analysis and
Heuristic Problem solving that were used over past few years. Some exercises
are taken from the book Introduction to Algorithms, 3rd Ed., by Cormen, T. H.,
et al., Massachusetts London, England, 2009 and from Jeff Erickson’s Append-
ing available at https://courses.engr.illinois.edu/cs573/fa2010/notes/
99-recurrences.pdf.

This script covers recurrences, probabilistic and amortized analysis.

2

2 Time complexity review
2.1 Time complexity of code snippets
Find the (exact) number of times print() function executes for the following
loops using n = 10 and n = 20. Next, find or estimate tight asymptotic bound
of the following loops. If you can’t find tight asymptotic bound find lower and
upper asymptotic bound. Assume that all undefined variables used are of type
integer.

Algorithm 1
1: function fun(int n)
2: for (int i = 0; i < n; i++) do
3: Console.print(i)
4: end for
5: return 0
6: end function

Solution 1: For loop executes print() statement exactly n times. So for n
= 10 and 20 the answer is 10 and 20. Asymptotically tight bound is Θ(n).

Algorithm 2
1: function fun(int n)
2: for (int i = 1; i < n/2; i+=5) do
3: Console.print(i)
4: end for
5: return n
6: end function

Solution 2: For loop moves by 5 each step and only goes to half n, meaning
print() function executes n

10 times. So for n = 10 and 20 the answer is 1 and 2.
Asymptotically tight bound is still Θ(n).

Algorithm 3
1: function fun(int n)
2: for (int i = 0; i < n; i++) do
3: Console.print(i)
4: end for
5: for (int i = n; i > 0; i– –) do
6: Console.print(i)
7: end for
8: return 0
9: end function

Solution 3: Each for loop executes print() statement exactly n times. So
for n = 10 and 20 the answer is 20 and 40. Asymptotically tight bound is also
Θ(n).

3

Algorithm 4
1: function fun(int n)
2: for (int i = n; i > 1; i/=2) do
3: Console.print(i)
4: end for
5: return 0
6: end function

Solution 4: For loop halves the value of i in each iteration, meaning the
print() statement executes log(n) times. So for n = 10 and 20 the answer is 3
and 4. Asymptotically tight bound is Θ(log(n)).

Algorithm 5
1: function fun(int n)
2: for (int i = 0; i < n/2; i++) do
3: for (int j = 0; j < n/2; j++) do
4: Console.print(i+j)
5: end for
6: end for
7: return 0
8: end function

Solution 5: The outer loop executes n
2 times and for each repetition of outer

loop the inner one also executes n
2 times. Meaning the print() statement exe-

cutes n2

4 times. So for n = 10 and 20 the answer is 25 and 100. Asymptotically
tight bound is therefore Θ(n2).

Algorithm 6
1: function fun(int n)
2: int m = 2000
3: for (int i = 0; i < n/2; i++) do
4: for (int j = 0; j < m*1000; j++) do
5: Console.print(i+j)
6: end for
7: end for
8: return 0
9: end function

Solution 6: Again we have a nested loop but in this case we can assume m
to be constant. Meaning the print() statement executes n

2 ·2000 ·1000 times. So
for n = 10 and 20 the answer is 10 million and 20 million times. Asymptotically
tight bound is Θ(n).

4

Algorithm 7
1: function fun(int n)
2: int m = n/10000
3: for (int i = 0; i < n/2; i++) do
4: for (int j = 0; j < m; j+=20) do
5: Console.print(i+j)
6: end for
7: end for
8: return 0
9: end function

Solution 7: Similar to the previous one, except the variable m is now not a
constant since it is depended on n. Meaning the print() statement executes n

2 ·
n

20·10000 times. So for n = 10 and 20 the answer is both times 0. Asymptotically
tight bound is Θ(n2), even though practically this algorithm runs a lot faster
than Algorithm 6.

Algorithm 8
1: function fun(int n)
2: for (int i = 0; i < n; i++) do
3: for (int j = i; j < n; j++) do
4: Console.print(n)
5: end for
6: end for
7: return 0
8: end function

Solution 8: This nested loop is a bit harder to analyse since the number
of repetitions of inner loop depends on the value of i of outer loop. We can see
that for i = 0 the inner loop executes n times, for i = 1 n − 1 times etc. All
together

∑n
i=0 i = n(n+1)

2 times. So for n = 10 and 20 the answer is 55 and 210.
Asymptotically tight bound is Θ(n2).

Algorithm 9
1: function fun(int n)
2: int m = n*n;
3: for (int i = n/2; i > 1; i/=3) do
4: for (int j = 0; j < m; j++) do
5: Console.print(i+j)
6: end for
7: end for
8: return 0
9: end function

Solution 9: This is a combination of previous algorithms. Variable m is not
a constant and is quadratically depended on n. The outer loop executes log3(n

2)
times and the inner loop n2 times. All together n2 log3(n

2) times. So for n = 10
and 20 the answer is 100 and 800. Asymptotically tight bound is Θ(n2 log(n)).

5

Notice that the base of logarithm isn’t important for apocalyptical notation
since the translation between different bases differs only for a constant.

Algorithm 10
1: function fun(int n)
2: int m = 2147483647; //MAX_INTEGER
3: for (int i = 0; i < m; i++) do
4: for (int j = m; j < m; j/=2) do
5: Console.print(n)
6: end for
7: end for
8: return 0
9: end function

Solution 10: In this case m is constant and the program is quite slow since
the outer loop repeats many times. The print() statement never executes since
in inner loop j = m and is never lower. So for n = 10 and 20 the answer is
both time 0. Asymptotically tight bound is Θ(1) since the running time of the
algorithm is not dependent on n.

