CMSIS-RTOS2

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group CMSIS R
TOS.html

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS.html
https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS.html

Application l Middleware

CMSIS-RTOS API v2

Real-time Kernel (3rd Party)

- CMSIS-CORE device files

startup <device>.s

B CMSIS-RTOS standard files
CMSIS device starcup
INnterrupt vectors

Implementation specific RTOS files

<rtos>.h
User program

startup <device>.c

Implemm specific

CMASIS system and clock interface

configuration l

<device>.h <user>.c/cpp

CMSIS device peripheral User application
access main() {...}

CMSIS-RTOS File Structure

/elite izvedeti vec?

* https://interrupt.memfault.com/blog/cortex-m-rtos-context-
switching

* https://mcuoneclipse.com/2016/08/28/arm-cortex-m-interrupts-and-
freertos-part-3/

https://interrupt.memfault.com/blog/cortex-m-rtos-context-switching
https://interrupt.memfault.com/blog/cortex-m-rtos-context-switching
https://mcuoneclipse.com/2016/08/28/arm-cortex-m-interrupts-and-freertos-part-3/
https://mcuoneclipse.com/2016/08/28/arm-cortex-m-interrupts-and-freertos-part-3/

Priority

T i

3) (7) PendSV=1
SysTick
Handler (11)
.| PendSV Handler
(8) | (context switch) Handler
"""""""""""""" . 228 . 2 . 2R
Stacking Destacking Stacking Destacking Stacking Destacking Thread
with PSP with PSP with PSP with PSP with PSP with PSP
12
T () L Te L Jao L 12
main() TaskO TaskO Task1
(1) ' (5) ' 9)
svC § SysTick § Pendsv| §
| |
I I

Time

/agon prvega opravila in razvrscevalnika

()

— Z ukazom SVC sprozimo “SuperVisor Call” izjemo

vPortSVCHandler()

Nastavimo PSP prvega opravila iz strukture Task Control Block

Preberemo prvo opravilo s skladu (registre r4-r11 ter r14)

Omogoci prekinitve z najnizjo prioriteto (za PendSV)

Z ukazom bx r14 se z destackingom “vrnemo” v prvo opravilo in Cakamo na periodic¢ne
prekinitve za task switching

B wnNe

Z a g O n p rVe g a O p ra V I ‘ a For M3/M4/M7, FreeRTOS uses the SVC in a single place: when it starts the scheduler to

run the first task. The function vPortStartFirstTask() gets called at the end when you do a
call to the FreeRTOS vTaskStartScheduler():

"""" The M3/M4/M7 ports of FreeRTOS are using a SuperVisor to start the first task. The SVC
(SuperVisor Call) instruction is designed by ARM to access OS Kernel functions and device
drivers. The SVCall exception is raised by the SVC assembly instruction which takes an
additional argument/number, e.g.

There are several different strategies but a common pattern an RTOS will follow when creating a new task
is to initialize the task stack to look like it had been context switched out by the scheduler. Then to start the
scheduler itself by triggering a SVC exception with the svc instruction.

SVC Handler:

vPortSVCHandler(

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero

---------------------- value, it prevents the activation of all exceptions with the same or lower priority level as the BASEPRI value. See

You might notice that the above handler sets the PSP (Process Stack Pointer):

"msr psp, r@ \n" /* Remember the new top of stack for the task.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a SysTick exception. In an OS environment, the processor can use

this exception as system tick.

Systick Handler:

portDISABLE_INTERRUPTS();
{

(xTaskIncrementTick() != pdFALSE)

{

portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;
}
}
portENABLE_INTERRUPTS();

The FreeRTOS scheduler works by utilizing the built in SysTick and PendSV interrupts. The SysTick is configured to
fire periodically. Each time it fires, a check is performed to see if a context switch is required by calling

xTaskIncrementT1ick:

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching when no other exception is active.

PendSV Handler:

xPortPendSVHandler ()

The Pendable Service interrupt is used by the RTOS to perform a context switch.

moy. ro, ° The vPortPendSVHandler() It is similar to the vPortSVCHandler(). But it does not switch

e from the MSP to the PSP: it performs a task context switch between different PSP values.
cpsie 7 AR Additionally it calls the FreeRTOS vTaskSwitchContext() which selects the highest (RTOS!)

WORKAROUND_PMU_CM0@01
WORKAROUND_PMU_CM001 == 1

Inicializacija jedra OS

osStatus_t osKernellnitialize (void)

Returns
status code that indicates the execution status of the function.

The function osKernellnitialize initializes the RTOS Kernel. Before it is successfully executed, only the functions osKernelGetinfo and osKernelGetState may be called.
Possible osStatus_t return values:

0sOK in case of success.

osError if an unspecific error occurred.

osErroriSR if called from an Interrupt Service Routine.
osErrorNoMemory if no memory could be reserved for the operation.

Note
This function cannot be called from Interrupt Service Routines.

/agon razvrscevalnika

osStatus_t osKernelStart (void)

Returns
status code that indicates the execution status of the function.

The function osKernelStart starts the RTOS kernel and begins thread switching. It will not return to its calling function in case of success. Before it is successfully
executed, only the functions osKernelGetinfo, osKernelGetState, and object creation functions (0sXxxNew) may be called.

At least one initial thread should be created prior osKernelStart, see osThreadNew.

Possible osStatus_t return values:

e osError if an unspecific error occurred.
e osErroriSR if called from an Interrupt Service Routine.

