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Self-organized collective behaviors like bird flocks and fish schools emerge from
interactions between individuals. A variety of mathematical models have been

developed to understand these coordinated group patterns. Early models represented
the behaviors using simple rules like velocity matching and spatial attraction-repulsion
(Reynolds 1987, Couzin et al. 2002). The influential Vicsek model formalized coor-
dination through local alignment of movement directions (Vicsek et al. 1995). More
sophisticated models have incorporated sensory limitations, cognitive factors, and
physiological dynamics to capture more realistic collective animal behaviors (Couzin et
al. 2011, Gautrais et al. 2012).

However, most models rely on individuals accessing spatial information like posi-
tions, distances, and velocities that are not directly available from their sensory per-
ceptions. In particular, vision provides key information to nearby neighbors, yet its
specific role in coordination remains unclear. Recent models have started to incorpo-
rate visual inputs, for example, using visual neighborhoods instead of metric radii for
interactions (Strandburg-Peshkin et al. 2013). However, these vision-based models still
explicitly represent non-visual properties like positions and headings, or simply add
vision to existing interaction frameworks.

A model based purely on visual information, without relying on spatial representa-
tions or explicit coordination rules, can provide fundamental insights into principles
of self-organization arising from visual perception. The visual projection field contains
geometric transformations of neighbors’ locations and motion that may spontaneously
induce coordinated collective movement through simple visual response rules. Such a
minimal vision-based model represents a drastically different modeling approach com-
pared to established flocking frameworks that assume built-in coordination tendencies,
typically through velocity alignment.

Here we introduce a mathematical modeling framework based purely on the re-
sponse to visual projections. Simulations reveal surprising coordination abilities emerg-
ing from minimal vision-based interaction rules without common flocking assumptions.
This demonstrates the critical role of sensory perception feedback in collective be-
havior, and how vision-based modeling can link collective animal behavior to sensory
neuroscience.

Methods

We propose a modeling framework where individuals interact solely based on their
visual perception, without relying on spatial representations or explicit coordination
rules. The model assumes each individual experiences a visual projection field encom-
passing objects visible in its surroundings. It responds to this field through simple
terms for attraction and repulsion, creating implicit coordination.

Specifically, the visual response includes short-range repulsion from large angular
areas occupied by nearby neighbors, as they expand in visual space. It also incorpo-
rates long-range attraction to edges of objects, which extend over larger visual angles
for distant neighbors. This combination effectively produces short-range repulsion and
long-range attraction.

The relative strengths of repulsion and attraction generate an implicit equilibrium
spacing between neighbors. Collective motion patterns emerge from individuals con-
tinually responding to the movements of neighbors as translated through the visual
fields. There is no need to estimate distances or represent explicit positions of other
individuals.

We will implement the model by representing the visual field in two dimensions
using polar coordinates centered on each individual. The field is further simplified to
a binary representation of occupied versus unoccupied visual angles. An individual’s
velocity change depends on summing the repulsion and attraction effects integrated
over the angular coordinate.

The model is explored through agent-based simulations examining group coordina-
tion for varied parameters, including relative repulsion-attraction strengths, individual
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responsiveness, and group sizes. Metrics quantify polarization in movements, nearest
neighbor distances, and collision avoidance.

This provides a high-level overview of the vision-based modeling approach, where
collective dynamics emerge through simple visual response rules embodied by each
individual, eliminating the need for built-in coordination assumptions required in
most flocking models. The minimal vision-based interactions lead to surprising self-
organization abilities.

Model construction.
The velocity of an individual i,vi, is described by its direction ψi and its magni-

tude vi.

vi = vi

(
cosψi
sinψi

)
We can define elementary vectors relative to the orientation of the individual i

eiv =
(

cosψi
sinψi

)
, eiψ =

(
− sinψi
cosψi

)
The elementary vectors give a coordinate system specific to each agent’s orientation

to analyze stimulus effects.
The equation can be simplified to:

vi = vieiv

Now we can have two equations:

∂tvi = Fiind · eiv + Fivis [Vi (φi, θi, t)] · eiv
∂tψi = Fiind · eiψ + Fivis [Vi (φi, θi, t)] · eiψ

that describes the variation of magnitude u and the variation of direction, respec-
tively. Splitting velocity change into ∂tvi and ∂tψi allows modeling effects on speed
and direction separately.

We assume the individual force Fiind to be defined by a simple linear friction/propulsion
function

Fiind = γ(v0 − vi)eiv
Here γ is a constant defining the relaxation rate of the individual velocity to the

preferred velocity v0. In addition we assume that there is no global preferred direction
of motion, thus the velocity vector of the individual does not depend directly on φ.

The individual force Fiind represents intrinsic movement tendencies, modeled simply
as a linear relaxation to a preferred speed v0. This adds a propulsion force if the speed
is below v0 and a friction force if it is above. This component captures an individual’s
intrinsic motivation for movement.

Fvis[V ] =
∫

−ππdφiG [V (φi, t)] h (φi)

with h(φ) being an arbitrary vector function, determining the projection of G[V ]
on the low dimensional movement response. It can be seen as a target function for the
visual input.

The social force Fivis depends on the visual field Vi and represents interactions with
others sensed in the environment. It is written as an integral over all visible individu-
als weighted by their angular position φi. This integrates the combined effects of all
perceived social stimuli.

The target functions h(φ) carries those symmetries and can be rewritten as

h(φ) =
∑
p

ap cos(pφ)ey + bp sin(pφ)eψ

The response function h(φ) determines how the visual stimuli project onto changes
in speed and direction. Its cosine components along ey affect speed, while sine compo-
nents along eψ affect steering. The form of this function encodes assumptions about
how individuals will respond to different visual cues.

The symmetries of h(φ) represent assumed response patterns - asymmetric stimuli
induce turns while symmetric stimuli alter speed. This is determined by measuring
how visual cues affect ∂tvi and ∂tφi. The function’s symmetry properties capture basic
response assumptions.
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Overall, Fiind represents intrinsic motion tendencies, Fivis captures interactions via
the visual field, and h(φ) maps stimuli to responses based on symmetry assumptions.
This continues building the model by bringing in response functions and intrinsic vs
social forces.

Furthermore, the assumption of h(φ) component along ev and eψ being symmetric
and antisymmetric functions around φ = 0, respectively, is required to ensure the
absence of permanent rotational motion of individual agents.

This symmetry assumption causes the propulsion from social interactions to align
with the individual’s heading rather than inducing spinning. It represents a response
policy that avoids uncontrolled rotations.

Inserting Fivis into h(φ) eventually yields, the movement equations

∂tvi =
∑
p

∫ π

−π
dφap cos(pφ)GS [V ] + γ (v0 − vi)

∂tψi =
∑
p

∫ π

−π
dφbp sin(pφ)GAS [V ]

The equations relate changes in speed ∂tvi and direction ∂tψi to the symmetric
GS [V ] and antisymmetric GAS [V ] components of the visual field V .

Here, we split the function G[V ] into its symmetrical part, GS [V ], and its anti-
symmetrical part GAS [V ],

G[V ] = GS [V ] +GAS [V ]

Decomposing the visual field into symmetric and antisymmetric parts allows driv-
ing speed and steering changes separately. The movement is then driven by the dis-
crepancies in the symmetry of the visual field. The asymmetry between left and right
will modify the direction of the individual while the asymmetry between front and
back will modify the magnitude of the velocity.

Asymmetric stimuli induce turns, while symmetric stimuli alter speed. The equa-
tions model the effects of visual symmetry on behavior.
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