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I. INTRODUCTION

The spread of infectious diseases is a significant challenge
in both human and animal populations, prompting natural
and artificial systems alike to develop mechanisms for mini-
mizing transmission. Social distancing has emerged as a com-
mon adaptive behavior in nature, where organisms avoid close
contact with infected individuals to protect themselves and
their groups. This phenomenon has been observed across a
variety of species and environments, suggesting it provides
an evolutionary advantage in mitigating disease transmission
risks. In response to the COVID-19 pandemic, social distancing
also became a key public health strategy for humans, sparking
interest in understanding how such behaviors might emerge and
evolve autonomously in artificial agents.

Modeling disease transmission and social distancing behav-
iors in simulated environments can provide insights into the un-
derlying dynamics of these processes, as well as offer potential
applications in fields such as epidemiology, robotics, and swarm
intelligence. Traditional approaches often rely on predefined
rules to drive agent behaviors, limiting the complexity and
adaptability of emergent patterns. By contrast, reinforcement
learning (RL) provides a flexible framework where agents learn
to navigate environments based on reward structures, allowing
for more organic, adaptive behaviors that evolve in response to
environmental pressures.

In this study, we aim to model social distancing behaviors
using a reinforcement learning approach inspired by natural
systems. Agents will learn to minimize disease transmission
within a two-dimensional environment by adapting their in-
teractions based on health information they exchange with one
another. We will build on existing multi-agent reinforcement
learning frameworks, specifically those designed for predator-
prey dynamics, to simulate agent behavior under disease-spread
conditions. This setup will allow us to explore how reward
structures and network adaptations can lead to emergent so-
cial distancing behaviors, where agents autonomously avoid
infected individuals.

Through our model, we hope to deepen our understanding
of how social distancing behaviors emerge and to contribute to
the broader field of adaptive multi-agent systems. Ultimately,
this research may inform both theoretical models of disease
transmission and practical applications in areas requiring co-
ordinated group behavior, such as swarm robotics or public
health simulations.

II. RELATED WORK

In the article Predator—prey survival pressure is sufficient to
evolve swarming behaviors [1], the authors use a reinforcement
learning (RL) approach to model predator and prey behaviors
within a cooperative-competitive multi-agent RL framework.
Here, predator agents receive rewards for successfully catching
prey, while prey agents receive rewards for avoiding capture
and staying alive. This approach contrasts significantly with
traditional behavior modeling, where predefined rules are often
used to drive agents toward expected behaviors. Such rule-
based models, however, can fail to capture the complexity and
adaptability of real-world dynamics. In contrast, reinforcement

learning only presents rewards that encourage or discourage
certain actions, allowing for more organic and adaptive be-
havior development. Through this predator-prey framework,
the authors observed emergent behaviors, such as flocking and
swarming among prey agents and dispersion tactics among
predators. These findings suggest that RL-based approaches
can effectively foster diverse and adaptive group behaviors. In
our work, we aim to build on this method to model disease
spread, adjusting the agent parameters and reward mechanisms
to simulate social distancing behaviors.

The complexities of disease spread and natural social dis-
tancing behaviors are further explored in Infectious diseases
and social distancing in nature |3|. This study examines social
distancing as an adaptive response to disease across various
animal species, both human and non-human. Social distancing
behaviors can emerge as precautionary actions taken by healthy
individuals or as physiological responses in infected individuals.
The authors analyze the underlying mechanisms driving these
behaviors in both infected and non-infected subjects, high-
lighting how natural populations instinctively modify social
interactions to mitigate disease transmission.

Building on this, Romano et al. in The trade-off between
information and pathogen transmission in animal societies
[2] argue that social distancing alone may be insufficient to
control disease spread. They note that individuals in a pop-
ulation inherently rely on information exchange, which con-
veys significant adaptive benefits. This article discusses the
balance animals must strike between maintaining necessary
social connections and minimizing infection risk, proposing that
animals develop “network plasticity” as they weigh the costs
and benefits of each social interaction. These trade-offs in social
behavior offer insights that are highly relevant for modeling
disease spread, as they underscore the complex motivations
behind individual actions within a population.