Note
This function cannot be called from Interrupt Service Routines.

Stanje jedra

osKernelState_t osKernelGetState (void)

Returns
current RTOS Kernel state.

The function osKernelGetState returns the current state of the kernel and can be safely called before the RTOS is initialized or started (call to osKernellnitialize or
osKernelStart). In case it fails it will return osKernelError, otherwise it returns the kernel state (refer to osKernelState_t for the list of kernel states).

Possible osKernelState_t return values:

e osKernelError if an unspecific error occurred.
¢ the actual kernel state otherwise.

Note
This function may be called from Interrupt Service Routines.

Code Example

int main (void) {
// System Initialization
SystemCoreClockUpdate();
70 coo
if (osKernelGetState() == osKernellInactive) { // Is the kernel initialized?
osKernelInitialize(); // Initialize CMSIS-RTOS kernel
}

4

}

Stanje jedra

enum osKernelState_t

State of the kernel as retrieved by osKernelGetState. In case osKernelGetState fails or if it is called from an ISR, it will return osKernelError, otherwise it returns the
kernel state.

Enumerator
osKernellnactive
Inactive.
The kernel is not ready yet. osKernellnitialize needs to be executed successfully.
osKernelReady
Ready.
The kernel is not yet running. osKernelStart transfers the kernel to the running state.
osKernelRunning
Running.
The kernel is initialized and running.
osKernelLocked
Locked.
The kernel was locked with osKernelLock. The functions osKernelUnlock or osKernelRestoreLock unlocks it.
osKernelSuspended
Suspended.
The kernel was suspended using osKernelSuspend. The function osKernelResume returns to normal operation.
osKernelError

Error.

An error occurred.

/gled

int main (void) {

// System Initialization

SystemCoreClockUpdate();
// e o o

if (osKernelGetState()

(

= osKernelInactive) {
osKernelInitialize

);

}

; // ... Start Threads

if (osKernelGetState() == osKernelReady) { // 1f kernel is ready to run...
osKernelStart(); // ... start thread execution
}

while(1); // only reached in case of error
}

Ustvarjanje niti

osThreadld_t osThreadNew (osThreadFunc_t func,
void * argument,
const osThreadAttr_t * attr
)
Parameters
[in] func thread function.
[in] argument pointer that is passed to the thread function as start argument.
[in] attr thread attributes; NULL: default values.
Returns

thread ID for reference by other functions or NULL in case of error.

The function osThreadNew starts a thread function by adding it to the list of active threads and sets it to state READY. Arguments for the thread function are passed
using the parameter pointer *argument. When the priority of the created thread function is higher than the current RUNNING thread, the created thread function starts

instantly and becomes the new RUNNING thread. Thread attributes are defined with the parameter pointer attr. Attributes include settings for thread priority, stack size, or
memory allocation.

The function can be safely called before the RTOS is started (call to osKernelStart), but not before it is initialized (call to osKernellnitialize).
The function osThreadNew returns the pointer to the thread object identifier or NULL in case of an error.

Note
Cannot be called from Interrupt Service Routines.

__NO _RETURN void threadl (void *argument) {

for (i:) {}

const osThreadAttr_ t threadl attr = {

.stack _size = 1024 // Create the thread stack with a size of 1024 bytes
}i

int main (void) {

7
osThreadNew(threadl, NULL, &threadl_attr); // Create thread with custom sized stack memory

4

}

__NO _RETURN void threadl (void *argument) {
70 500

for (;;) {}

const osThreadAttr t threadl attr = {

.priority = osPriorityHigh //Set initial thread priority to high
}i

int main (void) {

7
osThreadNew(threadl, NULL, &threadl_attr);

.
14

}

Niti

Active Threads

BLOCKED

event occurs

8)euIwIs)
T

-

9)eald

INACTIVE / TERMINATED

/akasnitve

Generic Wait Functions
CMSIS-RTOS API v2

Wait for a certain period of time. More...

Functions

osStatus_t

osStatus_t

osDelay (uint32_t ticks)
Wait for Timeout (Time Delay). More...

osDelayUntil (uint32_t ticks)
Wait until specified time. More...

/akasnitve

osStatus_t osDelay (uint32_t ticks)

Parameters
[in] ticks time ticks value

Returns
status code that indicates the execution status of the function.

The function osDelay waits for a time period specified in kernel ticks. For a value of 1 the system waits until the next timer tick occurs. The actual time delay may be up
to one timer tick less than specified, i.e. calling osDelay (1) right before the next system tick occurs the thread is rescheduled immediately.

The delayed thread is put into the BLOCKED state and a context switch occurs immediately. The thread is automatically put back to the READY state after the given
amount of ticks has elapsed. If the thread will have the highest priority in READY state it will be scheduled immediately.

Possible osStatus_t return values:

e 0sOK: the time delay is executed.

o osErrorParameter: the time cannot be handled (zero value).

e osErrorISR: osDelay cannot be called from Interrupt Service Routines.

e osError: osDelay cannot be executed (kernel not running or no READY thread exists).

Note
This function cannot be called from Interrupt Service Routines.