Algorithm 11
1: function fun(int n)
2: while n > 1 do
3: Console.print(n)
4: n = n / 2
5: end while
6: return 0
7: end function

Solution 11: We can analyse while loop the same as for loops. Here the vari-
able n halves every iteration meaning asymptotically tight bound is Θ(log(n)).
And for n = 10 and 20 the answer is 3 and 4.

Algorithm 12
1: function fun(int n)
2: m = 0
3: while m * m < n + 100 do
4: Console.print(m)
5: m++
6: end while
7: return 0
8: end function

Solution 12: Here we can view m as a counter of while loop repetitions.
Observe the stopping condition of the for loop m2 < n+100. We need to extract
m from equation and get m =

√
n + 100 which is also the number of while loop

repetitions. So for n = 10 and 20 the answer both time 11. Asymptotically
tight bound is Θ(

√
n).

6

Algorithm 13
1: function fun(int n)
2: while n > 0 do
3: for (int i = n; i > 0; i/=3) do
4: Console.print(n)
5: end for
6: n = n / 2
7: end while
8: return 0
9: end function

Solution 13: The outer loop repeats log(n) times. The inner loop repeats
log3(n) times. So for n = 10 and 20 the answer is 7 and 10. Asymptotically tight
bound is Θ((log(n))2) = Θ(log2(n)). Note: Inner loop is actually depended on
outer loop since n changes. But even with summing the exact values we would
still have the same asymptotic tight bound.

Algorithm 14
1: function fun(int n)
2: while n > 0 do
3: for (int i = n; i > 1; i = sqrt(i)) do
4: Console.print(n)
5: end for
6: n = n / 2
7: end while
8: return 0
9: end function

Solution 14: As in previous example we will ignore that the inner loop
is depended on outer. The outer loop repeats log(n) times. The number of
repetitions for inner loop is harder to estimate. The variable i drops very fast.
Lets take for example that the n is initially 65536. The sequence for i is therefore
65536, 256, 16, 4, 2, 1. Lets rewrite this sequence:

√
65536 = 256 = 28 = 223

√
256 = 16 = 24 = 222

√
16 = 4 = 22 = 221

√
4 = 2 = 21 = 220

√
2 = 1 = 20

You can notice that the sequence is 22i and inverse of this is log(log(n)).
This means that asymptomatic tight bound is Θ(log(n) · log(log(n))). So for n
= 10 and 20 the answer is 5 and 8.

7

Algorithm 15
1: function fun(int n)
2: m = n * n
3: while m > 2 do
4: Console.print(n)
5: m = m / 2
6: end while
7: return 0
8: end function

Solution 15: This is quite easy exercise. Variable m equals n2. Meaning
the print() statement repeats log(n2) times. So for n = 10 and 20 the answer
is 6 and 8. Asymptotically tight bound is Θ(log(n2)) = Θ(log(n)). Note:
log(na) = a log(n)

Algorithm 16
1: function fun(int n, int m)
2: while n > 0 do
3: for (int i = 0; i < m; i++) do
4: Console.print(n)
5: end for
6: n = n / 2
7: end while
8: return 0
9: end function

Solution 16: In this case m is also input parameter and we usually estimate
the running time of an algorithm based on all the inputs. Meaning the print()
statement repeats m log(n) times. So for n = m = 10 and 20 the answer is 40
and 100. Asymptotically tight bound is Θ(m log(n)).

8

Algorithm 17 Random() returns a number between 0 and 1
1: function fun(int n)
2: int m = 0
3: for (int i = 0; i < n; i++) do
4: m += i
5: end for
6: if Random() > 0.5 then
7: return 0
8: end if
9: for (int i = 0; i < m ∗ n; i++) do

10: Console.print(”?”)
11: end for
12: return 0
13: end function

Solution 17: In this example the exact number of print() statements is
dependent on a random function Random(). The print() statement might not
run and in this case the asymptotic bound is Ω(1). Assuming Random() returns
≤ 0.5 the print() executes m∗n times where m = n(n+1)

2). So for n = 10 and 20
the answer is either 0 if only first for loop execute or 450 and 3800, respectively
if both loops execute. From this we don’t know what asmptiotic tight bound
actually is but we can estimate lower as Ω(1) and upper bound as O(n3).

Algorithm 18
1: function fun(int n, int m)
2: if n > m then
3: return 0
4: end if
5: for (int i = 0; i < n; i++) do
6: for (int j = i; j < m; j++) do
7: Console.print(” :)”)
8: end for
9: end for

10: return 0
11: end function

Solution 18: In this case m is again an input parameter. The number of
print() statements is in this case depends on inputs and varies between 0 and
m(m1+)

2 . We can analyse this in few ways. If we ignore the dependence of inner
loop on the outer we can say that the asymptotic running time is O(nm). If the
print() statement executes we know that n > m leading to O(n2). But since we
are estimating the number of times print() statements executes we can see that
the print() only executes when i < m otherwise the inner loop is skipped. This
leads to O(m2). So for n = m = 10 and 20 the answer is 0. Lower bound is
again Ω(1).

9

2.2 Streaming median
Below are two streaming median algorithms. The streaming median algorithm
keeps track of the median even if we add numbers to the list. Find the upper
asymptotic bound of both algorithms.

Structure List consists of two functions. Function add(int n) adds a new
element n in sorted order to the structure in Θ(n). Function get(int i) returns
i-th element in constant time.

Structure Heap has four functions. Insert() inserts new element in struc-
ture in Θ(log(n)). Function size() returns the number of elements in heap
in constant time. Function peek() returns minimal (or maximal) element in
the structure in constant time. Functions extractMin() and extractMax()
return and delete minimal/maximal element respectively in Θ(log(n)) time.

