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This research explores the emergence of col-
lective behaviors in predator-prey dynamics
using reinforcement learning to simulate how
survival pressures drive adaptive behaviors
like swarming and evasion. By modeling
multi-species interactions in a complex
environment, the study extends current
understanding of evolutionary survival
strategies and the role of learning in shaping
group dynamics.
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Collective animal behaviour, especially swarming in predator-prey dynamics, offers insights into
survival strategies that emerge under evolutionary pressures. This report outlines the initial
objectives and foundational concepts for simulating predator-prey. Inspired by previous work,
we examine how survival pressures can drive emergent group behaviours in prey through rein-
forcement learning. We begin with an overview of related work, from classic rule-based models to
more recent reinforcement learning approaches, highlighting advances that allow agents to adapt
to changing environments. Our primary objective is to recreate a reinforcement learning-based
model where predator-prey interactions lead to swarming and evasion behaviours. The model
will then extend to include environmental obstacles and an additional species, enabling us to
investigate the interplay between interspecies interactions and survival strategies.
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The sudden emergence of swarming behaviours in animals is one of the most strik-
ing examples of collective animal behaviour. These behaviours have been exten-

sively studied for their implications for the evolution of cooperation, social cognition
and predator–prey dynamics[1]. Swarming, which appears in many different species
like starlings, herrings, and locusts, has been linked to several benefits including en-
hanced foraging efficiency, improved mating success, and distributed problem-solving
abilities. Furthermore, they are hypothesized to help with improving group vigilance,
reducing the chance of being encountered by predators, diluting an individual’s risk
of being attacked, enabling an active defence against predators and reducing predator
attack efficiency by confusing the predator. [2].

In this project we will be taking inspiration from the work of Li et al. (2023) and
Olson et al. (2013) to explore how survival pressures can drive the emergence of
swarming behaviour. The first goal will be to create a realistic simulation where both
prey and predators learn to adapt through reinforcement learning based on their drive
to survive. Modelling these interactions, we will observe how simple survival pressures
can lead to evolution of more complex behaviours like flocking, swirling and edge pre-
dation.

Then, we will extend our research by evolving out existing model by introducing
new environmental obstacles and new species to observe how interspecies interactions
lead to new survival strategies.

Related work

The modelling of swarming behaviour has evolved from foundational rule-based frame-
works to more sophisticated reinforcement learning (RL) approaches, with intermedi-
ate advances in topological and vision-based models that add realism to agent interac-
tions.

Rule-Based models. Early models of swarming relied on static interaction rules to
simulate basic group dynamics. Aoki’s Zone Model (1982) introduced three interaction
zones-repulsion, alignment, and attraction-where agents adjust their behaviour based
on proximity to neighbours [3]. Later, Vicsek’s Model (1995) and Reynolds’ Boids
Model (1987) introduced basic alignment rules (and in Reynolds’ case, also cohesion
and separation) to generate coordinated group movement [4][5]. Although effective
in modelling simple swarming behaviours, these models rely on fixed rules that limit
agents’ ability to adapt dynamically to changing environments or threats.

Topological and Vision-Based Extensions. Topological and vision-based models im-
proved realism by adding sensory and neighbour-based constraints. Hemelrijk &
Hildenbrandt (2008) introduced a perception model where agents respond only to
neighbours that are visible within a variable radius, adjusted by local density, stabi-
lizing cohesion across varied densities [6]. Kunz & Hemelrijk (2012) further refined
this approach by incorporating visual occlusion, where agents respond only to visible
neighbours, simulating real-world sensory limitations [7]. While these models increase
biological realism, they remain rule-based and lack the flexibility of adaptive RL mod-
els.
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Learning-Based Models. Learning-based approaches have enabled significant advances
in modeling swarming behaviors, allowing agents to develop adaptive strategies based
on interactions rather than fixed rules. These models often produce dynamic, emer-
gent behaviors such as flocking and evasion, closely mimicking natural adaptive re-
sponses to survival pressures.

• Olson et al. (2013): Olson and colleagues used a genetic algorithm (GA) to
model predator confusion, where prey evolved to cluster and thereby reduce
individual predation risk by confusing predators [1]. This GA-based approach
demonstrates the power of evolutionary adaptation in fostering emergent cluster-
ing behaviors in predator-prey dynamics.