Code Example

#include "cmsis_os2.h"

void Thread 1 (void *arg) { // Thread function
osStatus_t status; // capture the return status
uint32_t delayTime; // delay time in milliseconds
delayTime = 1000U; // delay 1 second
status = osDelay(delayTime); // suspend thread execution

/akasnitve

—————————— === v —_—— _———————

status = osDelay(delayTime); 77 suspéna thread execution

}
osStatus_t osDelayUntil (uint32_t ticks)

Parameters
[in] ticks absolute time in ticks

Returns
status code that indicates the execution status of the function.

The function osDelayUntil waits until an absolute time (specified in kernel ticks) is reached.

The corner case when the kernel tick counter overflows is handled by osDelayUntil. Thus it is absolutely legal to provide a value which is lower than the current tick
value, i.e. returned by osKernelGetTickCount. Typically as a user you do not have to take care about the overflow. The only limitation you have to have in mind is that
the maximum delay is limited to (231)-1 ticks.

The delayed thread is put into the BLOCKED state and a context switch occurs immediately. The thread is automatically put back to the READY state when the given time
is reached. If the thread will have the highest priority in READY state it will be scheduled immediately.

Possible osStatus_t return values:

e 0sOK: the time delay is executed.

e osErrorParameter: the time cannot be handled (out of bounds).

e osErroriSR: osDelayUntil cannot be called from Interrupt Service Routines.

e osError: osDelayUntil cannot be executed (kernel not running or no READY thread exists).

Note
This function cannot be called from Interrupt Service Routines.

/akasnitve

uint32_t osKernelGetTickCount (void)

Returns
RTOS kernel current tick count.

The function osKernelGetTickCount returns the current RTOS kernel tick count.

Note
This function may be called from Interrupt Service Routines.

Code Example

#include "cmsis_os2.h"

void Thread 1 (void *arg) ({ // Thread function

uint32_t tick;

tick = osKernelGetTickCount(); // retrieve the number of system ticks

for (53) A
tick += 1000; // delay 1000 ticks periodically
osDelayUntil(tick);
/] ...

}

}

Vrste

1
Description

Message passing is another basic communication model between threads. In the message passing model, one thread sends data explicitly, while another thread receives it. The

operation is more like some kind of I/O rather than a direct access to information to be shared. In CMSIS-RTOS, this mechanism is called s message queue. The data is passed from one
thread to another in a FIFO-like operation. Using message queue functions, you can control, send, receive, or wait for messages. The data to be passed can be of integer or pointer type:

Message Queue

Thread
or ISR

message object
CMSIS-RTOS Message Queue

Compared to a Memory Pool, message queues are less efficient in general, but solve a broader range of problems. Sometimes, threads do not have a common address space or the use of
shared memory raises problems, such as mutual exclusion.

Note
The functions osMessageQueuePut, osMessageQueueGet, osMessageQueueGetCapacity, osMessageQueueGetMsgSize, osMessageQueueGetCount,
osMessageQueueGetSpace can be called from Interrupt Service Routines.

Vrste - ustvarjanje

osMessageQueueld_t osMessageQueueNew (uint32_t msg_count,
uint32_t msg_size,
const osMessageQueueAttr_t * attr
)
Parameters

[in] msg_count maximum number of messages in queue.
[in] msg_size maximum message size in bytes.
[in] attr message queue attributes; NULL: default values.

Returns
message queue ID for reference by other functions or NULL in case of error.

The function osMessageQueueNew creates and initializes a message queue object. The function returns a message queue object identifier or NULL in case of an error.

The function can be called after kernel initialization with osKernellnitialize. It is possible to create message queue objects before the RTOS kernel is started with
osKernelStart.

The total amount of memory required for the message queue data is at least msg _count * msg_size. The msg_size is rounded up to a double even number to ensure 32-
bit alignment of the memory blocks.

The memory blocks allocated from the message queue have a fixed size defined with the parameter msg_size.

Vrste - Put

osStatus_t osMessageQueuePut (osMessageQueueld_t mgq_id,

const void * msg_ptr,
uint8_t msg_prio,
uint32_t timeout

)

Parameters

[in] mq_id message queue ID obtained by osMessageQueueNew.
[in] msg_ptr pointer to buffer with message to put into a queue.
[in] msg_prio message priority.
[in] timeout Timeout Value or 0 in case of no time-out.

Returns
status code that indicates the execution status of the function.

The blocking function osMessageQueuePut puts the message pointed to by msg_ptr into the the message queue specified by parameter mq_id. The parameter msg_prio
is used to sort message according their priority (higher numbers indicate a higher priority) on insertion.

The parameter timeout specifies how long the system waits to put the message into the queue. While the system waits, the thread that is calling this function is put into
the BLOCKED state. The parameter timeout can have the following values:

e when timeoutis 0, the function returns instantly (i.e. try semantics).
e when timeoutis set to osWaitForever the function will wait for an infinite time until the message is delivered (i.e. wait semantics).
¢ all other values specify a time in kernel ticks for a timeout (i.e. timed-wait semantics).

Possible osStatus_t return values:

0sOK: the message has been put into the queue.

osErrorTimeout: the message could not be put into the queue in the given time (wait-timed semantics).
osErrorResource: not enough space in the queue (try semantics).

osErrorParameter: parameter mq_id is NULL or invalid, non-zero timeout specified in an ISR.

Vrste - Get

osStatus_t osMessageQueueGet (osMessageQueueld_t mgq_id,

void * msg_ptr,
uint8_t * msg_prio,
uint32_t timeout

)

Parameters
[in] mgq_id message queue ID obtained by osMessageQueueNew.
[out] msg_ptr pointer to buffer for message to get from a queue.
[out] msg_prio pointer to buffer for message priority or NULL.
[in] timeout Timeout Value or 0 in case of no time-out.

