
Sheepdog-Driven Algorithm for
Sheep Herd Transport
Idora Ban, Simon Hehnen, Iva Idzojtic, and Lukas Pucher

Collective behaviour course research seminar report

December 7, 2024

Iztok Lebar Bajec | izredni professor | mentor

The project explores the sheepdog-driven algorithm for sheep herd transport, demonstrating
how a single agent can control and guide a swarm from one location to another through simple
local interactions. The objective is to replicate the algorithm and evaluate its effectiveness in
simulating dynamic control, where the sheepdog influences the herd’s movement using basic
rules. The backward semi-circle reciprocation algorithm will be implemented, incorporating
behaviors observed in real sheepdogs, such as circular path movement and decision-making
based on the sheep’s positions. The effectiveness of the algorithm in achieving coordinated herd
transport will be assessed under varying conditions, including changes in herd size, obstacle
placement, and sheepdog responsiveness. Ultimately, the goal is to enhance the algorithm’s
adaptability and explore its broader potential.

Sheepdog-Driven algorithm | Swarm systems | Controlling agent

Animal behavior-inspired algorithms enable efficient, adaptive solutions to complex
problems by mimicking the coordinated actions of animals, swarm behaviours,

such as flocking or schooling. This project explores the Sheepdog-Driven Algorithm
for Sheep Herd Transport by Liu et al., 2021 [1], that moves beyond traditional swarm
systems, where collective behavior emerges naturally within a group, to address a
reverse problem: how a single agent (a "sheepdog") can control and direct a swarm
(a "herd of sheep") from one location to another. The objective is to replicate and
evaluate this sheepdog-inspired approach, focusing on how a single controlling agent
can dynamically influence the herd to accomplish transport tasks.

After implementing the base algorithm, our team will experiment with its param-
eters and performance under different conditions. This will include testing variations
like obstacle placement, changes in herd size, or adjustments to sheepdog responsive-
ness. As we analyze the algorithm’s effectiveness in guiding the sheep herd, we may
consider developing new behaviors or optimizations to enhance adaptability, with the
potential for further applications in fields like autonomous drone or robot control.

Related Work

In recent years, numerous studies have advanced the understanding of collective be-
havior and herding control among autonomous agents. A foundational contribution by
Reynolds (1987) [2] introduced the "boids" model, which used local rules to simulate
natural group dynamics such as flocking and schooling. This work laid the groundwork
for many modern algorithms in swarm robotics and serves as an essential reference
for simulating decentralized animal behaviors. They suggested that future work could
involve adding more realistic individual behaviors, such as hunger or fear, and integrat-
ing detailed animations like wing flapping with motion dynamics. These enhancements
could make simulations more lifelike and versatile.

Building on this, Strömbom et al. (2014) [3] addressed the specific "shepherding
problem," proposing heuristic methods for guiding groups of autonomous agents using
a single "shepherd" agent—a framework that highlights key challenges and strategies
relevant to single-agent control in herding tasks. Their approach emphasizes adaptive
switching between collecting agents that are dispersed and driving the group when it
is cohesive, a behavior closely resembling real-world herding events involving sheep
and sheepdogs. Notably, their algorithm also highlights the importance of visual feed-
back, such as estimating spacing between agents, to maintain group cohesion and
movement toward a target. This method demonstrates broader applicability, from
robot-assisted herding and crowd control to tasks like environmental cleanup, making
it a versatile solution for various collective behavior scenarios.

Furthermore, Bayazit, Lien, and Amato (2002) [4] proposed a global roadmap ap-
proach for managing group behavior in complex, obstacle-rich environments, under-
scoring strategies for effective navigation in challenging terrains. They demonstrated
how embedding behavior rules into roadmaps and individual agents enables dynamic
decision-making based on location and state. This approach mirrors the Sheepdog-
Driven Algorithm, where the sheepdog dynamically adjusts its behavior based on the
herd’s position and proximity to obstacles. Both frameworks rely on balancing local
interactions with global guidance, ensuring that individual agents respond adaptively

frača: FRIteza/201516.130 BM-RI | FRIteza | 2024/25 | CB:G1 | 1–4

http://fraca.si/FRIteza/201516.130

while maintaining overall group cohesion. The roadmap’s ability to represent envi-
ronmental constraints and influence movement aligns with the algorithm’s goal of
efficiently directing herds in diverse and complex scenarios.

