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Modeling Social Distancing with Reinforcement Learning
Nejc Ločičnik, Igor Nikolaj Sok, Leon Todorov, Andraž Zrimšek

ABSTRACT: This study investigates the emergence of
social distancing behaviors in artificial agents using a
reinforcement learning (RL) framework. Agents interact
in a two-dimensional environment and learn to avoid
infected individuals to minimize disease transmission.
Drawing inspiration from the adaptive behaviors of ants,
agents exchange health information and adjust their
behavior accordingly. Initial results demonstrate that
agents trained with a basic reward policy show increased
separation between healthy and infected individuals, as
observed through network metrics such as modularity
and clustering. This work highlights the potential of
RL in modeling disease dynamics and social distancing
strategies.

I. Introduction

The spread of infectious diseases is a significant challenge
in both human and animal populations, prompting natural
and artificial systems alike to develop mechanisms for mini-
mizing transmission. Social distancing has emerged as a com-
mon adaptive behavior in nature, where organisms avoid close
contact with infected individuals to protect themselves and
their groups. This phenomenon has been observed across a
variety of species and environments, suggesting it provides
an evolutionary advantage in mitigating disease transmission
risks. In response to the COVID-19 pandemic, social distancing
also became a key public health strategy for humans, sparking
interest in understanding how such behaviors might emerge and
evolve autonomously in artificial agents.

Modeling disease transmission and social distancing behav-
iors in simulated environments can provide insights into the un-
derlying dynamics of these processes, as well as offer potential
applications in fields such as epidemiology, robotics, and swarm
intelligence. Traditional approaches often rely on predefined
rules to drive agent behaviors, limiting the complexity and
adaptability of emergent patterns. By contrast, reinforcement
learning (RL) provides a flexible framework where agents learn
to navigate environments based on reward structures, allowing
for more organic, adaptive behaviors that evolve in response to
environmental pressures.

In this study, we aim to model social distancing behaviors
using a reinforcement learning approach inspired by natural
systems. Agents will learn to minimize disease transmission
within a two-dimensional environment by adapting their in-
teractions based on health information they exchange with one
another. We will build on existing multi-agent reinforcement
learning frameworks, specifically those designed for predator-
prey dynamics, to simulate agent behavior under disease-spread
conditions. This setup will allow us to explore how reward
structures and network adaptations can lead to emergent so-
cial distancing behaviors, where agents autonomously avoid
infected individuals.

Through our model, we hope to deepen our understanding
of how social distancing behaviors emerge and to contribute to
the broader field of adaptive multi-agent systems. Ultimately,
this research may inform both theoretical models of disease
transmission and practical applications in areas requiring co-

ordinated group behavior, such as swarm robotics or public
health simulations.

II. Related Work

In the article Predator–prey survival pressure is sufficient to
evolve swarming behaviors [1], the authors use a reinforcement
learning (RL) approach to model predator and prey behaviors
within a cooperative–competitive multi-agent RL framework.
Here, predator agents receive rewards for successfully catching
prey, while prey agents receive rewards for avoiding capture
and staying alive. This approach contrasts significantly with
traditional behavior modeling, where predefined rules are often
used to drive agents toward expected behaviors. Such rule-
based models, however, can fail to capture the complexity and
adaptability of real-world dynamics. In contrast, reinforcement
learning only presents rewards that encourage or discourage
certain actions, allowing for more organic and adaptive be-
havior development. Through this predator-prey framework,
the authors observed emergent behaviors, such as flocking and
swarming among prey agents and dispersion tactics among
predators. These findings suggest that RL-based approaches
can effectively foster diverse and adaptive group behaviors. In
our work, we aim to build on this method to model disease
spread, adjusting the agent parameters and reward mechanisms
to simulate social distancing behaviors.