Returns
status code that indicates the execution status of the function.

The function osMessageQueueGet retrieves a message from the message queue specified by the parameter mqg_id and saves it to the buffer pointed to by the parameter
msg_ptr. The message priority is stored to parameter msg_prio if not token{NULL}.

The parameter timeout specifies how long the system waits to retrieve the message from the queue. While the system waits, the thread that is calling this function is put
into the BLOCKED state. The parameter timeout can have the following values:

e when timeoutis 0, the function returns instantly (i.e. try semantics).
e when timeoutis set to osWaitForever the function will wait for an infinite time until the message is retrieved (i.e. wait semantics).
¢ all other values specify a time in kernel ticks for a timeout (i.e. timed-wait semantics).

Possible osStatus_t return values:

0sOK: the message has been retrieved from the queue.

osErrorTimeout: the message could not be retrieved from the queue in the given time (timed-wait semantics).
osErrorResource: nothing to get from the queue (try semantics).

osErrorParameter: parameter mq_id is NULL or invalid, non-zero timeout specified in an ISR.

Vrste - Zgled

#include "cmsis_os2.h" // CMSIS RTOS header file

R e e = = = = e S = = = = = = = = e = = = = = = e === === ===
* Message Queue creation & usage
g */

#define MSGQUEUE_OBJECTS 16
typedef struct {

uint8_t Buf[32];

uint8_t Idx;
} MSGQUEUE_OBJ t;
osMessageQueueId_t mid_MsgQueue;

osThreadId_t tid_Thread MsgQueuel;
osThreadId t tid_Thread MsgQueue2;

void Thread_MsgQueuel (void *argument);
void Thread MsgQueue2 (void *argument);

int Init_MsgQueue (void) {

mid_MsgQueue = osMessageQueueNew(MSGQUEUE_OBJECTS, sizeof(MSGQUEUE_OBJ_t), NULL);

if (mid_MsgQueue == NULL) {
7

}

//

//
//

//
//

number of Message Queue Objects

object data type

message queue id

thread id 1
thread id 2

thread function 1
thread function 2

// Message Queue object not created, handle failure

tid_Thread MsgQueuel = osThreadNew(Thread_ MsgQueuel, NULL, NULL);

if (tid_Thread MsgQueuel == NULL) {
return(-1);

}
tid_Thread_MsgQueue2 = osThreadNew(Thread MsgQueue2, NULL, NULL);

if (tid_Thread_MsgQueue2 == NULL) {
return(-1);

}

return(0);

void Thread MsgQueuel (void *argument) {
MSGQUEUE_OBJ_t msg;

}

while (1) {

// Insert thread code here...

msg.Buf[0] = 0x55U;

msg.Idx = 0U;

osMessageQueuePut (mid_MsgQueue, &msg, 0U, 0U);
osThreadYield();

}

r

void Thread MsgQueue2 (void *argument) {
MSGQUEUE_OBJ_t msg;
osStatus_t status;

}

while (1)

// Insert thread code here...

status = osMessageQueueGet(mid_Mngueue, &msg, NULL, 0U);
if (status == 0sOK) {

}

r

}

4

// process data

// do some work...

// suspend thread

// wait for message

Kljucavnice (Mutual Exclusion

Description
Mutual exclusion (widely known as Mutex) is used in various operating systems for resource management. Many resources in a microcontroller device can be used repeatedly, but only

by one thread at a time (for example communication channels, memory, and files). Mutexes are used to protect access to a shared resource. A mutex is created and then passed between
the threads (they can acquire and release the mutex).

Mutex

Release Release

shared resource
CMSIS-RTOS Mutex

A mutex is a special version of a semaphore. Like the semaphore, it is a container for tokens. But instead of being able to have multiple tokens, a mutex can only carry one (representing
the resource). Thus, a mutex token is binary and bounded, i.e. it is either available, or blocked by a owning thread. The advantage of a mutex is that it introduces thread ownership. When
a thread acquires a mutex and becomes its owner, subsequent mutex acquires from that thread will succeed immediately without any latency (if osMutexRecursive is specified). Thus,
mutex acquires/releases can be nested.

KljuCavnice (Mutual Exclusion)

available

osMutexAcquire() osMutexRelease()
/ owner = running, [owner == running & !count]
count =0 J/ owner = NULL

osMutexAcquire() osMutexRelease()
[owner == running] [owner == running && count]
/COUﬂt""F /count..

Kljucavnice (Mutual Exclusion

osMutexld_t osMutexNew (const osMutexAttr_t * attr)

Parameters
[in] attr mutex attributes; NULL: default values.

Returns
mutex ID for reference by other functions or NULL in case of error.

The function osMutexNew creates and initializes a new mutex object and returns the pointer to the mutex object identifier or NULL in case of an error. It can be safely called before
the RTOS is started (call to osKernelStart), but not before it is initialized (call to osKernellnitialize).

The parameter attr sets the mutex object attributes (refer to osMutexAttr_t). Default attributes will be used if set to NULL.

Note
This function cannot be called from Interrupt Service Routines.