Algorithm 19
Require: external List sortedNumbers

1: function findMedian(int newNumber)
2: sortedNumbers.add(newNumber)
3: int medianIndex = length(sortedNumbers)/2
4: return sortedNumbers.get(medianIndex)
5: end function

Solution 19: The solution is straightforward. Line 2 takes Θ(n) time, line
3 Θ(1) and line 4 Θ(1). All together is Θ(n).

Algorithm 20
Require: external Heap minHeap, maxHeap

1: function findMedian(int newNumber)
2: if newNumber < maxHeap.peek() then
3: maxHeap.insert(newNumber)
4: else
5: minHeap.insert(newNumber)
6: end if
7: if minHeap.size()+1 > maxHeap.size() then
8: int root = minHeap.extractMin()
9: maxHeap.insert(root)

10: else if maxHeap.size()+1 > minHeap.size() then
11: int root = maxHeap.extractMax()
12: maxHeap.insert(root)
13: end if
14: if minHeap.size() >= maxHeap.size() then
15: return minHeap.peek()
16: else
17: return maxHeap.peek()
18: end if
19: end function

Solution 20: First lets look at lines 2-6. The condition of if statement takes
Θ(1) time and both lines 3 or 5 Θ(log(n)). Lines 7-13 are similar. The conditions
take Θ(1) time and both bodies of if statements Θ(log(n) + log(n)). Together

10

these lines take O(log(n))) or Ω(1) if maxHeap.size() == minHeap.size(). Lines
14-18 all take Θ(1). We can see that the most time consuming part are lines
2-6 leading asymptotically leading to Θ(log(n)).

2.3 Sorting functions
Sort the following functions in ranks. From lowest rank to highest rank depend-
ing on asymptotic growth.

• n

• nlog(n)

• 2log2(n)

• 2n

• 3n

• 2n+7

• log(n2)

• 3
√

n

• n!

• n2

•
(

n
2
)

• 24096

• n3

• log(log(n))

• (n− 1)!

• 7n3 +5n2−2n+13

• n · 2n

• log
(√

log(n)
)

• n · log(nn)

Solution: From asymptotically slowest function on top to fastest on bottom.
Some functions only differ for a constant.

• n!

• (n− 1)!

• 3n

• n · 2n

• 2n and 2n+7

• n3 and 7n3 + 5n2 − 2n + 13

• n · log(nn)

• n2 and
(

n
2
)

• nlog(n)

• n and 2log2(n)

• 3
√

n

• log(n2)

• log(log(n)) and log
(√

log(n)
)

• 24096

If you are unsure which function is slower you can test using lim
n→inf

f(n)
g(n) . If

the result is 0 then Θ(g(n)) > Θ(f(n)), if result is a constant c then Θ(g(n)) =
Θ(f(n)) and if the result is inf then Θ(g(n)) < Θ(f(n)).

11

3 Solving recurrences
3.1 Tree method
Approximate upper and lower asymptotic bound of the following recurrences.

T (n) = T (n− 1) + n (1)

Solution:

n

n-1

n-2

· · ·

1
Sums by levels:

∑n
i=1 i = n(n+1)

2 = O(n2)

T (n) = T (n

2) + T (n

3) + T (n

6) + n (2)

Solution:

n

n
2

n
4

· · ·

1 · · · 1

n
6

· · ·

n
12

· · ·

n
3

n
6

· · ·

n
9

· · ·

n
18

· · ·

n
6

n
12

· · ·

n
18

· · ·

n
36

· · ·

1 · · · 1
Sums by level:

12

Level : Sum

1 : n

2 : n

2 + n

3 + n

6 =

= 3n

6 + 2n

6 + n

6 = n

3 : n

4 + n

6 + n

12+

+ n

6 + n

9 + n

18+

+ n

12 + n

18 + n

36 =

= 9n + 6n + 3n + 6n + 4n + 2n + 3n + 2n + n

36 =

= n

4 : · · ·

Max depth of tree is log6(n), meaning we can estimate upper asymptotic
bound with O(n · log(n)).

Leaves have a cost of T(1). Assuming the max depth of log6(n) we have
3log6(n) = nlog6(3) = n0.613 leaves giving us upper estimate of O(nlog6(3)) which
is lower than O(n · log(n)).

T (n) = T (n

2) + n2 (3)

Solution:

n2

n2

2

n2

4

· · ·

1
Sums by level:

Level : Sum

1 : n2

2 : n2

2

3 : n2

4
...

i : n2

2i−1

13

3.2 Master method
Using the master method solve the following recurrences.

T (n) = 2 · T (n

4) + 1 (4)

Solution : Using simplified Masters method:

a = 2, b = 4, d = 0
Case 1: a > bd → 2 > 40

Θ(nlogba) = Θ(
√

(n))

T (n) = 2 · T (n

4) +
√

n (5)

Solution : Using simplified Masters method:

a = 2, b = 4, d = 1
2

Case 2: a = bd → 2 > 4 1
2

Θ(ndlogbn) = Θ(
√

(n)log(n))

T (n) = 2 · T (n

4) + n (6)

Solution : Using simplified Masters method:

a = 2, b = 4, d = 1
Case 3: a < bd → 2 < 41

Θ(nd) = Θ(n)

T (n) = 2 · T (n

4) + n2 (7)

Solution : Using simplified Masters method:

a = 2, b = 4, d = 2
Case 3: a < bd → 2 < 42

Θ(nd) = Θ(n2)

T (n) = 7 · T (n

2) + n2 (8)

14

Solution : Using simplified Masters method:

a = 7, b = 2, d = 2
Case 1: a > bd → 7 > 22

Θ(nlogba) = Θ(nlog27) ≈ Θ(n2.81)