Together, these studies provide essential frameworks and
insights into adaptive behavior modeling under environmental
pressures. Our work will leverage these principles by employing
a reinforcement learning model that integrates disease spread
and social distancing, aiming to simulate the interplay of agent
interactions and disease transmission dynamics.

III. METHODOLOGY
A. Problem Definition

Our objective is to model the spread of infectious diseases
within a simulated population of agents that can move freely in
a two-dimensional environment and interact with one another.
The primary goal is to minimize disease spread by limiting
interactions among agents. To achieve this, agents will exchange
information about their health status, learning to adjust their
behavior to avoid infected peers based on the information they
receive.

B. Disease Spread Modeling

The study of Lasius niger ants [4] reveals an intriguing
natural strategy for controlling disease spread. When exposed
to the fungal pathogen Metarhizium brunneum, these ants dy-
namically alter their social network structure to reduce trans-
mission risk. Rather than merely avoiding infected individuals,



the entire colony adapts its social interactions to limit disease
spread.

Both infected and uninfected ants exhibit adaptive behav-
iors: infected ants spend more time outside the nest, reducing
exposure to healthy nest mates, while uninfected ants increase
their spatial distance from others, particularly those exposed to
the pathogen. These behavioral changes enhance the network’s
modularity, creating compartments within the social structure
that contain the spread of infection.

We will incorporate similar adaptive behavioral adjustments
into a reinforcement learning model to study disease trans-
mission dynamics. Agents will be rewarded for exchanging
information about their health status and penalized for close
contact with infected individuals, thereby promoting social
distancing behaviors.

Additionally, the paper suggests that low-level exposure to
pathogens may have adaptive benefits. Future model improve-
ments may explore nuanced reward and penalty schemes based
on varying exposure levels, as well as the potential for agents
to develop immunity through controlled exposure. This would
allow for a deeper exploration of the trade-offs between infor-
mation exchange and disease transmission.

C. Simulation Environment

This study employs a multi-agent reinforcement learning
(RL) framework, adapted from the environment developed
by Li et al., 2023 [1]. The simulation takes place in a two-
dimensional continuous space with periodic boundary condi-
tions, meaning that agents crossing one edge of the square
environment reappear on the opposite edge, retaining their
velocity.

To tailor the framework to our objectives, several mod-
ifications will be implemented. These include adapting the
agents’ perception of their environment to incorporate health
status, modeling interactions to account for potential pathogen
transmission, and redefining the reward policy to align with
our disease-spread mitigation goals. By leveraging the existing
framework, we can focus our efforts on refining these elements
and experimenting with various reward strategies, rather than
constructing a new simulation environment from scratch.

D. Agent Dynamics

Agents are represented as circles with a short line segment
indicating their heading direction. Their behavior is influenced
by a combination of active (controllable) and passive (inherent)
forces:

1) Active Forces (Agent Actions): The controllable forces
influencing the agents’ movement illustrated on the left side
of Figure [1] include:

o Forward Movement Force (ar): A force aligned with the
agent’s current heading direction, enabling forward mo-
tion.

o Rotational Force (ar): A force that allows the agent to
adjust its heading direction, facilitating turns.

2) Passive Forces: These inherent forces shown on the right
side Figure [T] naturally affect the agents, irrespective of their
chosen actions:

o Drag Force (Fj): Acts opposite to the agent’s velocity,
simulating resistance or friction.

o Repulsive Force (F,): Arises between agents in proximity,
pushing them apart to avoid overlap or collision.
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Figure 1. Active (left) and passive (right) agent forces. |1]
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At each time step, the simulation updates each agent’s
position and velocity by calculating the sum of the forces acting
upon it. The overall dynamics governing these updates are
given by:
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Where:

o z € R? is the agent’s position,

e v € R? is the agent’s velocity,

o 0 € [—m, 7] is the agent’s heading angle,

o h € R? is the unit vector representing the agent’s heading
direction, calculated as h = [cos(f),sin(8)]7,

e m € R is the agent’s mass.