• Lowe et al. (2017): The Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) algorithm enables agents to learn in mixed cooperative and competitive
environments, making it ideal for systems with multiple interacting species [8].
MADDPG supports complex, dynamic environments by allowing agents to opti-
mize strategies in both cooperative and adversarial contexts, such as predators
and prey with differing objectives.

• Li et al. (2023): In this RL-based predator-prey model, prey agents develop
swarming behaviors by maximizing survival rewards and minimizing capture
penalties [2]. Prey adaptively form cohesive groups and evade predators, learning
these behaviors through experience rather than pre-set alignment rules.

Methods

Our proposed methodology aims to simulate swarming behaviours in a predator-prey
environment using reinforcement learning (RL). We will define and test a RL-based
model where agents, such as prey, predators, and possibly a new species, interact
within a two-dimensional space. The goal is to observe how different pressures and
interactions influence collective behaviours like swarming, evasion, and strategic move-
ment.

Environment Setup. The simulation will take place in a 2D environment with open and
confined spaces. The confined space will have stiff boundaries, meaning that agents
will bounce off them when they collide, whereas the open space will have periodic
boundaries, meaning that agents will reappear on the opposite side when they cross
the boundary. Such setup with periodic boundaries serves as an approximation of an
infinite space, allowing agents to move freely without encountering physical borders.
Later on, we wish to place random obstacles, which will be distributed across the
space to create a complex and realistic setting that challenges the agents to adapt
their movement and coordination.

We will apply the perception and action models from Li et al. (2023) [2] to guide
agent interactions in the simulation.

• Perception Model: Each agent detects others only within a specified range
and limited to a maximum number of nearby agents, simulating real-world sen-
sory limitations.

• Action Model: Agents adjust their movement through forward propulsion and
directional changes, governed by RL policies that optimize goals like survival and
prey capture.

Agent Types and Behaviour.

• Prey: These agents aim to survive by avoiding predators and moving as a
group.

• Predators: Predators are designed to pursue and catch prey.

• New Species: We may introduce a third type of agent, such as a neutral species,
scavenger or competitor, which will have its own survival or resource-based objec-
tives.

Reinforcement Learning Framework.

• Algorithm: We plan to use the Multi-Agent Deep Deterministic Policy Gradi-
ent (MADDPG) algorithm.

• Reward Structure:

– Prey: Rewarded for survival over time, with penalties for being caught.
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– Predators: Rewarded for capturing prey, with penalties for colliding with
obstacles.

– New Species: Rewarded based on interactions like resource competition
or cooperation with other agents.

• Training Setup: Agents will be trained through episodic simulations, allowing
them to learn and adapt from each episode’s interactions. We will vary condi-
tions to observe how changes influence learned behaviours.

Results

So far, we have implemented a basic model with no reinforced learning component.
We created an environment with periodic borders and populated it with agents. These
agents follow basic survival rules and make decisions based on the reward system,
which we have successfully implemented.

(a) (b) (c)

Figure 1. (a) Our model with no RL component, following the reward system. (b) Li et al. (2023) model before coevolu-
tion. (c) Li et al. (2023) model after coevolution.

Out next steps will be improving our base model and adding the RL component to
it, following the Li et al. (2023) model. Currently our model behaves similarly to them
before coevolution phase. After we add RL and train it, we expect to receive similar
results as them after coevolution where agents display swarming behaviours.

After that, we will expand our model by adding new obstacles and interspecies
interactions.

Discussion

Though we just started working on the project, we have already encountered some
issues when trying to run the code of our main article. We managed to contact the
original authors and they were quick and happy to help so as of right now, we are
happy to report we got the code working and running.

We acknowledge that we have set ambitious goals, especially by introducing a new
species into the mix. We anticipate a lot of new issues will arise through the semester,
however we are excited to challenge ourselves and we are determined to learn from the
process no matter the outcome.

Initially this project began with just two people working on it, but due to the com-
plex nature of the project, we have joined forces with another group of just one mem-
ber. This will enable us to work on the assignment more efficiently and have easier
time achieving our goals.

CONTRIBUTIONS. AK worked on introduction, results, code and discussion, TB worked on
related work and methods, VL worked on abstract, significance statement and getting original
model to work.
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