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This project explores how collective be-
haviors can emerge in predator—prey sys-
tems driven by minimal survival incentives.
Following the framework of Li et al. [1],
we implement a 2D continuous environment
with multiple prey and a few predators,
each governed by physical dynamics and
subject to active and passive forces. The re-
ward function is deliberately simple preda-
tors gain a reward when catching prey, and
prey receive a penalty when caught. Using
public code as a starting point, we repro-
duce baseline behavior and visualize system
evolution under random motion. Quantita-
tive metrics such as the Degree of Sparsity
(DoS) and Degree of Alignment (DoA) al-
low us to characterize emergent group dy-
namics. This report serves as a progress
checkpoint toward building an adaptive re-
inforcement learning model that captures
realistic group behavior.

1 Introduction

Understanding how collective behaviours such as
swarming, flocking, or coordinated pursuit emerge
in animal groups is a central question in be-
havioural biology and bio-inspired robotics. Clas-
sical models rely on manually designed interaction
rules, which can reproduce rich patterns but do

not explain how such behaviours arise naturally
through adaptation.

Li et al. [1] address this limitation with a min-
imalist predator—prey framework based on multi-
agent reinforcement learning (MARL), where no
social rules are explicitly encoded. Agents re-
ceive only a simple survival-based reward (+1 for
a predator catching a prey, -1 for a prey being cap-
tured). Despite this simplicity, the system exhibits
diverse emergent behaviours quantified by the De-
gree of Sparsity (DoS) and Degree of Alignment
(DoA).

In this project, we reproduce and analyse this
framework, starting from a simplified baseline en-
vironment. Our goal is to study how collective
behaviours emerge, how learning influences preda-
tor—prey interactions, and how system parameters

shape these dynamics.

2 Methods

2.1 Environment and Implementation

We chose to replicate the simulation environment
described by Li et al. [1] to ensure consistent con-
ditions for the emergence of collective behavior.
This environment is a continuous two-dimensional
square space (with side length L = 2 m) in which
two types of agents interact: predators and prey.
The environment supports two distinct types of
boundary conditions:

Periodic boundaries (torus) The domain has
no effective boundaries: when an agent exits from
one side of the square, it reappears on the opposite
side with the same velocity. These periodic edges
connect the borders of the square, approximating
an infinitely extended space.

Solid boundaries (walls) The domain is
bounded by solid edges that agents cannot cross.
The square edges act as walls with a repulsive
force simulating contact (spring stiffness k = 50
N-m~1). When an agent reaches the boundary, it
experiences a restoring force pushing it back inside
the domain, preventing it from leaving the simu-
lation space.

In our current implementation, we prioritize pe-
riodic boundaries (as a starting point identical to
the paper), but we also plan to implement the
solid-wall case later. In either case, the environ-
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ment is initialized by placing a certain number of
predators (ng) and prey (n;) at random positions
with random initial orientations. Following the ar-
ticle, we start with a small population (ng = 3
predators and n; = 10 prey) for training, although
these numbers can later be increased for testing.
Agents of the same species are assumed to be ho-
mogeneous in capabilities.

Agent representation Each agent (predator
or prey) is modeled as a disk, visually represented
as a circle with a short line segment indicating its
heading. All agents have mass m = 1 kg for sim-
plicity. Predators and prey differ slightly in loco-
motor capacity: for instance, predator maximum
speed is set to 0.35 m-s~!, while prey is limited
to 0.3 m-s~ L.

two components (ar, ar) corresponding to forward

Each agent’s control is defined by

propulsion force and rotational command, respec-
tively. To ensure realism and stability in simula-
tion, these actions are bounded: linear accelera-
tion |ap| is limited to 1 m-s~2 and angular speed
lag| to 0.5 rad-s~! (values taken from the original
paper).

Active and passive forces According to the
physical model from Li et al., agents are subject to
both active (self-controlled) and passive (external)
forces.

The active force results from self-propulsion. It
has two components: (1) forward thrust aligned
with the agent’s heading direction h, scaled by ar;
(2) a torque that rotates the agent, with intensity
ar (bounded as above). These two components ap
and ag are the outputs of the agent’s controller at
each time step.

The passive forces come from the simulated
(1) vis-
cous drag force fy, which opposes motion and is

physical environment. These include:

proportional to velocity (drag coefficient set to 2
N-s-m™1);

ther between agents (f,) or between agents and

(2) contact forces during collisions ei-

boundaries (fp). These are modeled using Hooke’s
law (linear spring) with stiffness & = 50 N-m~1,
and they accumulate if an agent is in contact with
multiple neighbors. This prevents agent overlap
and creates realistic bouncing dynamics.

All these forces are updated at every discrete
Each

agent’s motion is integrated numerically using

time step At = 0.1 s in our simulation.

Newton’s second law. Our software implementa-

tion follows this physical model strictly, ensuring
that the virtual environment closely reproduces
the reference study.

2.2 Collective Behavior Metrics

In addition to visual inspection, we plan to use
quantitative metrics to assess the emergent be-
haviors within the agent populations. Following
the definitions introduced by Li et al. [1], we will
compute two key indicators: the Degree of Spar-
sity (DoS) and the Degree of Alignment (DoA).
These metrics are designed to evaluate local cohe-
sion and heading synchronization within a species,
while being invariant to global translations and ro-
tations of the group.