Code Example

#include "cmsis_os2.h"
osMutexId_t mutex_id;

const osMutexAttr t Thread_Mutex_attr = {

"myThreadMutex", // human readable mutex name
osMutexRecursive | osMutexPrioInherit, // attr_bits

NULL, // memory for control block
ou // size for control block

}:

void CreateMutex (void) {
mutex_id = osMutexNew(&Thread Mutex_attr);
if (mutex_id != NULL) {
// Mutex object created
}
}

Kljucavnice (Mutual Exclusion

osStatus_t osMutexAcquire (osMutexid_t mutex_id,
uint32_t timeout

)

Parameters
[in] mutex_id mutex ID obtained by osMutexNew.
[in] timeout Timeout Value or 0 in case of no time-out.

Returns
status code that indicates the execution status of the function.

The blocking function osMutexAcquire waits until a mutex object specified by parameter mutex_id becomes available. If no other thread has obtained the mutex, the function
instantly returns and blocks the mutex object.

The parameter timeout specifies how long the system waits to acquire the mutex. While the system waits, the thread that is calling this function is put into the BLOCKED state. The
parameter timeout can have the following values:

e when timeoutis 0, the function returns instantly (i.e. try semantics).
e when timeoutis set to osWaitForever the function will wait for an infinite time until the mutex becomes available (i.e. wait semantics).
e all other values specify a time in kernel ticks for a timeout (i.e. timed-wait semantics).

Possible osStatus_t return values:

0sOK: the mutex has been obtained.

osErrorTimeout: the mutex could not be obtained in the given time.
osErrorResource: the mutex could not be obtained when no timeout was specified.
osErrorParameter: parameter mutex_id is NULL or invalid.

osErrorISR: cannot be called from interrupt service routines.

Note
This function cannot be called from Interrupt Service Routines.

Code Example

#include "cmsis_os2.h"

void WaitMutex (void) {
osMutexId_t mutex_id;

osStatus_t status;
mutex_id = osMutexNew(NULL);
if (mutex_id != NULL) {
status = osMutexAcquire(mutex_id, 0U);
if (status != 0sOK) {
// handle failure code

Kljucavnice (Mutual Exclusion

osStatus_t osMutexRelease (osMutexid_t mutex_id)

Parameters
[in] mutex_id mutex ID obtained by osMutexNew.

Returns
status code that indicates the execution status of the function.

The function osMutexRelease releases a mutex specified by parameter mutex_id. Other threads that currently wait for this mutex will be put into the READY state.
Possible osStatus_t return values:

0sOK: the mutex has been correctly released.

osErrorResource: the mutex could not be released (mutex was not acquired or running thread is not the owner).
osErrorParameter: parameter mutex_id is NULL or invalid.

osErroriSR: osMutexRelease cannot be called from interrupt service routines.

Note
This function cannot be called from Interrupt Service Routines.

Code Example

#include "cmsis_os2.h"

osMutexId_t mutex_id; // Mutex id populated by the function osMutexNew()

void ReleaseMutex (osMutexId t mutex_id) {
osStatus_t status;

if (mutex_id != NULL) {
status = osMutexRelease(mutex_id);
if (status != 0sOK) {
// handle failure code
}
}
}

Kljucavnice (Mutual Exclusion

osStatus_t osMutexDelete (osMutexld_t mutex_id)

Parameters
[in] mutex_id mutex ID obtained by osMutexNew.

Returns
status code that indicates the execution status of the function.

The function osMutexDelete deletes a mutex object specified by parameter mutex_id. It releases internal memory obtained for mutex handling. After this call, the
mutex_id is no longer valid and cannot be used. The mutex may be created again using the function osMutexNew.

Possible osStatus_t return values:

e 0sOK: the mutex object has been deleted.

e osErrorParameter: parameter mutex_id is NULL or invalid.

e osErrorResource: the mutex is in an invalid state.

o osErrorISR: osMutexDelete cannot be called from interrupt service routines.

Note
This function cannot be called from Interrupt Service Routines.

Code Example

#include "cmsis_os2.h"

osMutexId t mutex_ id; // Mutex id populated by the function osMutexNew()

void DeleteMutex (osMutexId t mutex_id) {
osStatus_t status;

if (mutex_id != NULL) ({
status = osMutexDelete(mutex_id);
if (status != 0sOK) ({
// handle failure code
}
}
}

Kljucavnice (Mutual Exclusion

Code Example

#include "cmsis_os2.h"
osMutexId_t mutex_id;

const osMutexAttr t Thread Mutex_attr = {

"myThreadMutex", // human readable mutex name
osMutexRecursive, // attr_bits

NULL, // memory for control block
ou // size for control block

}:

// must be called from a thread context
void UseMutexRecursively(int count) {
osStatus_t result = osMutexAcquire(mutex_id, osWaitForever); // lock count is incremented, might fail when lock count is depleted
if (result == 0sO0K) {
if (count < 10) {
UseMutexRecursively(count + 1);

osMutexRelease(mutex_id); // lock count is decremented, actually releases the mutex on lock count zero
}
}

Semaforiji

Semaphores are used to manage and protect access to shared resources. Semaphores are very similar to Mutexes. Whereas a Mutex permits just one thread to access a shared resource at
a time, a semaphore can be used to permit a fixed number of threads/ISRs to access a pool of shared resources. Using semaphores, access to a group of identical peripherals can be
managed (for example multiple DMA channels).

