
Reimplementing the FRIsheeping
herding algorithm using fuzzy logic
Veljko Dudić, Noah Novšak, Petra Kuralt, and Timotej Košir

Collective behavior course research seminar report

November 19, 2023

Iztok Lebar Bajec | professor | mentor

A herding algorithm that uses fuzzy logic

Summary of Findings: Recapitulate key findings
and their significance.

fuzzy logic | herding algorithm | genetic algorithm

Concisely summarize the research objectives, methodology, key findings, and implications.

fuzzy logic | herding algorithm | genetic algorithm

This study explores the integration of fuzzy logic into herding algorithms as an in-
novative approach to enhance adaptability and nuanced decision-making within

simulated group dynamics. Initially, we build upon the Strömbom algorithm, imple-
mented in Unity environment, introducing fuzzy logic to refine the behavior of entities
within the herd. Subsequently, our investigation extends to the implementation of
herding mechanism using genetic algorithms. This utilization of fuzzy logic and ge-
netic algorithms aims to create a comprehensive and robust framework for simulating
herding behavior in dynamic environments.

Introduction

Herding algorithms, at their core, strive to model the behavior of a shepherd (sheep-
dog) endeavoring to control larger groups of unwilling individuals (sheep). Traditional
approaches rely on predefined rules to govern the individual behavior of agents within
a group, influencing their movements based on factors like proximity and alignment
with neighbors [1]. While these methods capture the fundamental aspects of collective
behavior, their deterministic nature might fall short in handling the inherent uncer-
tainty and imprecision found in real-world scenarios. In this context, our approach
introduces another dimension to herding algorithms by incorporating fuzzy logic. This
enables a more flexible and adaptive decision-making process by allowing degrees of
truth between the absolute true and false, thus enabling the individuals in a group to
respond more effectively to altering environments.

As a starting point, we take the algorithm proposed by Strömbom et al. [2], which
has already been implemented by our predecessors in a Unity environment. Ström-
bom’s model employs a shepherd alternating between collecting dispersed sheep and
driving the group towards a specific goal. The sheep’s movement is determined by a
weighted sum of various forces.

In this paper, we discuss our approach to the re-implementation of Strömbom’s
algorithm and its suggested improvements using fuzzy logic. Additionally, we explore
the viability of the sheep’s learning behavior through a genetic algorithm, whereby
sheep incrementally improve their tactics through evolution.

Methodology

The testing environment consists of an enclosed pasture with a barn at its edge. The
N agents (sheep) are randomly placed in the pasture together with a shepherd (sheep-
dog). The aim of the shepherd is to collect and drive all the sheep into the barn
within a limited amount of time. The behavior of each individual agent in the sim-
ulation is governed by a selection of algorithms.

Strömbom model. Agents attempt to move away from the shepherd while staying close
to their neighbors. Each agent decides on its next action based on its current position,
the shepherd’s position S̄, and the position of its n nearest neighbors Āi. The agents
are attracted to their neighbors’ center of mass (LCM) and repelled from other agents
within a boundary distance ra. They are also repelled by the shepherd if it is closer
than rs.

All of these contributions are summed up by the following components:

1. Repulsion from the Shepherd: If the agent is within a distance rs of the shep-
herd, it is repelled in the opposite direction Rsi = Ai − S.

2. Attraction towards the local center of mass: The attraction is represented by
the vector Ci = LCM − Ai, where LCM = 1

n

∑
Ai for the agent’s n nearest

neighbors.

BM-RI | 2023/24 | CB:G | 1–3

3. Repulsion from Other Agents: If there are k other agents within ra, the com-
bined repulsion vector is defined as Rai =

∑k

j=1
(Ai−Aj)
|Ai−Aj |

.

4. Inertia and Noise: In each timestep, the agents maintain their previous direction
Hi, and some random noise ε is added to account for unpredictability.

Combining all these components, the movement vector in each iteration becomes

H ′i = hHi + cCi + aR̂ai + sR̂si + eε.

On the other hand, the shepherd is governed by a separate set of rules. It dynam-
ically switches between collecting and driving based on the maximum distance of
agents from the center of mass (either global GCM or local LCM). If all agents are
within raN

2
3 , it attempts to position itself behind the flock to push it towards the

goal. If any agent is farther than raN
2
3 , the shepherd instead selects the most distant

agent and herds it back towards the flock. This means the shepherd’s trajectory is
always straight toward the desired collecting or driving position. Additionally, some
noise is added to the shepherd’s movement as well.

Improvements to the model. The base algorithm excels when the shepherd possesses
global knowledge and the agents are attracted to the center of mass of at least half
of their peers. However, its effectiveness diminishes with limited attraction among
nearby agents and when employing only local knowledge for the shepherd. Our goal
is to enhance performance with local knowledge and reduce the dependence on agent
behavior. We propose two key modifications: avoiding already collected groups and
implementing a modified heuristic for selecting the target agent in collecting mode.

1. Avoidance of already collected groups (previous algorithm with angle
calculation): To avoid breaking up already collected groups of agents during
the herding process, a modification is introduced. Instead of taking a straight
path towards the furthest agent from the center of mass (GCM/LCM), the shep-
herd follows an arc around the calculated GCM/LCM. This approach ensures a
constant distance from the GCM/LCM, preventing unintended group disruptions.
However, this adjustment may extend the time it takes for the shepherd to reach
the desired collecting position, particularly in scenarios where the shepherd is
considerably distant from the GCM/LCM compared to the collecting position.