The DoS € [0, 1]
quantifies the spatial distribution of agents by av-

Degree of Sparsity (DoS).

eraging the normalized distance to the nearest
neighbor among conspecifics. It is defined as:

1 T N
Do = ——— ; ; % (£) = x50 ()|

where x(t) € R? is the position of the j-th agent
at time step ¢, and k(j) is the index of its nearest

neighbor: k(j) = arg minke{;w?N} 1% (t) — xx(2)|
T is the episode length (numgée]r of time steps), N
is the number of agents of the same type (e.g.,
prey), and D is the environment size, defined
as the maximum possible distance between two
agents. A high DoS value reflects a dispersed
group, while a low DoS indicates strong cohesion

and clustering among agents.

Degree of Alignment (DoA). The DoA €
[0, 1] measures the similarity in heading directions
between neighboring agents and is defined as:

1 T

DoA = v D) Ihy(t) = by @)

t=1 j=1

where hj(t) € R? is the heading vector (unit
norm) of agent j at time ¢, and k(j) is again its
nearest neighbor as defined above. The factor 1/2
ensures that the metric remains bounded in [0, 1].
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A low DoA indicates poor alignment, while higher
values reflect synchronized heading directions.

It is important to note that DoA is not equiva-
lent to the mean heading of the entire group. In
particular, a population may form multiple dis-
tinct flocks, each internally aligned but moving in
different directions. In such cases, a global aver-
age heading would cancel out, but the local DoA
would still be high—making it a more appropriate
measure of flocking behavior.

These two metrics will be implemented in the
next stage of our project and used systematically
to evaluate behavioral patterns and the impact of
learning policies.

2.3 Reward Function

We adopt a minimal reward structure, consistent
with Li et al. [1], to promote emergent behaviors
without artificial bias:

e Predators receive +1 when catching a prey.

e Prey receive —1 when caught.

No additional incentives (such as cohesion or
alignment) are used. This choice allows agents to
autonomously develop strategies based solely on
their individual objective of survival or capture.
We found a public GitHub repository [2] whose
author based their work on the same article, and
we used some of their Python files as a starting
point for our own model implementation.

2.4 Baseline Objective

The goal of this first phase is to reproduce the
baseline behavior described by Li et al. [1]:

e A continuous 2D environment with multiple
prey and a few predators.

e Agents modeled as disks defined by their po-

sition, velocity, and heading.

e Implementation of a reward function based on
predator-prey interactions.

e Visualization of the evolution of collective be-
havior metrics (DoS and DoA) and cumula-
tive reward over time.

This baseline will serve as the foundation for fur-
ther analysis of collective behaviour and for ex-
ploring modifications of the original model.

3 Results

3.1 Baseline
learning

observations without

As a first step, we visualized the interaction dy-
namics between three predators (in red) and mul-
tiple prey (in green) in the continuous 2D environ-
ment, before introducing any reinforcement learn-
ing mechanism. In this baseline setup, agents fol-
low random motion policies — no social, coopera-
tive, or strategic rules are explicitly defined. The
environment uses periodic boundary conditions:
when an agent crosses one side of the square do-
main, it reappears on the opposite side, ensuring
an effectively infinite space without borders.

A short animation (Figure 1) illustrates a typ-
ical simulation sequence. Despite the absence of
behavioural rules, random encounters and tempo-
rary clustering can occasionally be observed due
to stochastic motion and spatial confinement.

Step: 0/1500 . 7

Figure 1: Baseline simulation with random mo-
three predators (red) and multiple prey
(green) evolving in a continuous environment with
periodic boundaries.

tion:

To quantify these dynamics, we computed the
Degree of Sparsity (DoS) and Degree of Alignment
(DoA) throughout the simulation (Figure 2). In
this random-motion setting, the DoS tends close
to 1, indicating a uniform spatial distribution of
agents, while the DoA remains near 0, confirm-
These
values are consistent with the expected baseline

ing the absence of directional alignment.
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behaviour reported by Li et al. [1], and validate
that our environment behaves correctly before in-
troducing learning mechanisms.

Evolution of Collective Metrics over Time (Baseline)
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Figure 2: Evolution of the Degree of Sparsity
(DoS) and Degree of Alignment (DoA) during the
random-motion baseline simulation.

3.2 Extending the Model Initial

learning attempts

In a second phase, we aimed to increase the
complexity of our model by introducing simple
deterministic behaviours (predator pursuit and
prey avoidance), and by implementing a reinforce-
ment learning training procedure based on the Git
repository we used as a reference.

The goal was to simplify an originally complex
environment and obtain a workable version within
a limited time frame. After several tests, the re-
sults remain only partially conclusive, and further
improvements are still in progress.

Figure 3 shows the evolution of the predators’
average reward throughout training. We observe
a global upward trend, suggesting that the agents
do start learning useful behaviours. However, the
curve remains highly noisy, indicating that the
model still requires refinement (parameter tun-
ing, observation structure, reward shaping) before
achieving stable and consistent learning dynamics.

4 Discussion

For the next milestone, our first objective is to sta-
bilise the environment so that it accurately repro-
duces the behaviours described in the paper and

yields the expected results. We will then focus

Average Reward per Episode
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Figure 3: Average reward per episode during rein-
forcement learning

on improving the current training process, which
is still incomplete and unstable. Once these two
steps are achieved, we will be able to analyse emer-
gent behaviours more rigorously using the metrics
presented in the document.

From that point, we plan to adjust certain
model parameters—such as the number of prey
and predators or the observation radius—in order
to study their influence on the system’s dynamics.

If time permits, we also aim to explore the limits
of the model by modifying more structural aspects:
introducing faster prey or slower predators, adding
obstacles to the environment, or investigating scal-
ability by varying the total number of agents.
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