Semaphore
#0
#1
#2
#3
#4
#5

Thread
or ISR

Thread

acquire

Thread
or ISR

shared resource
CMSIS-RTOS Semaphore

Semaforiji

A semaphore object should be initialized to the maximum number of available tokens. This number of available resources is specified as parameter of the osSemaphoreNew function.
Each time a semaphore token is obtained with osSemaphoreAcquire (in available state), the semaphore count is decremented. When the semaphore count is O (i.e. depleted state), no

more semaphore tokens can be obtained. The thread/ISR that tries to obtain the semaphore token needs to wait until the next token is free. Semaphores are released with
osSemaphoreRelease incrementing the semaphore count.

osSemaphoreAcquire()

osSemaphoreRelease()
[count > 1] / count--

[count < max] / count++

available

osSemaphoreAcquire()

osSemaphoreRelease()
[count==1] / count--

/ count++

depleted

CMSIS-RTOS Semaphore States

Note

The functions osSemaphoreAcquire, osSemaphoreGetCount, and osSemaphoreRelease can be called from Interrupt Service Routines.
Refer to Semaphore Configuration for RTX5 configuration options.

Semaforiji

Semaphore Use Cases

Due to their flexibility, semaphores cover a wide range of synchronizing applications. At the same time, they are perhaps the most challenging RTOS object to understand. The following
explains a use case for semaphores, taken from the book The Little Book Of Semaphores by Allen B. Downey which is available for free download.

Non-binary Semaphore (Multiplex)

A multiplex limits the number of threads that can access a critical section of code. For example, this could be a function accessing DMA resources which can only support a limited
number of calls.

To allow multiple threads to run the function, initialize a semaphore to the maximum number of threads that can be allowed. The number of tokens in the semaphore represents the
number of additional threads that may enter. If this number is zero, then the next thread trying to access the function will have to wait until one of the other threads exits and releases its
token. When all threads have exited the token number is back to n. The following example shows the code for one of the threads that might access the resource:

osSemaphoreId_t multiplex_id;
void thread_n (void) {

multiplex id = osSemaphoreNew(3U, 3U, NULL);
while(1) {
osSemaphoreAcquire (multiplex_id, osWaitForever);
// do something
osSemaphoreRelease(multiplex_id);

}

Semaforj

e osSemaphoreNew

Function Documentation

osSemaphoreld_t osSemaphoreNew (uint32_t max_count,
uint32_t initial_count,
const osSemaphoreAttr_t * attr
)
Parameters

[in] max_count maximum number of available tokens.
[in] initial_count initial number of available tokens.
[in] attr semaphore attributes; NULL: default values.

Returns
semaphore ID for reference by other functions or NULL in case of error.

The function osSemaphoreNew creates and initializes a semaphore object that is used to manage access to shared resources and returns the pointer to the semaphore object
identifier or NULL in case of an error. It can be safely called before the RTOS is started (call to osKernelStart), but not before it is initialized (call to osKernellnitialize).

The parameter max_count specifies the maximum number of available tokens. A max_count value of 1 creates a binary semaphore.
The parameter initial_count sets the initial number of available tokens.
The parameter attr specifies additional semaphore attributes. Default attributes will be used if set to NULL.

Note
This function cannot be called from Interrupt Service Routines.

Semaforiji

osStatus_t osSemaphoreAcquire (osSemaphoreld_t semaphore_id,

uint32_t timeout
)
Parameters
[in] semaphore_id semaphore ID obtained by osSemaphoreNew.
[in] timeout Timeout Value or 0 in case of no time-out.
Returns

status code that indicates the execution status of the function.

The blocking function osSemaphoreAcquire waits until a token of the semaphore object specified by parameter semaphore_id becomes available. If a token is available, the function
instantly returns and decrements the token count.

The parameter timeout specifies how long the system waits to acquire the token. While the system waits, the thread that is calling this function is put into the BLOCKED state. The
parameter timeout can have the following values:

e when timeout is 0, the function returns instantly (i.e. try semantics).
e when timeout is set to osWaitForever the function will wait for an infinite time until the semaphore becomes available (i.e. wait semantics).
¢ all other values specify a time in kernel ticks for a timeout (i.e. timed-wait semantics).

Possible osStatus_t return values:

0sOK: the token has been obtained and the token count decremented.
osErrorTimeout: the token could not be obtained in the given time.
osErrorResource: the token could not be obtained when no timeout was specified.
osErrorParameter: the parameter semaphore_id is NULL or invalid.

Note
May be called from Interrupt Service Routines if the parameter timeout is set to 0.

Semaforiji

osStatus_t osSemaphoreRelease (osSemaphoreld_t semaphore_id)

Parameters
[in] semaphore_id semaphore ID obtained by osSemaphoreNew.

Returns
status code that indicates the execution status of the function.

The function osSemaphoreRelease releases a token of the semaphore object specified by parameter semaphore_id. Tokens can only be released up to the maximum count specified
at creation time, see osSemaphoreNew. Other threads that currently wait for a token of this semaphore object will be put into the READY state.

Possible osStatus_t return values:

e 0sOK: the token has been released and the count incremented.
e osErrorResource: the token could not be released (maximum token count has been reached).
e osErrorParameter: the parameter semaphore_id is NULL or invalid.

Note
This function may be called from Interrupt Service Routines.

Semaforiji

uint32_t osSemaphoreGetCount (osSemaphoreld_t semaphore_id)

Parameters
[in] semaphore_id semaphore ID obtained by osSemaphoreNew.

Returns
number of tokens available.