T (n) = 4 · T (n

2) + n2lg(n) (9)

Solution : Using Masters method:

a = 4, b = 2, f(n) = n2 log(n)
nlogb a = n2

Case 2 extended: f(n) = Θ(n2 log1(n))→ T (n) = Θ(n2 log2 n)

3.3 Akra-Bazzi
Find tight asymptotic bounds of the following recursive functions.

T (n) = 2 · T
(n

2
)

+ n (10)

Solution : Using Akra-Bazzi:

a1 = 2, b1 = 1
2 , f(n) = n

a1 · bp
1 = 1→ p = 1

T (n) = Θ(n(1 +
∫ n

1

u

u2 du))

= Θ(n(1 +
∫ n

1

1
u

du))

= Θ(n(1 + log u
∣∣n

1))
= Θ(n(1 + log(n)− log(1)))

= Θ(n log(n))

T (n) = 2 · T
(n

2
)

+ n · lg(n) (11)

Solution : Using Akra-Bazzi:

15

a1 = 2, b1 = 1
2 , f(n) = n · log(n)

a1 · bp
1 = 1→ p = 1

T (n) = Θ(n(1 +
∫ n

1

u log(u)
u2 du))

= Θ(n(1 +
∫ n

1

log(u)∗
u

du))

= Θ(n(1 + log2(u)
2))

= Θ(n log2(n))

∗

x = log(u)→ dx = 1
u

du

dx = du

u
→ x = log(n)∫ n

1

log(u)
u

du)) =

=
∫ log(u)

0
xdx = x2

2

∣∣∣∣log(u)

0
=

= log2(u)
2

T (n) = T
(⌈n

2

⌉)
+ T

(⌊n

2

⌋)
+ n (12)

Solution : Using extended Akra-Bazzi:

First rewrite the equation to:

T (n) = T
(n

2 +
⌈n

2

⌉
− n

2
)

+ T
(n

2 +
⌊n

2

⌋
− n

2
)

+ n

16

a1 = 1, a2 = 1, b1 = 1
2 , b2 = 1

2 , f(n) = n

h1(n) =
⌈n

2

⌉
− n

2 , h2(n)
⌊n

2

⌋
− n

2
h1(n) ∈ [0, 1], h2(n) ∈ [−1, 0]
a1 · bp

1 + a2 · bp
2 = 1→ p = 1

T (n) = Θ(n(1 +
∫ n

1

u

u2 du))

= Θ(n(1 +
∫ n

1

1
u

du))

= Θ(n(1 + log u
∣∣n

1))
= Θ(n(1 + log(n)− log(1)))

= Θ(n log(n))

T (n) = 2 · T
(n

2
)

+ 9
2 · T

(n

3
)

+ θ(n) (13)

Solution : Using Akra-Bazzi:

a1 = 2, a2 = 9
2 , b1 = 1

2 , b2 = 1
3 , f(n) = Θ(n)

a1 · bp
1 + a2 · bp

2 = 1→ p = 2

T (n) = Θ(n2(1 +
∫ n

1

u

u3 du))

= Θ(n2(1 +
∫ n

1

1
u2 du))

= Θ(n2(1 + u−1

−1

∣∣∣∣n

1
))

= Θ(n2(1− 1
n

+ 1))

= Θ(n2)

T (n) = 2 · T
(n

4
)

+ 3 · T
(n

6
)

+ n · lg(n) (14)

Solution : Using Akra-Bazzi:

17

a1 = 2, a2 = 3, b1 = 1
4 , b2 = 1

6 , f(n) = n log(n)

a1 · bp
1 + a2 · bp

2 = 1→ p = 1

T (n) = Θ(n(1 +
∫ n

1

u log(u)
u2 du))

= Θ(n(1 +
∫ n

1

log(u)∗
u

du))

= Θ(n(1 + log2(u)
2))

= Θ(n log2(n))

* See solution to equation 13.

3.4 Annihilators
For each of the following recurrences find the closed form solution, estimate
upper asymptotic bound and prove your solution is correct.

T (n) = T (n− 1) + 1; T (0) = 0 (15)

Solution : Using Annihilators:

Step 1: T (n) = T (n− 1) + 1; T (0) = 0
T (n + 1) = T (n) + 1

T (n + 1)− T (n) = 1
ET (n)− T (n) = 1

(E − 1)T (n) = 1
Step 2: (E − 1)⇔ (E − 1)→ (E − 1)2

Step 3: Already factored.
Step 4: T (n) = αn + β

Step 5: T (0) = αn + β = 0 = β

T (1) = αn + β = 1 = α

T (n) = n

18

T (n) = T (n− 1) + n; T (1) = 1 (16)

Solution : Using Annihilators:

Step 1: T (n) = T (n− 1) + n; T (1) = 1
T (n + 1) = T (n) + n + 1

T (n + 1)− T (n) = n + 1
ET (n)− T (n) = n + 1

(E − 1)T (n) = n + 1
Step 2: (E − 1)⇔ (E − 1)2 → (E − 1)3

Step 3: Already factored.
Step 4: T (n) = α2n2 + α1n + α0

Step 5: T (1) = 1 = α2 + α1 + α0

T (2) = 3 = 4α2 + 2α1 + α0

T (3) = 6 = 9α2 + 3α1 + α0

Solution : α2 = 1
2 , α1 = 1

2 , α0 = 0

T (n) = 1
2n2 + 1

2n

T (n) = T (n− 1) + 2 · n + 1; T (0) = 0 (17)

Solution : Using Annihilators:

