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This work presents a mathematical modeling framework to understand self-organized collective
behaviors in animal groups solely based on visual perception. The individual’s velocity is de-
scribed by both direction and magnitude, and responses to stimuli are analyzed using elementary
vectors aligned with the individual’s orientation. The model incorporates intrinsic motion ten-
dencies and social interactions through a visual field. The introduction of a predator is proposed
to extend the study, providing insights into how external threats influence collective behaviors.
The successful implementation of the model showcases the dynamics of ray casting and infinite
visibility. The work contributes to the understanding of collective behaviors and opens avenues
for further exploration, particularly in the context of predator-prey interactions.
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Self-organized collective behaviors like bird flocks and fish schools emerge from
interactions between individuals. A variety of mathematical models have been

developed to understand these coordinated group patterns. Early models represented
the behaviors using simple rules like velocity matching and spatial attraction-repulsion
(Reynolds 1987, Couzin et al. 2002). The influential Vicsek model formalized coor-
dination through local alignment of movement directions (Vicsek et al. 1995). More
sophisticated models have incorporated sensory limitations, cognitive factors, and
physiological dynamics to capture more realistic collective animal behaviors (Couzin et
al. 2011, Gautrais et al. 2012).

However, most models rely on individuals accessing spatial information like posi-
tions, distances, and velocities that are not directly available from their sensory per-
ceptions. In particular, vision provides key information to nearby neighbors, yet its
specific role in coordination remains unclear. Recent models have started to incorpo-
rate visual inputs, for example, using visual neighborhoods instead of metric radii for
interactions (Strandburg-Peshkin et al. 2013). However, these vision-based models still
explicitly represent non-visual properties like positions and headings, or simply add
vision to existing interaction frameworks.

A model based purely on visual information, without relying on spatial representa-
tions or explicit coordination rules, can provide fundamental insights into principles
of self-organization arising from visual perception. The visual projection field contains
geometric transformations of neighbors’ locations and motion that may spontaneously
induce coordinated collective movement through simple visual response rules. Such a
minimal vision-based model represents a drastically different modeling approach com-
pared to established flocking frameworks that assume built-in coordination tendencies,
typically through velocity alignment.

Here we introduce a mathematical modeling framework based purely on the re-
sponse to visual projections. Simulations reveal surprising coordination abilities emerg-
ing from minimal vision-based interaction rules without common flocking assumptions.
This demonstrates the critical role of sensory perception feedback in collective be-
havior, and how vision-based modeling can link collective animal behavior to sensory
neuroscience.

In this study, we aim to extend our mathematical modeling framework, which relies
solely on the response to visual projections, to incorporate the presence of a predator
within the dynamic of collective animal behavior. The introduction of a predator adds
an additional layer of complexity to the model, as it introduces a potential threat that
the individuals in the collective must respond to based on their visual perceptions.

Methods

We propose a modeling framework where individuals interact solely based on their
visual perception, without relying on spatial representations or explicit coordination
rules. The model assumes each individual experiences a visual projection field encom-
passing objects visible in its surroundings. It responds to this field through simple
terms for attraction and repulsion, creating implicit coordination.

Specifically, the visual response includes short-range repulsion from large angular
areas occupied by nearby neighbors, as they expand in visual space.

The relative strengths of repulsion and attraction generate an implicit equilibrium
spacing between neighbors. Collective motion patterns emerge from individuals con-
tinually responding to the movements of neighbors as translated through the visual
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fields. There is no need to estimate distances or represent explicit positions of other
individuals.

We implemented the model by representing the visual field in two dimensions us-
ing polar coordinates centered on each individual. The field is further simplified to
a binary representation of occupied versus unoccupied visual angles. An individual’s
velocity change depends on summing the repulsion and attraction effects integrated
over the angular coordinate.

The model is explored through agent-based simulations examining group coordina-
tion for varied parameters, including relative repulsion-attraction strengths, individual
responsiveness, and group sizes.

This provides a high-level overview of the vision-based modeling approach, where
collective dynamics emerge through simple visual response rules embodied by each
individual, eliminating the need for built-in coordination assumptions required in
most flocking models. The minimal vision-based interactions lead to surprising self-
organization abilities.

Model construction.
The velocity of an individual i,vi as a combination of direction ψi and magnitude

vi.

vi = vieiv
where eiv is an elementary vector aligned with the individual’s orientation.
The equations for velocity change are split into variations in magnitude (∂tvi) and

direction (∂tψi):

∂tvi = Fiind · eiv + Fivis [Vi (φi, θi, t)] · eiv
∂tψi = Fiind · eiψ + Fivis [Vi (φi, θi, t)] · eiψ

Fiind represents intrinsic motion tendencies, modeled as a linear relaxation to a
preferred speed v0. The social force Fivis depends on the visual field Vi, representing
interactions with others.

The target functions h(φ) encode response patterns to visual cues:

h(φ) =
∑
p

ap cos(pφ)ey + bp sin(pφ)eψ

Symmetry assumptions ensure no permanent rotational motion. The equations for
speed and direction changes involve symmetric (GS [V ]) and antisymmetric (GAS [V ])
components of the visual field:

∂tvi =
∑
p

∫ π

−π
dφap cos(pφ)GS [V ] + γ (v0 − vi)

∂tψi =
∑
p

∫ π

−π
dφbp sin(pφ)GAS [V ]

The equations relate changes in speed ∂tvi and direction ∂tψi to the symmetric
GS [V ] and antisymmetric GAS [V ] components of the visual field V .

