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In this report we focused on modeling collective fish behaviour, taking into account hydrodynam-
ics. First we took a look at what others have done in this field. Then we presented the mathemati-
cal model that models the fish behaviour and also explained how hydrodynamics come into play.
Then we implemented the algorithm and presented the four stages of collective fish behaviour
that can be seen from this - swarming, schooling, milling and turning, with the last one arising
only when taking into account hydrodynamics.
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1. Introduction

Collective behaviour is a branch of computer science that attempts to model, recreate
and visualize the behaviours of groups of animals, such as birds, sheep and insects.
In this paper we will be focusing on the collective behaviour of fish, called schooling.
It has been modeled numerous times before, but very rarely do we see that water
physics are also taken into account. We will present one way of modelling the effect
of hydrodynamics on the schooling of fish. We will also explain all the techniques
used and also present what we plan to do in the future to test how this affects fish
behaviour and further improve our model. Our research will be based on [1]. We plan
to implement everything presented in this paper and further expand it.

2. Methods

In this section we first address previous work in fish behavioural modelling by conduct-
ing a literature review. We then explain the theoretical background from our paper of
choice.

Literature review. Early studies of swarm behaviour, such as fish behaviour, employed
mathematical models to simulate and understand the behaviour. The simplest mathe-
matical models of animal swarms generally represent individual animals as individuals
following rules of similar directional movement, proximity and collision avoidance with
their neighbours. One such early example is the boids computer program created by
Craig Reynolds [2], which simulates swarm behaviour following the above rules.

Within the specific domain of fish behavior, some of the early models expanded on
the general swarm behaviour and introduced further complexities. For instance, some
models focused on calculating velocity and angle based on probability distributions of
random influences, as presented in a notable paper [3].

As research progressed, researchers undertook the challenge of modeling specific
fish behavioral factors, including schooling, swarming, and milling. A particular study
[4] analyzed all conceivable initial states to discern transitions between stationary
states, such as schooling, swarming, or milling. A significant finding from this research
highlighted that fish density in certain stationary states causes global interactions,
where each fish perceives the presence of all others. The swarm algorithm proposed in
this study adheres to the Lagrangian approach.

Recently, the research has expanded and includes various machine learning tech-
niques to further improve the understanding and modelling of fish swarm behaviour.
A case in point is a recent paper [5], wherein machine learning and computer vision
methodologies were employed to track and gather fish pattern data for constructing a
fish movement model.

Apart from new emerging modelling techniques, traditional mathematical models
often overlook or oversimplify the intricate hydrodynamic interactions among fish.
This is where we hope to improve and expand the research by implementing and im-
proving the fish model to support hydrodynamic interactions, as proposed by [1].

Fish behaviour model. To model fish we will use so-called self-propelled particle (SPP)
models, which can be constructed from simple rules to induce relatively complex be-
haviour. Each fish will be modeled as a particle moving around in a plane. It will
move forward at some constant velocity v. Now we want to introduce interaction
between a fish and its neighbours. All of the spacial parameters that we will use to
achieve this are shown in the figure 2 and we will use them in the explanation later on.
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Figure 1. Visualization of the parameters used to model the interaction between fish i and j.

Firstly, we will add an attraction factor kp[m−1s−1] that attracts a fish towards
its nearest neighbours and an alignment factor kv[m−1] that makes a fish align with
its neighbours. We will also add some Gaussian-distributed rotational noise σ to in-
troduce randomness. This is approximately how fish schools are usually modeled. On
top of this, we will add a fish’s response to flow disturbance from other fishes. This is
represented by an elementary dipole (a flow of a shape that is similar to the shape of
a magnet’s force field) with intensity Sv where S = πr2

0 is the surface of a fish with
length r0. We have previously stated that fish will be modeled as points, but in terms
of hydrodynamics we need to model them as objects with a surface. Now we will also
introduce some new variables for readability purposes: I|| = kv

√
v
kp

represents align-

ment, In = σ(vkp)−
1
4 represents noise and If = S

kp

v
represents dipole intensity. We

can put all of this together to obtain motion equations:

ṙi = e
||
i + Ui [1]

θ̇i = 〈ρij sin(θij) + I|| sin(φij)〉+ Inη + Ωi [2]

The equation 1 represents the movement of a fish from ṙi at constant speed in the
direction of its orientation e||i . We will call Ui the drift term that takes into account
hydrodynamics. It is defined as:

Ui =
∑
j 6=i

= uji, uji = If
π

eθj sin(θji) + eρj cos(θji)
ρ2
ij

.

Each fish generates a flow field and uji is the field velocity generated by the j-th fish,
affecting i-th fish. The spacial relation between a pair of fish is represented with polar
coordinates in the framework of the j-th fish, hence the angles in the expression.

The equation 2 represents the rotation of a fish. The term η represents a standard
Wiener process (a stochastic process used to model noise and disturbances) that is
multiplied by the noise term. This introduces a model of free will in a fish. Ωi is the
rotation introduced by hydrodynamics and is defined as

Ωi =
∑
j 6=i

e
||
i ·∆uji · e

⊥
i .

This essentially means taking the gradient of uji along x and y axis and multiply-
ing it with the directions of a fish.