The complexities of disease spread and natural social dis-
tancing behaviors are further explored in Infectious diseases
and social distancing in nature [3]. This study examines social
distancing as an adaptive response to disease across various
animal species, both human and non-human. Social distancing
behaviors can emerge as precautionary actions taken by healthy
individuals or as physiological responses in infected individuals.
The authors analyze the underlying mechanisms driving these
behaviors in both infected and non-infected subjects, high-
lighting how natural populations instinctively modify social
interactions to mitigate disease transmission.

Building on this, Romano et al. (2022) in The trade-off
between information and pathogen transmission in animal so-
cieties [2] argue that social distancing alone may be insufficient
to control disease spread. They note that individuals in a
population inherently rely on information exchange, which
conveys significant adaptive benefits. This article discusses the
balance animals must strike between maintaining necessary
social connections and minimizing infection risk, proposing that
animals develop “network plasticity” as they weigh the costs
and benefits of each social interaction. These trade-offs in social
behavior offer insights that are highly relevant for modeling
disease spread, as they underscore the complex motivations
behind individual actions within a population.

Together, these studies provide essential frameworks and
insights into adaptive behavior modeling under environmental
pressures. Our work will leverage these principles by employing
a reinforcement learning model that integrates disease spread
and social distancing, aiming to simulate the interplay of agent
interactions and disease transmission dynamics.
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III. Methodology
A. Problem Definition

Our objective is to model the spread of infectious diseases
within a simulated population of agents that can move freely in
a two-dimensional environment and interact with one another.
The primary goal is to minimize disease spread by limiting
interactions among agents. To achieve this, agents will exchange
information about their health status, learning to adjust their
behavior to avoid infected peers based on the information they
receive.

B. Disease Spread Modeling
The study of Lasius niger ants [4] reveals an intriguing

natural strategy for controlling disease spread. When exposed
to the fungal pathogen Metarhizium brunneum, these ants dy-
namically alter their social network structure to reduce trans-
mission risk. Rather than merely avoiding infected individuals,
the entire colony adapts its social interactions to limit disease
spread.

Both infected and uninfected ants exhibit adaptive behav-
iors: infected ants spend more time outside the nest, reducing
exposure to healthy nest mates, while uninfected ants increase
their spatial distance from others, particularly those exposed to
the pathogen. These behavioral changes enhance the network’s
modularity, creating compartments within the social structure
that contain the spread of infection.

We will incorporate similar adaptive behavioral adjustments
into a reinforcement learning model to study disease trans-
mission dynamics. Agents will be rewarded for exchanging
information about their health status and penalized for close
contact with infected individuals, thereby promoting social
distancing behaviors.

Additionally, the paper suggests that low-level exposure to
pathogens may have adaptive benefits. Future model improve-
ments may explore nuanced reward and penalty schemes based
on varying exposure levels, as well as the potential for agents
to develop immunity through controlled exposure. This would
allow for a deeper exploration of the trade-offs between infor-
mation exchange and disease transmission.

C. Simulation Environment
This study employs a multi-agent reinforcement learning

(RL) framework, adapted from the environment developed by
Li et al. (2023) [1]. The simulation takes place in a two-
dimensional continuous space with periodic boundary condi-
tions, meaning that agents crossing one edge of the square
environment reappear on the opposite edge, retaining their
velocity.

Agents are modeled to resemble ants (changed from unicy-
cles like in 1), with their body consisting of three connected
circles (the back circle being slightly larger) and six legs. Their
behavior is driven by a combination of active and passive
forces. Active forces, controlled by the agents, include a forward
movement force (aF ) aligned with their heading direction and
a rotational force (aR) enabling changes in heading. Passive
forces, inherent to the environment, include drag force (F d),
simulating resistance opposing the agent’s velocity, and re-
pulsive force (F a), which prevents agents from overlapping
by pushing them apart. At each simulation step, the agents’
positions and velocities are updated by summing all acting
forces, with the dynamics governed by:

ẋ = v, v̇ = haF + Fd + Fa

m
, θ̇ = aR

where x is the agent’s position, v its velocity, θ its heading
angle, h the unit vector for heading direction, and m the agent’s
mass. The ant-like design, illustrated in Figure 1, enhances
realism while preserving the underlying principles of agent
dynamics.