Step 1: T (n) = T (n− 1) + 2n + 1; T (0) = 0
T (n + 1) = T (n) + 2n + 3

T (n + 1)− T (n) = 2n + 3
ET (n)− T (n) = 2n + 3

(E − 1)T (n) = 2n + 3
Step 2: (E − 1)⇔ (E − 1)2 → (E − 1)3

Step 3: Already factored.
Step 4: T (n) = α2n2 + α1n + α0

Step 5: T (0) = 0 = α0

T (1) = 3 = α2 + α1

T (2) = 8 = 4α2 + 2α1

Solution : α2 = 2, α1 = 1, α0 = 0
T (n) = 2n2 + n

19

T (n) = T (n− 1) +
(

n

2

)
; T (0) = 0 (18)

Solution : Using Annihilators:

Step 1: T (n) = T (n− 1) +
(

n

2

)
; T (0) = 0

T (n + 1) = T (n) +
(

n + 1
2

)
T (n + 1)− T (n) =

(
n + 1

2

)
ET (n)− T (n) = n2 + n

2

(E − 1)T (n) = n2 + n

2
Step 2: (E − 1)⇔ (E − 1)3 → (E − 1)4

Step 3: Already factored.
Step 4: T (n) = α3n3 + α2n2 + α1n + α0

Step 5: T (0) = 0 = α0

T (1) = 0 = α3 + α2 + 2α1

T (2) = 1 = 8α3 + 4α2 + 2α1

T (3) = 4 = 27α3 + 9α2 + 3α1

Solution : α3 = 1
6 , α2 = 0, α1 = −1

6 , α0 = 0

T (n) = 1
6n3 − 1

6n

20

T (n) = T (n− 1) + 2n; T (0) = 0 (19)

Solution : Using Annihilators:

Step 1: T (n) = T (n− 1) + 2n; T (0) = 0
T (n + 1) = T (n) + 2 · 2n

T (n + 1)− T (n) = 2 · 2n

ET (n)− T (n) = 2 · 2n

(E − 1)T (n) = 2 · 2n

Step 2: (E − 1)⇔ (E − 2)→ (E − 1)(E − 2)
Step 3: Already factored.

Step 4: T (n) = α + β2n

Step 5: T (0) = 0 = α + β

T (1) = 2 = α + 2β

Solution : α = −2, β = 2
T (n) = 2 · 2n − 2 = 2n+1 − 2

T (n) = 3 · T (n− 1); T (0) = 1 (20)

Solution : Using Annihilators:

Step 1: T (n) = 3T (n− 1); T (0) = 1
T (n + 1) = 3T (n)

T (n + 1)− 3T (n) = 0
ET (n)− 3T (n) = 0

(E − 3)T (n) = 0
Step 2: (E − 3)⇔ 1→ (E − 3)

Step 3: Already factored.
Step 4: T (n) = α3n

Step 5: T (0) = 1 = α

Solution : α = 1
3

T (n) = 1
33n = 3n−1

21

T (n) = 2 · T (n− 1) + 1; T (0) = 0 (21)

Solution : Using Annihilators:

Step 1: T (n) = 2T (n− 1) + 1; T (0) = 0
T (n + 1) = 2T (n) + 1

T (n + 1)− 2T (n) = 1
ET (n)− 2T (n) = 1

(E − 2)T (n) = 1
Step 2: (E − 2)⇔ (E − 1)→ (E − 2)(E − 1)

Step 3: Already factored.
Step 4: T (n) = α + β2n

Step 5: T (0) = 0 = α + β

T (1) = 1 = α + 2β

Solution : α = −1, β = 1
T (n) = 2n − 1

T (n) = T (n− 1) + T (n− 2) + 1; T (−1) = 0, T (0) = 1 (22)

Solution : Using Annihilators:

Lets define golden ratio and its conjugate:

φ = 1 +
√

5
2 ≈ 1.618,φ̂ = 1−

√
5

2 ≈ −0.618

Step 1: T (n) = T (n− 1) + T (n− 2) + 1;T (−1) = 0, T (0) = 1
T (n + 2) = T (n + 1) + T (n) + 1

T (n + 2)− T (n + 1)− T (n) = 1
E2T (n)− ET (n)− T (n) = 1

(E2 − E − 1)T (n) = 1
Step 2: (E2 − E − 1)⇔ (E − 1)→ (E2 − E − 1)(E − 1)

Step 3: (E − φ)(E − φ̂)(E − 1)
Step 4: T (n) = αφn + βφ̂n + γ

Step 5: T (−1) = 0 = αφ−1 + βφ̂−1 + γ

T (0) = 1 = α + β + γ

T (1) = 2 = αφ + βφ̂ + γ

Solution : α = 5 + 2
√

5
5 , β = 5− 2

√
5

5 , γ = −1

T (n) = 5 + 2
√

5
5 φn + 5− 2

√
5

5 φ̂n − 1

22

3.5 Substitution method
Guess and prove the upper asymptotic bounds of the following recurrences.

T (n) = T (
⌊n

2

⌋
) + 1 (23)

1.) Guess: T (n) ≤ c · log2(n)
2.) Induction: T (

⌊
n
2

⌋
) ≤ c · log2⌊n

2 ⌋
3.) Proof:

T (n) ≤ c · log2(⌊n2 ⌋) + 1

≤ c · log2(n

2) + 1

= c · log2(n)− c · log2(2) + 1
= c · log2(n)− c + 1; c ≥ 1
≤ c · log2(n)

T (n) = T (
⌈n

2

⌉
) + 1 (24)

1.) Guess: T (n) ≤ c · log2(n)
2.) Induction: T (

⌈
n
2

⌉
) ≤ c · log2⌈n

2 ⌉
3.) Proof:

