Persistent homology
(1) Idea Track the evolution of holes along a growing sex.

(2) Formal definition

Def: K a scr. A discrete filtration of K is a sequence of subcomplexes:

$$
K_{1} \leq K_{2} \leq \cdots \leq K_{m}=K .
$$

${ }^{*}$ a model of a growth
In each step we add simplices
Adding a single $s x$ either creates or fills in a hole.
A filtration can be expressed as a sequence of inclusions

$$
k_{1} \xrightarrow{i_{1_{2}}} k_{2} \xrightarrow{i_{23}} \ldots \hookrightarrow k_{m}=k
$$

$i_{s, *}: k_{s} \longrightarrow k_{*}$ the obvious composition

Fix a field \mathbb{F}, dimension $g \in\{0,1, \ldots\}$.
APPLY homology $H_{g}(-; \mathbb{F})$ to the filtration

$$
H_{g}\left(K_{1} ; \mathbb{F}\right) \xrightarrow{(i, 1,2)_{*}} H_{g}\left(K_{2} ; \mathbb{F}\right) \xrightarrow{\left(i_{2}, 3\right)+} \ldots \longrightarrow H_{g}\left(K_{m} ; \mathbb{F}\right)=H_{g}\left(K_{;}^{\prime} \mathbb{F}\right)
$$

Def: Persistent homology groups: images of maps $\left(i, s, x_{k}\right.$, is. $\left\{(i s,)_{k}\left(H_{2}\left(K_{s} ; i\right)\right)\right\}_{s=x}$ Persistent Betti numbers β 行: ranks of persistent homology groups.

Example:

$\beta_{s, t}^{0} \rightarrow$| ${ }^{t}$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 1 | 1 |
| 2 | $/$ | 3 | 2 | 2 |
| 3 | $/$ | $/$ | 2 | 2 |
| 4 | $/$ | $/$ | $/$ | 2 |

$\beta_{s, t}^{1} \rightarrow$| ${ }^{t}$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 |
| 2 | $/$ | 1 | 0 | 0 |
| 3 | $/$ | $/$ | 2 | 1 |
| 4 | $/$ | $/$ | $/$ | 1 |

(3) Visualisation How to obtain barcode from persistent Betti. numbers?
$n_{s, t} \ldots$. \# of bars from s to $t . \quad[s, x]$
represents dim of homology born ATS and terminating AT X.
$\beta_{s, t}$ represents dim of homology born By and terminating after.
Homology born ats:

$$
H_{g}\left(K_{s}\right) / \operatorname{lm}\left(i_{s-1, s}\right)_{*}
$$

Its dimension is $\beta_{s, s}-\beta_{s-1, s}$
Homology terminating at t : $\operatorname{Ker}\left(i_{t-1, t}\right)_{*}$
Its dimension is $\beta_{t-1, x-1}-\beta_{x-1, t}$

$$
\begin{aligned}
\Rightarrow & n_{s, t}
\end{aligned}=\underbrace{\left(\beta_{s, t-1}-\beta_{s-1, t-1}\right)}_{\text {dimension of homology }}-(\underbrace{\left(\beta_{s, t}-\beta_{s-1, t}\right)}_{\text {dimension of homolog } y}
$$

$\Rightarrow n_{s, \infty}=\beta_{s, m}-\beta_{s-1, m} \quad$ surviving homology
Example: Extract barcodes from example above

$u_{s, t}$ can be visualized as a barcode or persistence diagram. ℓ $\downarrow_{\text {each pt multiplicity }}$

$\left\{\beta_{s, t}\right\}_{s \leq t}$ determine $u_{s, *}$ and vice versa

Fundamental lemma of persistent homology:

$$
\beta_{s, t}=\sum_{s^{\prime} \leq s, t^{\prime} \geqslant t} n_{s, t}
$$

Proof: Clear from the context.
(4) Computation (get $n_{s, n}$ directly) Fix a field $\mathbb{F}_{\text {, filtration }} k_{1} \leq k_{2} \leq \ldots \leq k_{m}$

Assumption: We are adding one s_{k} at a time: $K_{n}=K_{n-1} \cup\left\{\sigma_{n}\right\}^{d}$ can one Adding sex ${ }_{\sigma}^{(p)}$ to K results in a change of homology:

Adding \sim makes $[\partial \sigma]=0$ in $H_{p,-}\left(\widetilde{k_{i-1}},\{\sigma\}\right\}$ σ is a terminal $s x$, terminates $[\partial \sigma]$ equivalent tr: $\quad \partial \sigma \notin \operatorname{lin}\left\{\partial \tau_{j}\right\}$
if $[\partial \sigma] \in H_{p-9}\left(k_{i-1}\right)$ is $Z E R O$
equivalent tr: $\partial \sigma=\sum_{\tau_{j}^{j} \in K_{i-1}^{j}} \lambda_{0} \partial \tau_{j}$
Adding r CREATES $\left[\sigma_{j}-\sum \tau_{i}\right]^{\tau_{j} \in E_{i-1}^{0}} \in H_{p}(\overbrace{k_{i-1} \cup\{\sigma\}}^{k_{i}})$
σ is a BIRTH ix, creates homdogy

Example:

Matrix reduction
(1) Use the order of $5 x$ es given by filtration to assemble boundary matrix M_{g}.
(2) Reduce matrix left-to-right using column reduction. For each column repent:
(a) Determine pivot
(6) Subtract a previous column with the same pivot if existent, else halt
(3) Extract persistence:

a representative \rightarrow Representative: the column containing the pivot
(b) non-paired sexes are called essential sexes ~~) infinite bar they are all birth sues they give birth to ouer-lasting homology.

observation:

birth sexes:
terminal sues
\rightarrow their column reduces to 0
\rightarrow their columns do not reduce to 0
\rightarrow a birth $s x$ is non-essential \rightarrow they do not appear in a pivot row
of it appears in a pivot row
\rightarrow shortcut called TwIsT

Representative of essential $s \times \sigma$:

$$
\sigma-\sum_{i}^{1} \tau_{i} \quad \underbrace{\partial \sigma-\sum_{i} \partial \tau_{i}=0}_{\text {where }} \begin{gathered}
\text { is the reduction } \\
\text { of a } \sigma \text {-column. }
\end{gathered}
$$

Example: Computation for filtration given above.

$$
\left\langle a_{i} c\right\rangle \text { unpaired }
$$

We now perform the labelled matrix reduction as described above.
essential $5 x$