2. Avoidance of already collected groups and obstacles (new version -
weighted sum): When collecting agents, the shepherd avoids disrupting al-
ready gathered groups by circling around the herd in an arc. The desired head-
ing is a weighted combination of a direct target vector (Hd) and an arc move-
ment vector (Ha). The arc movement is calculated as

Ha =
n∑
i=1

1
(|Ai − S|)2 ·Hi⊥

, where S is the shepherd’s position, A1, . . . , An are the positions of known
agents, and Hi is a vector perpendicular to

∧
A−

∧
S based on the target position

relative to the center of mass.
The shepherd’s desired heading (Ĥs) is computed as:

ρdĤd + ραĤα + ρoĤo

, with weights ρd and ρα determined by the distance (d) to the nearest agent:

ρd = 1, if d ≥ rr, else
d

(rr)
,

ρα = 0, if d ≥ rr, else
rr − d
rr

.

When distant from agents, the shepherd moves straight towards the target, tran-
sitioning to an arc movement within rr distance of an agent. The rr parameter
is set equal to the rs parameter of agents, assuming the shepherd adjusts its
path upon approaching that distance.
For field navigation, repulsion from obstacles (Ros) is added, calculated as:

Ros =
j∑
i=1

1
|S −Oi|

(S −Oi),

where O1, ..., Oi are obstacle boundary points within ro distance. This vector is
weighted by a small constant ρo.

2 | et al.

Fuzzy logic. Adding fuzzy logic to the existing algorithms can introduce a more nu-
anced and realistic decision-making process for determining the behavior of each agent.
Instead of using constant values in the existing models, fuzzy logic can be used to
fine-tune the values based on more complex and dynamic criteria. The first step is
to fuzzify the inputs, i.e., determine the degree to which they belong to each of the
appropriate fuzzy sets via a membership function. The next step is to use the fuzzy
inputs to evaluate the level of implication. Then, the outputs must be combined in
some manner. All of the fuzzy sets representing each force are aggregated into a single
set. Finally, the aggregate output is deffuzified into a single number.

Genetic algorithm. The second focus of the article is making sheep dynamics less
scripted but learned. We plan to achieve this by representing the sheep as autonomous
agents that utilize a genetic algorithm (GA) to incrementally evolve their herding
strategies.

GAs are optimization algorithms inspired by the concept of natural selection. The
process starts by generating an initial population of potential solutions. Each solution
is assessed using a cost function, and solutions with higher fitness are more likely to
be selected for reproduction. The selected individuals undergo crossover and mutation,
eventually replacing the less fit individuals in the population. This cycle repeats for
multiple generations, refining the solutions over time.

Regarding collective behavior, we need to modify the traditional GA by adding
some changes presented in Thomas Miconi’s "A Collective Genetic Algorithm"[3].
Since we can not evaluate a single agent but rather the population as a whole, we
randomly select two sheep from the population and separately remove them to eval-
uate their impact on the whole herd. We then create an offspring through crossover
and mutation. The less useful sheep, as determined by their impact on the collective
herding fitness, are then replaced by the offspring. The sheep’s genotype will be rep-
resented as a vector, so we can also use it as our sheep’s decision model. Currently,
the plan is to use a simple three-layer artificial neural network. The input layer will
consist of an input vector containing information about distances to other sheep, shep-
herd and the output layer will return the angular direction and speed of the sheep’s
movement.

The initial suggestion for the cost function is a weighted sum between the time
it took for all the sheep to enter the barn and the distances separating them in a
herd. The optimization strategy is designed to encourage sheep to form a cohesive
herd while simultaneously maximizing their evasiveness. Examples of similar imple-
mentations using ANN models can also be observed in simulating zebrafish collective
behaviour[4] and collective behaviors of robots[5], albeit using supervised training of
the neural network agent’s models instead of genetic algorithms.

Bibliography

1. Lien JM, Bayazit O, Sowell R, Rodriguez S, Amato N (2004)
Shepherding behaviors in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004.
Vol. 4, pp. 4159–4164 Vol.4.

2. Strömbom D et al. (2014) Solving the shepherding problem:
Heuristics for herding autonomous, interacting agents. Journal
of The Royal Society Interface 11.

3. Miconi T (2001) A collective genetic algorithm in Proceedings
of the 3rd Annual Conference on Genetic and Evolutionary
Computation. pp. 876–883.

4. Beckerleg M, Zhang C (2016) Evolving individual and collective
behaviours for the kilobot robot in 2016 IEEE 14th International
Workshop on Advanced Motion Control (AMC). pp. 263–268.

5. Cazenille L, Bredeche N, Halloy J (2018) Modelling zebrafish
collective behaviours with multilayer perceptrons optimised by
evolutionary algorithms. arXiv preprint arXiv:1811.11040.

et al. BM-RI | 2023/24 | CB:G | 3

http://dx.doi.org/10.1109/ROBOT.2004.1308924
http://dx.doi.org/10.1098/rsif.2014.0719
http://dx.doi.org/10.1109/AMC.2016.7496361

	Strömbom model
	Improvements to the model
	Fuzzy logic
	Genetic algorithm