T (n) ≤ c · log2(⌈n2 ⌉) + 1

≤ c · log2(n

2 + 1) + 1

= c · log2(n + 2
2) + 1

= c · log2(n + 2)− c + 1; c > 1
≤ c · log2(n + 2); deadend

4.) New guess: T (n) ≤ c · log2(n− d)
5.) Induction: T (

⌈
n
2

⌉
) ≤ c · log2⌈n

2 − d⌉
6.) Proof:

T (n) ≤ c · log2(⌈n2 − d⌉) + 1

≤ c · log2(n

2 − d + 1) + 1

= c · log2(n− 2b + 2
2) + 1

= c · log2(n− 2b + 2)− c + 1; c > 1
≤ c · log2(n− 2b + 2); b > 1
≤ c · log2(n− b)

T (n) = 2 · T (
⌊√

n
⌋
) + lg(n) (25)

1.) Using a new variable m = log2(n), we get T (2m) = 2T (2m/2) + m
2.) Rename T (2m) to V (m) to get new recurrence V (m) = 2V (m

2) + m.
3.) Prove that this is bounded by O(m · log2(m))
4.) Use m = log2(n) and get O(log2(n) · log2(log2(n))

23

4 Probabilistic analysis
Use indicator random variable to solve the following problems.

4.1 Sum of n dice
What is the expected value of the sum of n six sided dice throws.

Solution:

Xi - Dice lands on i

P (Xi = 1) = 1
6

E(X) = E[
6∑

i=1
i ·Xi] =

=
6∑

i=1
i · E[Xi] =

= 1
6

6∑
i=1

i = 3.5

For n throws the expected value is 3.5n.

4.2 Hat-check problem
Each of n customers gives a hat to a hat-check person at a restaurant. The
hat-check person gives the hats back to the customers in a random order. What
is the expected number of customers who get back their own hat?

Solution:

X - Number of persons who get their hat back.
Xi - Person i gets their hat back

X =
n∑

i=1
Xi

P (Xi = 1) = 1
n
⇒ E[Xi] = 1

n

E[X] = E[
n∑

i=1
Xi] =

=
n∑

i=1
E[Xi] =

=
n∑

i=1

1
n

=

= n
1
n

= 1

24

4.3 Inversions
Given an array of n randomly permutated distinct numbers marked Ai for
i = 1 . . . n. If i < j and Ai > Aj , then the pair (i, j) is called an inversion.
Use indicator random variables to compute the expected number of inversions.

Solution:

X - Number of inversions in array A
Xij - Elements at position i and j make an inversion

X =
n−1∑
i=1

n∑
j=i+1

Xij

P (Xij = 1) = 1
2 ⇒ E[Xij] = 1

2

E[X] = E[
n−1∑
i=1

n∑
j=i+1

Xij] =

=
n−1∑
i=1

n∑
j=i+1

E[Xij] =

=
n−1∑
i=1

n∑
j=i+1

1
2 =

= n(n− 1)
2

1
2 = n(n− 1)

4

4.4 Balls and bins
You are given n bins and n balls. You throw each ball into the bins. Assume
each ball can equally likely fall into any bin.

Useful equations:

p− probability of a single hit
k balls fall into bin i.

P (Xi = k) =
(

n

k

)
pk(1− p)n−k

useful limit

lim
n→∞

(1− 1
n

)n = 1
e

25

a) What is the expected number of empty bins?
Solution:

X - Number of empty bins
Xi - Bin i is empty

X =
n∑

i=1
Xi

P (Xi = 1) = (1− 1
n

)n ≈ 1
e

= E[Xi]

E[X] = E[
n∑

i=1
Xi] =

=
n∑

i=1
E[Xi] =

≈
n∑

i=1

1
e
≈

≈ n

e

b) What about bins with exactly one ball?
Solution:

X - Number of bins with exactly one ball
Xi - Bin i has exactly one ball

X =
n∑

i=1
Xi

P (Xi = 1) = n
1
n

(1− 1
n

)n−1 =

= (1− 1
n

)n−1 ≈ n2

e(n− 1) ≈
1
e
≈ E[Xi]

E[X] = E[
n∑

i=1
Xi] =

=
n∑

i=1
E[Xi] =

≈
n∑

i=1

1
e
≈

≈ n

e

26

c) What about bins with exactly two balls?
Solution:

X - Number of bins with exactly two balls
Xi - Bin i has exactly two balls

X =
n∑

i=1
Xi

P (Xi = 1) = n(n− 1)
2 (1

n
)2(1− 1

n
)n−2 =

= n− 1
2n

(1− 1
n

)n−2 ≈ 1
2e
≈ E[Xi]

E[X] = E[
n∑

i=1
Xi] =

=
n∑

i=1
E[Xi] =

≈
n∑

i=1

1
2e
≈

≈ n

2e

d) What about bins with more than 1 ball? Solution:

X - Number of bins with more than one ball
Xi - Bin i has more than one ball

X =
n∑

i=1
Xi

We can use answer from a) and b)

P (Xi = 1) ≈ 1− 1
e
− 1

e
≈ e− 2

e
≈ E[Xi]

E[X] = E[
n∑

i=1
Xi] =

=
n∑

i=1
E[Xi] =

≈
n∑

i=1

e− 2
e
≈

≈ n(e− 2)
e

≈ 0.264n

27

4.5 Hire assistant
As in the case of hire assistant you heard of in lectures. What is the probability
that the algorithm hires.

a) Exactly once.
Answer : 1

n
b) Exactly n times.
Answer : 1

n!
c) Exactly twice.
Solution:
Lets note that the first in line must be candidate Xi whose rank is not n

since that would mean we only hire one candidate. Somewhere else the best
candidate Y must be placed and all candidates between Xi and Y are worse
than Xi. This means that Y must be picked before all candidates better than
Xi. Number of these candidates is n− 1.