To better align the simulation with ant-like movement, rather
than the smooth, bird-like flight patterns of the original frame-
work, several parameters will require significant adjustments.
Currently, settings like drag coefficient, stiffness coefficient,
maximum forward acceleration, and rotational acceleration are
optimized for smooth, continuous paths with limited turning
ability and no halting, which emulates bird flight. To emulate
the more abrupt, flexible movements characteristic of ants in
a 2D bird’s-eye view, we will modify these parameters. Specifi-
cally, we’ll increase rotational flexibility, reduce constraints on
movement continuity, and adjust the ability to stop, giving
agents more freedom in directional changes and pauses.

E. Basic Reward Policy

Our initial reward policy for producing social distancing
patterns in agent behavior will focus solely on agent interaction.
Social behavior will be encouraged by rewarding agents based
on the number of nearby agents, which should lead to grouping
behavior. Social distancing will be promoted by penalizing
healthy agents for being near infected ones and vice versa.
Specific reward and penalty values will be fine-tuned as we
begin experimentation.

We plan to start with this simple reward policy before scaling
up simulation complexity with more nuanced agent interac-
tions. For example, we may introduce cooperative behavior by
allowing agents to exchange resources or other benefits, which
could model cooperative dynamics where agents work together
to achieve common goals.

F. Model Performance Measures

To assess whether social distancing patterns emerge, we will
transform agent interactions into a network and analyze the
network structure, as demonstrated in [4]. We will focus on



network statistics that impact disease transmission, including
modularity (expected to decrease), clustering (expected to
decrease), network efficiency (expected to increase), and degree
centrality (expected to increase). Additionally, we will mea-
sure the average distance between agents, which will indicate
whether agents are avoiding each other. These metrics will
first be calculated in a network before the introduction of
the pathogen to observe passive social distancing. After the
pathogen is introduced, we will track how the network structure
changes over time.

Emergent social distancing behavior should also be clearly
observable in the simulation visualization. We expect healthy
agents to avoid infected ones, and vice versa. This behavior will
be especially evident if we increase the agent density within the
environment. In such cases, we should observe infected agents
becoming isolated, forming empty regions around them, while
healthy agents fill the remaining space in the simulation.
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Figure 2. Simulation visualization example.

IV. REsuLTS

As no experiments have been conducted yet, there are
currently no results to present. Future updates will include
analysis and findings based on the simulation outcomes, once
experiments are underway.

V. DiscussiON AND FUTURE WORK

As we have not yet obtained results, this section will outline
our immediate plans and objectives leading up to the second
report deadline.

Our primary goal is to adapt the existing reinforcement
learning (RL) framework to align with our modeling objectives.
This will involve the following steps:

1) Agent Movement Adaptation: We will modify agent
movement parameters to better simulate ant-like behav-
ior. Current parameters are tuned for smoother, bird-like
paths, whereas ants exhibit more abrupt, flexible move-
ments. Adjustments will include increasing rotational
flexibility, reducing constraints on movement continuity,
and introducing options for sudden stops and directional
changes.

2) Policy Network Adjustment: We plan to reconfigure the
policy network, which is the agent’s decision-making neu-
ral network. This network will be updated to process rel-
evant environmental information and output appropriate

actions for each agent based on its health status, position,
and nearby agents. This customization will enable the
agents to better respond to their surroundings, a neces-
sary step for simulating disease-avoidance behaviors.

3) Reward Policy Development: Our initial reward policy
will be simple, rewarding agents for actions that minimize
close interactions with infected agents and penalizing ac-
tions that lead to unnecessary contact. This will serve as
a foundational incentive structure, helping us to examine
how agents balance exploration with avoidance behaviors
in a disease-prone environment.

These steps will provide the basis for preliminary testing and
fine-tuning. Moving forward, we plan to iterate on these adap-
tations and expand our focus to include more complex reward
structures and interaction rules based on early observations
from the simulations.

This organization clarifies each objective while positioning
them as concrete steps. Additionally, the phrasing of each
component emphasizes the purpose behind each modification,
making the progression toward expected outcomes more cohe-
sive and actionable.
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