The notation 〈?〉 indicates the averaging of all terms over the Voronoi neighbours
(νi) (a selection of neighbours based on Voronoi diagrams) of a fish, weighted with
1 + cos(φij):

〈?〉 =

∑
j∈νi

?(1 + cos(θij))∑
j∈νi

(1 + cos(θij))
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Figure 2. Visualization of the four distinct phases in swimming fish (upper left - swarming, upper right - schooling, lower
left - milling, lower right - turning). Each image also represents the used parameters.

Implementation. After mutual consideration, Python was chosen as the primary pro-
gramming language used for the implementation of the model. Its versatility and the
extensive library support made it the ideal choice for our simulation’s needs.

Key Libraries Used:

• NumPy for efficient array and numerical operations.

• SciPy for finding Voronoi neighbors

• DearPyGUI for a modern, easy-to-use, and fast GUI framework for Python.

Implementation Highlights:

1. Modular Design: We structured the simulation into distinct modules, each han-
dling specific aspects like data input, processing, and output visualization. This
approach improved maintainability and scalability.

2. Optimization techniques: To enhance performance, we employed various efficient
data structures and algorithms, particularly in the processing of simulation data.
We used NumPy’s built-in parallelism functionalities to make the simulation run
even faster.

3. Interactive User Interface: A simple and functional GUI was developed using
DearPyGUI, enabling users to interact with the simulation and adjust parame-
ters in real-time.

3. Results

Our implementation of the described fish behavior model has enabled us to success-
fully replicate key stages of fish swimming, as outlined in the scientific paper [1]. The
model accurately captures the intricate dynamics of milling, swarming, schooling, and
turning behaviors, through the setting of different parameters

Swarming, a behavior characterized by the formation of sparse groups without a
discernible orientation (figure 2 - top left), emerges prominently when the noise level
is comparable to or exceeds the alignment factor (kp ≤ σ). This setting of the param-
eters results in a dynamic simulation where fish exhibit cohesive yet uncoordinated
movements, akin to their real-world counterparts during non-directed motion.

Further, the model successfully emulates schooling behavior, as depicted in figure
2 (top right), which leads to the creation of denser fish groups moving in a specific
direction. This behavior is depicted when the alignment factor dominates over noise
(kp > σ). Through fine-tuning parameters, the simulation portrays cohesive and direc-
tional movement similar to natural schooling behavior observed in fish populations.

Milling, represented in figure 2 (bottom left), manifests as a vortex-like pattern in
fish movements. This behavior arises when alignment and attraction factors become
comparable (kp ∼ kv), while maintaining a relatively low noise level (σ). The model
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P ≤ 0.5 P > 0.5
M ≤ 0.4 swarming schooling
M > 0.4 milling turning

Table 1. Classification of fish behaviour phases

aptly reproduces this phenomenon, portraying dynamic swirling motions reminiscent
of milling behaviors observed in certain fish species.

Finally looking at the turning behaviour in figure 2 (bottom right), which can only
be observed with the incorporation of hydrodynamics into the model, we can see fish
groups following a larger circular trajectory. In order to see this behaviour, the model
parameters must reach a specific value. This behaviour usually arises when transition-
ing between different behaviours, for example right before when fish enter milling. The
model’s ability to replicate this behavior highlights its complexity, showcasing how
neighbouring fish dynamics and specific parameter settings influence the collective
movement of fish.

Additionally, we classified the four stages using the parameters P (polarization) and
M (milling) defined as:

P = |e||i | M = |e
r
i × ṙi|
|eri ||ṙi|

,

where eri is the vector from the center of mass to the i-th fish and ri is the position of
the fish. The classification can be seen in table 1, where thresholds were provided in
the article [1].

In addition to successfully implementing the fish behavior model based on the pa-
per [1], we’ve integrated a user-friendly graphical interface where users can change
parameters and observe fish dynamics in real time. To enhance realism, we’ve also
implemented collision checking to prevent fish overlap and introduced bounding box
logic for custom interactions with simulation boundaries, which can be set to either
repulsion, blocking or making fish loop around.

Key accomplishments at this stage include:

• Full implementation of the model based on the paper [1].

• Implementation of graphical user interface for real time parameter changes and
observations.

• Replication of many results from [1]

4. Discussion

We have successfully implemented a simulation of fish behaviour based on a mathemat-
ical attraction-alignment model taking into account hydrodynamics. We are pleased
with the result, as we were able to replicate the behaviours presented in the article
[1] and make it run in real time as an interactive simulation. During the development
we struggled quite a bit with the implementation of the model, as some things were
not that clearly explained in the article, for example the rotation induced by hydro-
dynamics (Ωi). A big problem is that we could not explicitly determine if our imple-
mentation was correct and we could only rely on recognising patterns of fish behaviour
visually. But all in all, the implementation was successful at the end. In the future we
strive to improve the model and add our own features, like external water flows and a
predator. We would also like to implement some metrics to see if fish swim better and
faster when hydrodynamics are taken into account.

CONTRIBUTIONS. GK wrote the introduction, described the collective behaviour model and
wrote the discussion. AČ wrote abstract and results. JP wrote the literature review. MŠ
reviewed the report. AČ and JP created basic foundation for the implementation as a proof
of concept. MŠ and GK implemented the behaviour of fish, added the graphical interface and
polished the implementation.
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