Xi - Candidate i is picked first
n−1∑
i=1

P (Xi)P (Y) =

=
n−1∑
i=1

1
n

1
n− i

=

= 1
n

Hn−1

4.6 Random generator
You are given a function BiasedRandom() which returns TRUE with probability
p and false with probability 1− p. 0 < p < 1.

a) Construct a function UnbiasedRandom() that uses BiasedRandom() which
must return TRUE with probability 1

2 and FALSE with probability 1
2 .

Algorithm 21
1: function UnbiasedRandom
2: while TRUE do
3: x ← BiasedRandom()
4: y ← BiasedRandom()
5: if x ̸= y then
6: return x
7: end if
8: end while
9: end function

28

b) Prove that your function works.
Solution :
Lets look at probabilities of two throws:

TRUE, TRUE : p2

TRUE, FALSE : p(1− p)
FALSE, TRUE : (1− p)p

FALSE, FALSE : (1− p)2

The loop only ends in cases when x ̸= y and they both have same probability.
c) Analyse time complexity of UnbiasedRandom().
Solution :
The probability of ending the loop is 1

2p(1−p) which directly leads to an
answer of Θ(1

2p(1−p)).

5 Amortized analysis
5.1 Comparing methods
Perform a sequence of n operations on a data structure in which almost every
operation has a constant cost ci = 1. Exceptions are operations ci where i = 2k

and k ∈ N, these operations costs ci = i. Show that amortized cost per operation
is constant using:

1. Aggregate method

2. Accounting method

3. Potential method

Solution 1: Aggregate method
We need the exact sum of all operations. We will make a first sum assuming

all the operations are cheap (cost 1) and then add the cost of log(n) expensive
operations.

c =
n∑

i=1
ci = (26)

=
n∑

i=1
1−

log(n)∑
i=1

1 +
log(n)∑

i=1
2i = (27)

= n− log(n) + 2(n− 1) ≤ ≤ 3n = O(n) (28)

We need O(n) time for n operations meaning O(1) per operation.
Solution 2: Accounting method

We have to show that we can choose a constant ĉi such that
∑n

i=1 ci ≤∑n
i=1 ĉi will always hold. We can use the results from aggregate method and

trivially show that this is true for ĉi = 3.

29

Solution 3: Potential method
We need to define Di which is our data structure after i-th operation. Φ(Di)

is the potential of our data structure after i-th operation. It must hold tΦ(Di) >
Φ(D0), where Φ(D0) is usually set to 0. We need to guess potential function
Φ(Di) and calculate amortized cost ĉi of all operations. All ĉi must be constants
if we want to prove amortized constant time of operations.

ĉi = ci + Φ(Di)− Φ(Di−1)

Φ(Di) = 2i− 2⌊log2(i)⌋+1

Cheap operations:
ĉi = ci + Φ(Di)− Φ(Di−1) =
= 1 + 2i− 2⌊log2(i)⌋+1 − (2(i− 1)− 2⌊log2(i−1))⌋+1) =(
2⌊log2(i)⌋+1 = 2⌊log2(i−1)⌋+1)

, since i ̸= 2k

= 3
Expensive operations:
ĉi = ci + Φ(Di)− Φ(Di−1) =
= i + 2i− 2⌊log2(i)⌋+1 − (2(i− 1)− 2⌊log2(i−1))⌋+1) =(1
22⌊log2(i)⌋+1 = 2⌊log2(i−1)⌋+1)

, since i = 2k

= i + 2i− 2⌊log2(i)⌋+1 − (2(i− 1)− 2⌊log2(i−1))⌋+1) =

= i + 2i− 2i− (2(i− 1)− 2 i

2)

= 2

5.2 Full analysis of dynamic tables
You are given a dynamic table as shown on lectures which doubles its size
when it’s full but can also contratct to save space. Such dynamic tables use
both dynamic expansions and contractions. Let’s define numi as the number
of elements in the table after i-th operation and sizei the size of dynamic table
after i-th operation. Load factor is defined as αi = numi

sizei
.

1. Suppose you contract the table as soon as the load factor falls to αi < 1
2 .

Show that in this case the worst time per operation is O(n).

2. Find a loading factor α at which you need to halve the table so that cost
per operation remains constant. Prove it using potential method.

Solution 1: Example
Lets assume that our table is currently empty with sizei = n. First lets

make n INSERT operations, which all take O(1) time. After this another insert
takes O(n) time, since the table expands. If we use DELETE now, the table
with contract resulting in another O(n) operation. Repeating INSERT and
DELETE will now force the structure to a loop of O(n) operations.

30

Solution 2: Full table analysis
It is easy to see that a value of αi = 1

4 works.
The potential function we will be using is:

Φ(Di) =
{

2 numi− sizei ; αi ≥ 1
2sizei

2 − numi ; αi < 1
2

First we have to notice that we have 8 cases for this problem. We need to
analyse INSERT and DELETE. And see what happens when αi−1 is above or
under 1

2 and the same for αi.