Together, these studies form a comprehensive base for understanding swarm and
herding behaviors, which informs the development of adaptive and efficient algorithms,
such as the Sheepdog-Driven Algorithm, and supports a comparative analysis of its
performance across various environments and control requirements.

Methodology

The practical component of this project is divided into two primary tasks: implement-
ing the simulation algorithm in Python and developing a visualization system in Unity.
The methodology section outlines the approach taken to develop these components,
along with the processes for testing, refining, and analyzing results.

The Algorithm. The algorithm defines the sheepdog’s movement as a backward semi-
circular trajectory, allowing it to drive the sheep herd from behind [1]. The sheepdog
operates within a two-dimensional plane, using an xx-yy coordinate system to track
both its own location and that of each sheep. The sheepdog aims to guide the herd
toward a designated target area by pushing them forward in a controlled manner.

Key aspects of the algorithm include the sheepdog’s field of view, which restricts
its awareness to only those sheep within its line of sight. Consequently, the sheepdog’s
response is dynamically adjusted based on the position and behavior of visible sheep,
meaning it does not always have complete information about the entire herd.

Figure 1. Example of dog’s field of view.[1]

The control process of the sheepdog is divided into two phases:

1. Initialization: This phase involves setting key design parameters such as viewing
angles, approach distances, and thresholds for direction adjustments. A time
limit is also set for the operation.

2. Iteration: In the main phase, the algorithm evaluates the position of the sheep
relative to the target and adjusts the sheepdog’s movement accordingly. The
sheepdog decides whether to move directly toward the herd or to take a detour
based on the herd’s overall position. When detouring, it aligns itself with the
rightmost or leftmost visible sheep, adjusting its angle to efficiently steer the
herd without unnecessary deviation from the target path.

The algorithm operates through a series of conditions to ensure energy efficiency
and maintain herd cohesion, continuing until all sheep are guided to the target area or
the time limit is reached.

The algorithm itself serves as the foundation for the Simulation phase, where its
implementation will be tested and refined in a Python-based environment. Following
the algorithm’s execution, its performance will be evaluated in simulated conditions,
with particular attention to the adaptability and effectiveness of the sheepdog’s control
in various test scenarios.

2 | frača: FRIteza/201516.130 Hehnen et al.

http://fraca.si/FRIteza/201516.130

Simulation. In the simulation phase, the Sheepdog-Driven Algorithm will be imple-
mented in Python to replicate the sheepdog-herd dynamics on a two-dimensional
plane. The simulation aims to model the movements and interactions of both the
sheepdog and the sheep, capturing the complex behaviors that arise as the sheepdog
attempts to guide the herd to a target location. In the original paper, this was done
with MATLAB.

1. Algorithm Implementation: The algorithm will be programmed to include the
sheepdog’s backward semi-circular motion, a key mechanism for maintaining con-
trol over the herd. This involves defining functions that represent the sheepdog’s
movements, perception field, and the reactive behaviors of individual sheep.

2. Parameter Tuning: To evaluate and optimize the algorithm’s effectiveness, pa-
rameters such as the sheepdog’s field of view, speed, and interaction range with
sheep will be adjustable. This parameter tuning will allow us to observe how
changes in these factors influence the sheepdog’s ability to manage the herd un-
der various scenarios.

3. Test Scenarios: Various test cases will be created to examine the algorithm’s
performance under different conditions, including:

• Basic Movement: Verifying the algorithm’s ability to guide the herd in
open space.