Here, we split the function G[V ] into its symmetrical part, GS [V ], and its anti-
symmetrical part GAS [V ],

G[V ] = GS [V ] +GAS [V ]
Decomposing the visual field into symmetric and antisymmetric parts allows driv-

ing speed and steering changes separately. The movement is then driven by the dis-
crepancies in the symmetry of the visual field. The asymmetry between left and right
will modify the direction of the individual while the asymmetry between front and
back will modify the magnitude of the velocity.

Asymmetric stimuli induce turns, while symmetric stimuli alter speed. The equa-
tions model the effects of visual symmetry on behavior.

Model implementation.
To implement the model, we decided to make a 2D approach, using Python.
In the context of a flocking simulation, the parameters α0, α1, β0, and β1 define

discs behaviors in response to different forces or stimuli within the model. These coeffi-
cients control reactions to the positions and movements of other flock members:
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• α0 (Acceleration coefficient for separation/cohesion): Influences the rate at which
discs adjust their speed to maintain an optimal distance from their neighbors. A
higher value for α0 results in a more pronounced separation when too close, or a
stronger attraction (cohesion) when at an ideal distance.

• α1 (Acceleration coefficient for adapting to spatial gradient velocity): Determines
the degree to which a disc will change its velocity to match the average speed of
the flock. With a positive value of α1, discs will either speed up or slow down to
harmonize with the group’s overall velocity.

• β0 (Angular velocity coefficient for alignment): Modulates the discs’ angular
velocity for aligning its direction of movement with that of nearby discs. This
leads to an alignment behavior, where discs orient themselves in the direction of
the average heading. A more significant value for β0 leads to a more aggressive
alignment.

• β1 (Angular velocity coefficient for adapting to the angular gradient): Affects how
much a disc will adjust its heading angle to conform to the average orientation of
the flock. If β1 is positive, the disc will strive to minimize the angular difference
to others, thus promoting a more uniform flock direction.

Adjusting these parameters can simulate a variety of flock behaviors, ranging from
chaotic and dispersed to unified and patterned collective movements. They are essen-
tial for fine-tuning the emergent behavior of the flock within the simulation.

Raycast implementation.
The vision implementation inspired by the original paper is encapsulated in the

file infinite_vision.py. The code defines a vision model in which a blue disc (cir-
cle1) serves as the focal point, and the goal is to determine whether another disc (cir-
cle2) is within its vision. The vision is influenced by a red obstacle disc (circle3). The
is_in_vision function computes the visibility based on the positions of points on the
circumference of circle2. The draw_circles_and_line function visualizes this scenario
by plotting the three discs and connecting lines between the center of circle1 and sev-
eral points on circle2. The color of circle2 changes dynamically based on whether it is
visible to circle1, with green indicating visibility and red indicating obstruction.

Figure 1. Demonstration of the vision

The draw_flock function extends the vision concept to a flock of discs. The blue
disc serves as the central focal point, and each disc in the flock is visually assessed
for visibility. Discs that are visible to the central disc are colored green, while those
obstructed by others are marked red. The function uses the isinvision check itera-
tively for each pair of discs, treating others as potential obstacles. This visualization
provides insights into how each disc in the flock perceives others.

Figure 2. Set of discs from the blue one’s point of view
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The code is contained in the file infinite_vision.py, making it modular and easy
to use in various scenarios. It’s important to note that the vision model is not de-
fined by the blue disc but represents the vision of the blue disc. The color of each
disc dynamically changes based on its visibility to the central disc, facilitating a clear
distinction between visible (green) and obstructed (red) discs. To further optimize
performance, the vision model could be modified to check only discs within a certain
radius, striking a balance between accuracy and real-time computational efficiency.
This enhancement is particularly relevant for scenarios with a large number of discs,
making the vision system more scalable and applicable in dynamic environments.

Results

A thorough search was conducted for existing codebases that could serve as a founda-
tion for our extension. Unfortunately, despite an exhaustive exploration of available
resources, no pre-existing codebase was found that meets our objectives.

In light of this, we undertook the challenge of implementing the proposed method
entirely from scratch. This decision was driven by the need for a solution tailored to
the specific requirements of our study, ensuring that the implemented model aligns
with our conceptual framework.

Discs behaviour without predator.
The implementation of the mathematical modeling framework proposed by the pa-

per has been carried out successfully. This process involved translating the theoretical
foundations of the model, which is based solely on the response to visual projections,
into a functional and effective codebase.

We have successfully replicated polarized flocking behavior, characterized by a
circular formation. The modeled entities exhibit a distinct propensity to align their
headings while maintaining proximity, forming a circular arrangement. A GIF of this
behavior can be found in the README.md of the repository.

Discussion

We’re currently experimenting with different settings in our simulation to find out
more about how groups of objects interact. By changing specific factors and starting
conditions systematically, we hope to uncover various patterns of collective movement,

Looking ahead, our study is yet not completed. Our intention to implement the
predator part is motivated by the desire to present a more holistic and realistic simula-
tion of self-organized collective behaviors. Further behavioral complexity, such as the
addition of attraction to targets, could enrich the overall dynamics.

In summary, the initial implementation lays a solid foundation, and future refine-
ments can build upon this foundation to create a more sophisticated and visually
compelling simulation.
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Contributions

Beatriz polished the report and added missing sections to it as well as visual aspects
of the discs in the code, such as the trail of movement;

Juraj implemented the base model and helped with the addition of information to
the report;

Tomas implemented an initial version of the base model and raycast implementa-
tion, as well as the addition of information to the report.
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