INSERT:

αi−1 ≥ 1
2

a) EXPANSION

b) NO EXPANSION

αi−1 < 1
2

c) αi < 1
2

d) αi ≥ 1
2

DELETE:

αi−1 ≥ 1
2

e) αi ≥ 1
2

f) αi < 1
2

αi−1 < 1
2

g) CONTRACTION

h) NO CONTRACTION

a) INSERT, αi−1 ≥ 1
2 , EXPANSION

ci = numi−1 +1
numi = numi−1 +1
sizei = 2 sizei−1

numi−1 = sizei−1

ĉi = ci + Φ(Di)− Φ(Di−1)
= numi +2 numi− sizei−(2 numi−1− sizei−1)
= numi−1 +1 + 2(numi−1 +1− sizei−1)− (2 numi−1− sizei−1)
= 3 + numi−1− sizei−1

= 3

b) INSERT, αi−1 ≥ 1
2 , NO EXPANSION

ci = 1
numi = numi−1 +1
sizei = sizei−1

ĉi = ci + Φ(Di)− Φ(Di−1)
= 1 + 2 numi− sizei−(2 numi−1− sizei−1)
= 1 + 2 numi−1 +2− sizei−1−2 numi−1 + sizei−1

= 3

31

c) INSERT, αi−1 < 1
2 , αi < 1

2

ci = 1
numi = numi−1 +1
sizei = sizei−1

ĉi = ci + Φ(Di)− Φ(Di−1)

= 1 + sizei

2 − numi−(sizei−1

2 − numi−1)

= 1 + sizei−1

2 − numi−1−1− sizei−1

2 + numi−1

= 0

d) INSERT, αi−1 < 1
2 , αi ≥ 1

2

ci = 1
numi = numi−1 +1
sizei = sizei−1

αi = 1
2 = numi

sizei
→ sizei = 2 numi, sizei−1 = 2 numi−1 +2

ĉi = ci + Φ(Di)− Φ(Di−1)

= 1 + 2 numi− sizei−(sizei−1

2 − numi−1)

= 1 + 2 numi−1 +2− sizei−1−
sizei−1

2 + numi−1

= 3 + 3 numi−1−
3
2 sizei−1

= 3 + 3 numi−1−
3(2 numi−1 +2)

2
= 3

e) DELETE, αi−1 ≥ 1
2 , αi ≥ 1

2

ci = 1
numi = numi−1−1
sizei = sizei−1

ĉi = ci + Φ(Di)− Φ(Di−1)
= 1 + 2 numi− sizei−(2 numi−1− sizei−1)
= 1 + 2 numi−1−2− sizei−1−2 numi−1 + sizei−1

= −1

32

f) DELETE, αi−1 ≥ 1
2 , αi < 1

2

ci = 1
numi = numi−1−1
sizei = sizei−1

αi−1 = 1
2 = numi−1

sizei−1
→ sizei−1 = 2 numi−1

ĉi = ci + Φ(Di)− Φ(Di−1)

= 1 + sizei

2 − numi−(2 numi−1− sizei−1)

= 1 + sizei−1

2 − numi−1 +1− 2 numi−1 + sizei−1

= 2 + 3
2 sizei−1−3 numi−1

= 2

g) DELETE, αi−1 < 1
2 , CONTRACTION

ci = numi−1

numi = numi−1−1

sizei = sizei−1

2
numi = sizei

2
ĉi = ci + Φ(Di)− Φ(Di−1)

= numi−1 +2 numi− sizei−(sizei−1

2 − numi−1)

= numi−1 +2 numi− sizei−(sizei−(numi +1))
= numi−1 +2 numi− sizei− sizei + numi +1
= 1 + 4 numi−2 sizei

= 0

h) DELETE, αi−1 < 1
2 , NO CONTRACTION

ci = 1
numi = numi−1−1

sizei = sizei−1

2
ĉi = ci + Φ(Di)− Φ(Di−1)

= 1 + sizei

2 − numi−(sizei−1

2 − numi−1)

= 1 + sizei

2 − numi−(sizei

2 − numi−1)

= numi−1 +2 numi− sizei− sizei + numi +1
= 2

33

6 Appendix
6.1 Simplified Masters

T (n) = aT (n

b
) + Θ(nd),

a ≥ 1,

b > 1,

d ≥ 0.

Case1 :a > bd → T (n) = Θ(nlogba)
Case2 :a = bd → T (n) = Θ(ndlogbn)
Case3 :a < bd → T (n) = Θ(nd)

6.2 Masters

T (n) = aT (n

b
) + f(n),

a ≥ 1,

b > 1.

Case1 :f(n) = O(nlogba−ϵ)→ T (n) = Θ(nlogba); ϵ > 0
Case2 :f(n) = Θ(nlogba)→ T (n) = Θ(nlogbalog(n))
Case3 :f(n) = Ω(nlogba+ϵ)→ T (n) = Θ(f(n)); ϵ > 0

in af(n

b
) ≤ cf(n) for some c < 1 and big enough n

Case2ext :f(n) = Θ(nlogbalogk(n))→ T (n) = Θ(nlogbalogk+1(n))

34

6.3 Akra-Bazzi

T (n) =
k∑

i=1
aiT (bin) + f(n) za n > n0,

n0 ≥
1
bi

, n0 ≥
1

1− bi
for each i,

ai > 0 for each i,
0 < bi < 1 for each i,
k ≥ 1,

f(n) is non-negative function
c1f(n) ≤ f(u) ≤ c2f(n), for each u satisfying condition: bin ≤ u ≤ n

T (n) = Θ(np(1 +
∫ n

1

f(u)
up+1 du))

we get p from:

k∑
i=1

aib
p
i = 1

6.4 Extended Akra-Bazzi

T (n) =
k∑

i=1
aiT (bin + hi(n)) + f(n) za n > n0,

all the conditions from Akra-Bazzi still hold, plus:

|hi(n)| = O(n

log2n
)

35

6.5 Annihilators
Steps on solving linear recurrences.

• Write the recurrence in operator form

• Extract an annihilator for the recurrence

• Factor the annihilator (if necessary)

• Extract the generic solution from the annihilator

• Solve for coefficients using base cases (if known)

36