Figure 1. Active (left) and passive (right) agent forces. [1]

To tailor the framework to our objectives, several modifica-
tions were implemented. These include:

1) Agent visualization (unicycle to ant) and movement pa-
rameters (more "ant-like").

2) Agent perception includes health status of the perceived
agents (based on FoV).

3) Keeping track of agent interactions, used for network
evaluation.

4) Redefine the reward policy to align with our disease-
spread mitigation goals.

D. Basic Reward Policy
Our initial reward policy aimed to produce social distancing

patterns in agent behavior is based on direct collisions between
agents as the primary form of information exchange. Colli-
sions between agents of the same status (healthy-healthy or
infected-infected) were rewarded to encourage grouping behav-
ior. In contrast, collisions between agents of different statuses
(healthy-infected or vice versa) were penalized to discourage
close contact to limit disease spread.

The above mention basic reward policy is demonstrated in
isolation with all healthy agents in figure 2. On the left figure
we penalized each agent upon collision with a −1 reward, while
on the right figure we rewarded each colliding agent with a +1
reward. This demonstrates how a very simple change in the
reward policy effects the learned behavior.

Figure 2. Demonstration of simple reward policies - penalize (left)
or reward (right) collisions.

Building on this foundation, we introduced a diminishing
reward system to refine agent behavior further. This system
rewarded agents for diverse interactions while penalizing risky
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collisions. To prevent excessive rewards from repeated interac-
tions between the same agents, we incorporated a diminishing
factor based on recent interactions:

reward(a, b) =
{

−λ if sick(a) ̸= sick(b)
+σ ∗ γ(1 − recent(a, b)) otherwise.

Here, recent(a,b) is initialized to 1 upon interaction and
decreases by a factor of 0.9 at each step. This mechanism en-
sures diminishing rewards for repeated collisions, encouraging
diverse and meaningful interactions that better reflect real-
world dynamics.

To further enhance agent behavior, we introduced optional
reward components that address specific aspects of agent-
environment dynamics. These additions allow for greater
adaptability to different scenarios:

1) Wall Collision Penalty → In non-periodic environ-
ments, where agents encounter boundaries, a wall collision
penalty discourages agents from colliding with walls:

reward(a) =
{

−λ if a collides with any wall
0 otherwise.

2) Control Penalty → To mimic energy consumption dur-
ing movement, a control penalty was introduced. This
reward is proportional to the magnitude of the agent’s
control inputs (aF for forward force and aR for rotational
force), encouraging agents to exhibit conservative move-
ment:

reward(aF, aR) = −(α|aF | + β|aR|)

These optional components provide additional flexibility to
tailor agent behavior for specific objectives while preserving the
simplicity and general applicability of the core reward system.
Together, the diminishing reward mechanism and optional
components have demonstrated their effectiveness in producing
well-performing agents, with interaction networks resembling
real-world examples. Ant behavior continues to serve as a
baseline for comparison, validating the model’s adaptability
across species and scenarios.

E. Model Performance Measures
To evaluate whether social distancing patterns emerge in

agent behavior, we transform agent interactions into a network
and analyze its structure, following approaches demonstrated
in Stroeymeyt et al. (2018) [4]. Throughout each evaluation
step, interactions between agents are tracked and recorded in
an n × n interaction matrix, where n is the total number
of agents. Two agents are considered to be interacting upon
collision. At the end of an evaluation run, this interaction
matrix is normalized to construct the network. Nodes in the
network represent agents, and edges are created between nodes
if their interaction value exceeds a specified threshold (0.01).
The actual values from the interaction matrix are used as edge
weights, and each node is annotated with the health status of
the corresponding agent.

This network is then used to calculate appropriate network
measures such as clustering, modularity (between infected and
non-infected), network density and more. This allows us to get
a better understanding of how agents are interacting with one
another. We expect all of the mentioned metrics to increase as
same health status agents interact more between themselves.