• Extended Dynamics: Introducing obstacles and outlier sheep to assess how
the algorithm adapts to environmental complexity and group inconsisten-
cies.

• Different Agent Types: Modifying attributes such as the sheepdog’s behav-
ior, speed, or strategy to observe effects on control and cohesion within the
herd.

4. This Python-based simulation will output path data for each sheep and the
sheepdog, which will be saved and used as input for visualization in Unity.

Visualisation. The visualization component of this project will be developed in Unity
to render the movement data generated from the Python simulation, providing an
interactive and comprehensible format for analyzing the algorithm’s behavior. This
allows for a detailed observation of how effectively the sheepdog can guide the herd
under various conditions. The visualization process begins with importing path data
from the Python simulation into Unity . This data represents each agent’s movements,
enabling us to create animated paths that reflect the interactions between the sheep-
dog and sheep over time.

A virtual environment is then constructed in Unity to provide a realistic setting
for the simulation. This environment includes basic elements such as ground planes,
obstacles, and boundaries, mirroring the conditions modeled in the Python simulation
to enhance visual coherence and aid in understanding how environmental factors affect
the sheepdog’s control over the herd.

Unity’s visualization setup focuses on representing the dynamic interactions be-
tween the sheepdog and the herd. Various visualization techniques, including path
trails, speed indicators, and field-of-view displays, are used to highlight important as-
pects of the behavior. This design provides insights into how the algorithm reacts to
elements like obstacles, outliers, and different herd dynamics.

As the visualization is not rendered in real time, the animation will be recorded
and played back in segments. This approach enables static analysis, where we can
pause and closely examine specific interactions or adaptations within the algorithm.
By allowing for playback and frame-by-frame inspection, the Unity-based visualization
provides a valuable tool for evaluating the algorithm’s effectiveness, adaptability, and
overall performance in guiding the herd through diverse scenarios.

Results

So far, we have implemented a simulation based on the sheepdog-driven algorithm for
herd transport. The code models the interaction between the sheepdog and the sheep,
with the dog guiding the herd towards a destination using local interaction rules. We
have defined the movement dynamics for both the sheep and the sheepdog, including
attraction, repulsion, and visibility checks. The simulation updates the positions of the
agents in real-time.

Hehnen et al. BM-RI | FRIteza | 2024/25 | CB:G1 | 3

Figure 2. The starting phase of herding

Further refinement of the algorithm is underway to improve the movement and the
mutual coordination.

Discussion

After fully replicating the algorithm, the focus will shift to experimenting with dif-
ferent parameters to optimize its performance and achieve improved results. This
includes exploring variations in herd size, sheepdog responsiveness, and environmen-
tal factors such as obstacle placement. Insights gained from these experiments will
guide potential modifications or extensions to the algorithm, aiming to enhance its
adaptability and effectiveness in diverse scenarios.

Contributions

SH and IB did the implementation, II did the report, LP was helping with both.

Bibliography

1. Liu Y et al. (2021) Sheepdog driven algorithm for sheep herd
transport in 2021 40th Chinese Control Conference (CCC). pp.
5390–5395.

2. Reynolds CW (1987) Flocks, herds and schools: A distributed
behavioral model in Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’87. (Association for Computing Machinery, New

York, NY, USA), p. 25–34.
3. Strömbom D et al. (2014) Solving the shepherding problem:

heuristics for herding autonomous, interacting agents. Journal
of the Royal Society Interface 11.

4. Bayazit OB, Lien JM, Amato NM (2002) Better group behaviors
in complex environments using global roadmaps in Proceed-
ings of the Eighth International Conference on Artificial Life,
ICAL 2003. (MIT Press, Cambridge, MA, USA), p. 362–370.

4 | frača: FRIteza/201516.130 Hehnen et al.

http://dx.doi.org/10.23919/CCC52363.2021.9549396
http://dx.doi.org/10.23919/CCC52363.2021.9549396
http://dx.doi.org/10.1145/37401.37406
http://fraca.si/FRIteza/201516.130

