
Sheepdog-Driven Algorithm for
Sheep Herd Transport
Idora Ban, Simon Hehnen, Iva Idzojtic, and Lukas Pucher

Collective behaviour course research seminar report

November 14, 2024

Iztok Lebar Bajec | izredni professor | mentor

TODO ABSTRACT

Sheepdog-Driven algorithm | Swarm systems | Controlling agent

This project explores the Sheepdog-Driven Algorithm for Sheep Herd Transport by
Liu et al., 2021 [1]. The study moves beyond traditional swarm systems, where

collective behavior emerges naturally within a group, to address a reverse problem:
how a single agent (a "sheepdog") can control and direct a swarm (a "herd of sheep")
from one location to another. The objective is to replicate and evaluate this sheepdog-
inspired approach, focusing on how a single controlling agent can dynamically influ-
ence the herd to accomplish transport tasks.

The initial phase of this project involves implementing the algorithm described in
the paper using Python. Through this implementation, we will conduct tests and fine-
tune parameters to evaluate the effectiveness and adaptability of the model as outlined
in the study. In subsequent phases, we will introduce several extensions, including the
addition of environmental obstacles, the presence of outlier sheep, and variations in
the characteristics of the controlling agent.

To effectively present our findings, we will generate visual representations using
Unity. The Python-based algorithm will compute the movement paths for each sheep
and the sheepdog, which will then be visualized. These visualizations will be produced
post-simulation rather than in real time.

Our results will be analyzed in the context of related studies, and we will conclude
with a summary of our findings, including any insights gained from the extensions
introduced.

Related Work

In recent years, numerous studies have advanced the understanding of collective be-
havior and herding control among autonomous agents. A foundational contribution by
Reynolds (1987) [2] introduced the "boids" model, which used local rules to simulate
natural group dynamics such as flocking and schooling. This work laid the groundwork
for many modern algorithms in swarm robotics and serves as an essential reference for
simulating decentralized animal behaviors.

Building on this, Strömbom et al. (2014) [3] addressed the specific "shepherding
problem," proposing heuristic methods for guiding groups of autonomous agents using
a single "shepherd" agent—a framework that highlights key challenges and strategies
relevant to single-agent control in herding tasks.

Further, Bayazit, Lien, and Amato (2002) [4] proposed a global roadmap approach
for managing group behavior in complex, obstacle-rich environments, underscoring
strategies for effective navigation in challenging terrains.

Together, these studies form a comprehensive base for understanding swarm and
herding behaviors, which informs the development of adaptive and efficient algorithms,
such as the Sheepdog-Driven Algorithm, and supports a comparative analysis of its
performance across various environments and control requirements.

The Algorithm

The algorithm defines the sheepdog’s movement as a backward semi-circular trajectory,
allowing it to drive the sheep herd from behind [1]. The sheepdog operates within a
two-dimensional plane, using an xx-yy coordinate system to track both its own loca-
tion and that of each sheep. The sheepdog aims to guide the herd toward a designated
target area by pushing them forward in a controlled manner.

Key aspects of the algorithm include the sheepdog’s field of view, which restricts
its awareness to only those sheep within its line of sight. Consequently, the sheepdog’s
response is dynamically adjusted based on the position and behavior of visible sheep,
meaning it does not always have complete information about the entire herd.

frača: FRIteza/201516.130 BM-RI | FRIteza | 2024/25 | CB:G1 | 1–4

http://fraca.si/FRIteza/201516.130

Figure 1. Example of dog’s field of view.[1]

The control process of the sheepdog is divided into two phases:

1. Initialization: This phase involves setting key design parameters such as viewing
angles, approach distances, and thresholds for direction adjustments. A time
limit is also set for the operation.

2. Iteration: In the main phase, the algorithm evaluates the position of the sheep
relative to the target and adjusts the sheepdog’s movement accordingly. The
sheepdog decides whether to move directly toward the herd or to take a detour
based on the herd’s overall position. When detouring, it aligns itself with the
rightmost or leftmost visible sheep, adjusting its angle to efficiently steer the
herd without unnecessary deviation from the target path.

The algorithm operates through a series of conditions to ensure energy efficiency
and maintain herd cohesion, continuing until all sheep are guided to the target area or
the time limit is reached.

2 | frača: FRIteza/201516.130 Hehnen et al.

http://fraca.si/FRIteza/201516.130

Algorithm 1 Sheepdog Driven Algorithm [1]
Input: p1(t), . . . , pn(t), q(t), λ(k).
Output: u(k).

1: Set ϖ = 0.
2: for (i = 1, i ≤ N, i = i + 1) do
3: if d(pi(t), Pd) = 0 then
4: ϖ = ϖ + 1.
5: if ϖ < N then
6: if q(k) ∈ Ql(k) and Lc(k) > θt then
7: λ(k) = 0.
8: if ∥q(k) − Dr(k)∥ ≥ ra then
9: u(k) = γao(q(k) − Dr(k)).