The function osSemaphoreGetCount returns the number of available tokens of the semaphore object specified by parameter semaphore_id. In case of an error it returns 0.

Note
This function may be called from Interrupt Service Routines.

osStatus_t osSemaphoreDelete (osSemaphoreld_t semaphore_id)

Parameters
[in] semaphore_id semaphore ID obtained by osSemaphoreNew.

Returns
status code that indicates the execution status of the function.

The function osSemaphoreDelete deletes a semaphore object specified by parameter semaphore_id. It releases internal memory obtained for semaphore handling. After this call, the
semaphore_id is no longer valid and cannot be used. The semaphore may be created again using the function osSemaphoreNew.

Possible osStatus_t return values:

0sOK: the semaphore object has been deleted.

osErrorParameter: the parameter semaphore_id is NULL or invalid.
osErrorResource: the semaphore is in an invalid state.

osErrorISR: osSemaphoreDelete cannot be called from interrupt service routines.

Note
This function cannot be called from Interrupt Service Routines.

Semaforiji

Code Example

#include "cmsis_os2.h" // CMSIS RTOS header file
osSemaphoreId_t sid_Semaphore; // semaphore id
osThreadId_t tid_Thread_Semaphore; // thread id

void Thread_Semaphore (void *argument); // thread function

int Init_Semaphore (void) {

sid_Semaphore = osSemaphoreNew(2U, 2U, NULL);
if (sid_Semaphore == NULL) {

; // Semaphore object not created, handle failure
}

tid_Thread_Semaphore = osThreadNew(Thread_ Semaphore, NULL, NULL);
if (tid_Thread_Semaphore == NULL)
return(-1);

return(0);

}

void Thread_Semaphore (void *argument) {
osStatus_t val;

while (1)
; // Insert thread code here...

val = osSemaphoreAcquire(sid_Semaphore, 10U); // wait for max. 10 ticks for semaphore token to get available
switch (val) {
case 0sOK:
; // Use protected code here...
osSemaphoreRelease(sid_Semaphore); // return a token back to a semaphore
break;
case osErrorResource:
break;
case osErrorParameter:
break;
default:
break;
}

osThreadYield(); // suspend thread

/akasnitve

osStatus_t osDelay (uint32_t ticks)

Parameters
[in] ticks time ticks value

Returns
status code that indicates the execution status of the function.

The function osDelay waits for a time period specified in kernel ticks. For a value of I the system waits until the next timer tick occurs. The
actual time delay may be up to one timer tick less than specified, i.e. calling osDelay(1) right before the next system tick occurs the thread is
rescheduled immediately.

The delayed thread is put into the BLOCKED state and a context switch occurs immediately. The thread is automatically put back to the READY
state after the given amount of ticks has elapsed. If the thread will have the highest priority in READY state it will be scheduled immediately.

Possible osStatus_t return values:

0sOK: the time delay is executed.

osErrorParameter: the time cannot be handled (zero value).

osErrorISR: osDelay cannot be called from Interrupt Service Routines.

osError: osDelay cannot be executed (kernel not running or no READY thread exists).

Note
This function cannot be called from Interrupt Service Routines.

Code Example

#include "cmsis_os2.h"

void Thread 1 (void *arg) { // Thread function
osStatus_t status; // capture the return status
uint32_t delayTime; // delay time in milliseconds

delayTime = 1000U;
status = osDelay(delayTime);

}

//
//

delay 1 second
suspend thread execution

/akasnitve

osStatus_t osDelayUntil (uint32_t ticks)

Parameters
[in] ticks absolute time in ticks

Returns
status code that indicates the execution status of the function.

The function osDelayUntil waits until an absolute time (specified in kernel ticks) is reached.

The corner case when the kernel tick counter overflows is handled by osDelayUntil. Thus it is absolutely legal to provide a value which is lower
than the current tick value, i.e. returned by osKernelGetTickCount. Typically as a user you do not have to take care about the overflow. The

only limitation you have to have in mind is that the maximum delay is limited to (231)-1 ticks.

The delayed thread is put into the BLOCKED state and a context switch occurs immediately. The thread is automatically put back to the READY
state when the given time is reached. If the thread will have the highest priority in READY state it will be scheduled immediately.

Possible osStatus_t return values:

0sOK: the time delay is executed.

osErrorParameter: the time cannot be handled (out of bounds).

osErroriSR: osDelayUntil cannot be called from Interrupt Service Routines.

osError: osDelayUntil cannot be executed (kernel not running or no READY thread exists).

Note
This function cannot be called from Interrupt Service Routines.

Code Example

#include "cmsis_os2.h"

void Thread_ 1 (void *arg) { // Thread function
uint32_t tick;
tick = osKernelGetTickCount(); // retrieve the number of system ticks
for (;;) {
tick += 1000U; // delay 1000 ticks periodically

osDelayUntil(tick);
/

Virtualni casovniki

In addition to the Generic Wait Functions CMSIS-RTOS also supports virtual timer objects. These timer objects can trigger the execution of a function (not threads). When a timer expires,
a callback function is executed to run associated code with the timer. Each timer can be configured as a one-shot or a periodic timer. A periodic timer repeats its operation until it is

deleted or stopped. All timers can be started, restarted, or stopped.

Note
RTX handles Timers in the thread osRtxTimerThread. Callback functions run under control of this thread and may use other CMSIS-RTOS API calls. The osRtxTimerThread is
configured in Timer Configuration.

Timer management functions cannot be called from Interrupt Service Routines.

The figure below shows the behavior of a periodic timer. For one-shot timers, the timer stops after execution of the callback function.

- osTimerStart
osTimerStart (restart timer) :
osTimerStop
> ¥ %0 Time
Callback Callback Callback Callback

Behavior of a Periodic Timer

Virtualni ¢asovniki

osTimerld_t osTimerNew (osTimerFunc_t func,
osTimerType_t type,
void * argument,
const osTimerAttr_t * attr
)
Parameters
[in] func function pointer to callback function.
[in] type osTimerOnce for one-shot or osTimerPeriodic for periodic behavior.
[in] argument argument to the timer callback function.
[in] attr timer attributes; NULL: default values.
Returns

timer ID for reference by other functions or NULL in case of error.

The function osTimerNew creates an one-shot or periodic timer and associates it with a callback function with argument. The timer is in stopped state until it is started with
osTimerStart. The function can be safely called before the RTOS is started (call to osKernelStart), but not before it is initialized (call to osKernellnitialize).

The function osTimerNew returns the pointer to the timer object identifier or NULL in case of an error.

Note
This function cannot be called from Interrupt Service Routines.

Virtualni casovniki

Code Example

#include "cmsis_os2.h"

void Timerl Callback (void *arg);
void Timer2_Callback (void *arg);

uint32_t execl;
uint32_t exec2;

void TimerCreate_example (void) ({
osTimerId t idl;
osTimerId t id2;

// Create one-shoot timer
execl = 1U;

//
//

//
//

//
//

prototypes for timer callback function
prototypes for timer callback function

argument for the timer call back function
argument for the timer call back function

timer id
timer id

idl = osTimerNew(Timerl_Callback, osTimerOnce, &execl, NULL);

if (idl != NULL) {
// One-shoot timer created

}

// Create periodic timer
exec2 = 2U;

id2 = osTimerNew(Timer2_Callback, osTimerPeriodic, &exec2, NULL);

if (id2 1= NULL) {
// Periodic timer created

;

}

Virtualni ¢asovniki

osStatus_t osTimerStart (osTimerld_t timer_id,
uint32_t ticks
)

Parameters
[in] timer_id timer ID obtained by osTimerNew.
[in] ticks time ticks value of the timer.

Returns
status code that indicates the execution status of the function.

The function osTimerStart starts or restarts a timer specified by the parameter timer_id. The parameter ticks specifies the value of the timer in time ticks.
Possible osStatus_t return values:

0sOK: the specified timer has been started or restarted.

osErroriSR: osTimerStart cannot be called from interrupt service routines.
osErrorParameter: parameter timer_id is either NULL or invalid or ticks is incorrect.
osErrorResource: the timer is in an invalid state.

Note
This function cannot be called from Interrupt Service Routines.

Virtualni ¢asovniki

osStatus_t osTimerStop (osTimerld_t timer_id)

Parameters
[in] timer_id timer ID obtained by osTimerNew.

Returns
status code that indicates the execution status of the function.

The function osTimerStop stops a timer specified by the parameter timer_id.
Possible osStatus_t return values:

0sOK: the specified timer has been stopped.

osErroriSR: osTimerStop cannot be called from interrupt service routines.
osErrorParameter: parameter timer_id is either NULL or invalid.
osErrorResource: the timer is not running (you can only stop a running timer).

Note
This function cannot be called from Interrupt Service Routines.

Virtualni casovniki

Code Example

#include "cmsis_os2.h"

void Timer_Callback (void *arg) ({

}

uint32_t exec;

void TimerStart example (void) {
osTimerId t id;
uint32_t timerDelay;
osStatus_t status;

// Create periodic timer
exec = 1U;

//
//
//

//

//
//
//

timer callback function
arg contains &exec
called every second after osTimerStart

argument for the timer call back function

timer id
timer value
function return status

id = osTimerNew(Timer_Callback, osTimerPeriodic, &exec, NULL);

if (id != NULL) {
timerDelay = 1000U;
status = osTimerStart(id, timerDelay);
1f (status != 0s0K) {
// Timer could not be started
}

~. N

// start timer

Virtualni casovniki

Working with Timers

The following steps are required to use a software timer:

1. Define the timers:
osTimerId_ t one_shot_id, periodic_id;
2. Define callback functions:

static void one_shot Callback (void *argument) ({
int32_t arg = (int32_t)argument; // cast back argument '0'
// do something, i.e. set thread/event flags

static void periodic_Callback (void *argument) {
int32_t arg = (int32_t)argument; // cast back argument 'S5’
// do something, i.e. set thread/event flags

}
3. Instantiate and start the timers:

// creates a one-shot timer:

one_shot_id = osTimerNew(one_shot_Callback, osTimerOnce, (void *)0, NULL);

// creates a periodic timer:

// (void*)0 is passed as an
// to the callback function

periodic_id = osTimerNew(periodic_Callback, osTimerPeriodic, (void *)5, NULL); // (void*)5 is passed as an

osTimerStart (one_shot_id, 500U);
osTimerStart (periodic_id, 15000);

// start the one-shot timer again after it has triggered the first time:

osTimerStart(one_shot_id, 500U);

// when timers are not needed any longer free the resources:
osTimerDelete(one_shot_id);
osTimerDelete(periodic_id);

// to the callback function

argument

argument