10: else
11: u(k) = γbR(θr)o(q(k) − Dr(k)).
12: else if q(k) ∈ Qr(k) and Rc(k) > θt then
13: λ(k) = 1.
14: if ∥q(k) − Dl(k)∥ ≥ ra then
15: u(k) = γao(q(k) − Dl(k)).
16: else
17: u(k) = γbR(θl)o(q(k) − Dl(k)).
18: else if λ(k) = 1 then
19: if ∥q(k) − Dl(k)∥ ≥ ra then
20: u(k) = γao(q(k) − Dl(k)).
21: else
22: u(k) = γbR(θl)o(q(k) − Dl(k)).
23: else
24: if ∥q(k) − Dr(k)∥ ≥ ra then
25: u(k) = γao(q(k) − Dr(k)).
26: else
27: u(k) = γbR(θr)o(q(k) − Dr(k)).
28: else
29: u(k) = 0.
30: return result

Methodology

The practical component of this project is divided into two primary tasks: implement-
ing the simulation algorithm in Python and developing a visualization system in Unity
using C++. The methodology section outlines the approach taken to develop these
components, along with the processes for testing, refining, and analyzing results.

Simmulation. In the simulation phase, the Sheepdog-Driven Algorithm, will be im-
plemented in Python to replicate the sheepdog-herd dynamics on a two-dimensional
plane. The simulation aims to model the movements and interactions of both the
sheepdog and the sheep, capturing the complex behaviors that arise as the sheepdog
attempts to guide the herd to a target location. In the original paper, this was done
with MATLAB.

1. Algorithm Implementation: The algorithm will be programmed to include the
sheepdog’s backward semi-circular motion, a key mechanism for maintaining con-
trol over the herd. This involves defining functions that represent the sheepdog’s
movements, perception field, and the reactive behaviors of individual sheep.

2. Parameter Tuning: To evaluate and optimize the algorithm’s effectiveness, pa-
rameters such as the sheepdog’s field of view, speed, and interaction range with
sheep will be adjustable. This parameter tuning will allow us to observe how
changes in these factors influence the sheepdog’s ability to manage the herd un-
der various scenarios.

3. Test Scenarios: Various test cases will be created to examine the algorithm’s
performance under different conditions, including:

• Basic Movement: Verifying the algorithm’s ability to guide the herd in
open space.

• Extended Dynamics: Introducing obstacles and outlier sheep to assess how
the algorithm adapts to environmental complexity and group inconsisten-
cies.

Hehnen et al. BM-RI | FRIteza | 2024/25 | CB:G1 | 3

• Different Agent Types: Modifying attributes such as the sheepdog’s behav-
ior, speed, or strategy to observe effects on control and cohesion within the
herd.

4. This Python-based simulation will output path data for each sheep and the
sheepdog, which will be saved and used as input for visualization in Unity.

Visualisation. The visualization component of this project is developed in Unity using
C# (or even Python) to render the movement data generated from the Python simula-
tion, providing an interactive and comprehensible format for analyzing the algorithm’s
behavior. This allows for a detailed observation of how effectively the sheepdog can
guide the herd under various conditions. The visualization process begins with import-
ing path data from the Python simulation into Unity or rewriting the Python code
to C to produce the data directly in Unity (in real time). This data represents each
agent’s movements, enabling us to create animated paths that reflect the interactions
between the sheepdog and sheep over time.

A virtual environment is then constructed in Unity to provide a realistic setting
for the simulation. This environment includes basic elements such as ground planes,
obstacles, and boundaries, mirroring the conditions modeled in the Python simulation
to enhance visual coherence and aid in understanding how environmental factors affect
the sheepdog’s control over the herd.

Unity’s visualization setup focuses on representing the dynamic interactions be-
tween the sheepdog and the herd. Various visualization techniques, including path
trails, speed indicators, and field-of-view displays, are used to highlight important as-
pects of the behavior. This design provides insights into how the algorithm reacts to
elements like obstacles, outliers, and different herd dynamics.

As the visualization is not rendered in real time, the animation will be recorded
and played back in segments. This approach enables static analysis, where we can
pause and closely examine specific interactions or adaptations within the algorithm.
By allowing for playback and frame-by-frame inspection, the Unity-based visualization
provides a valuable tool for evaluating the algorithm’s effectiveness, adaptability, and
overall performance in guiding the herd through diverse scenarios.

Results and Discussion

After running multiple visualizations and tests, we are able to evaluate the findings
from the initial paper. This evaluation is done by comparing the changes we made to
the algorithm and setup with the cases reproduced from the paper.

We then place our project in the larger context of collective behavior. We discuss
how our findings might impact research in this area and contribute to real-world appli-
cations.

We conclude the paper by providing an outlook on the future. What are the next
steps? How could our findings be applied outside the lab? Do we now have the ideal
sheepdog? Are there any further improvements or new directions we should explore?

Bibliography

1. Liu Y et al. (2021) Sheepdog driven algorithm for sheep herd
transport in 2021 40th Chinese Control Conference (CCC). pp.
5390–5395.

2. Reynolds CW (1987) Flocks, herds and schools: A distributed
behavioral model in Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’87. (Association for Computing Machinery, New

York, NY, USA), p. 25–34.
3. Strömbom D et al. (2014) Solving the shepherding problem:

heuristics for herding autonomous, interacting agents. Journal
of the Royal Society Interface 11.

4. Bayazit OB, Lien JM, Amato NM (2002) Better group behaviors
in complex environments using global roadmaps in Proceed-
ings of the Eighth International Conference on Artificial Life,
ICAL 2003. (MIT Press, Cambridge, MA, USA), p. 362–370.

4 | frača: FRIteza/201516.130 Hehnen et al.

http://dx.doi.org/10.23919/CCC52363.2021.9549396
http://dx.doi.org/10.23919/CCC52363.2021.9549396
http://dx.doi.org/10.1145/37401.37406
http://fraca.si/FRIteza/201516.130