Emergent social distancing behavior should also be clearly
observable in the simulation visualization. We expect healthy

agents to avoid infected ones, and vice versa. This behavior will
be especially evident if we increase the agent density within the
environment. In such cases, we should observe infected agents
becoming isolated, forming empty regions around them, while
healthy agents fill the remaining space in the simulation.

IV. Results
To test the performance of our initial reward policy, we ran an

episode consisting of 5000 steps with both a random untrained
network and a trained network. For each case, we constructed
a network of all the interactions throughout the episode, which
is displayed in Figure 3. In the network visualizations, healthy
agents are colored blue, and infected agents are colored orange.

Figure 3. Random interaction network (left), learned interaction
network (right).

In the random network, no clear structure is apparent. How-
ever, in the learned network, a separation begins to emerge,
with infected agents interacting less with healthy ones, but
still interacting with other infected agents. This behavior aligns
with our expectations. The structure becomes more pronounced
when we filter the network by keeping only edges with weights
greater than 0.2, representing significant interactions. The fil-
tered network is shown in Figure 4.

Figure 4. Filtered learned interaction network.

In the filtered network, it is evident that infected agents
interact significantly less with healthy agents. To gain deeper
insights into these interactions and assess metrics beyond visual
inspection, we analyzed key network properties relevant to
pathogen transmission. Modularity increased from -0.016 (ran-
dom) to 0.050 (trained), reflecting greater separation between
groups and denser clusters. This trend is reinforced by a rise
in clustering values from 0.041 (random) to 0.064 (trained).
These changes suggest the emergence of basic social distancing
behaviors, with infected and healthy agents reducing their
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interactions. However, further testing is needed to fully under-
stand the impact of these behaviors on disease transmission.

Figure 5. Visualization of our best performing policy on 75 agents
(20% infected).

Figure 5 visualizes a simulation of our best-performing policy.
The orange ants represent infected ants, while the black ants
represent healthy ones. Although this figure appears to indicate
the behavior described by the network statistics (with same-
health-status agents tending to group), it should be noted
that the separation between healthy and infected agents is
not as pronounced as hoped. This is primarily due to the
fact that interactions are based on collisions, and agents only
perceive the 6-8 nearest agents in their field of view (FoV).
This limitation causes agents of different statuses to often move
much closer to each other than intended.

We also conducted some preliminary experiments with al-
ternative methods of information exchange to produce clearer
visualizations. Inspired by ant behavior, we implemented a
simplified pheromone system, where each agent leaves a mark
in the surrounding area that accumulates into a concentration
heatmap that decays over time. These pheromones could be
either positive (indicating "safety" areas from healthy agents)
or negative (indicating "danger" from infected agents). If the
concentration of pheromones at an agent’s location reaches a
certain threshold, the agent perceives it. This would theoret-
ically provide agents with an indication of safety or danger
ahead, helping them maintain greater distance from infected
agents.

Unfortunately, this approach did not work as expected. We
believe the issue lies in the fact that there isn’t a clear cor-
relation between the observations (pheromone concentrations)
and the actions that would lead to better rewards. With the
collision-based interaction system, agents simply adjust their
movement to either avoid or approach other agents based on
their health status, which leads to higher cumulative rewards.
In contrast, with the pheromone system, agents detect a con-
centration but cannot determine the exact actions needed to
improve their situation. Although theoretically, actions should
be to stop (set force to 0) for positive pheromones and flee
for negative ones, the lack of a direct feedback loop between
pheromone detection and reward-driven actions made it chal-
lenging for the agents to effectively use the pheromone system.

V. Discussion and Future Work
As this is a preliminary report, we will use this discussion

section to outline our future work.
Our primary goal is to replicate the experiment described

in Stroeymeyt et al. (2018)[4]. To achieve this, we plan to
perform multiple runs for three scenarios: random networks,
learned networks without infected agents, and learned networks
with infected agents. The random network will serve as a
baseline to normalize the metrics from our learned networks.
We will then compare changes in network structure before
and after the introduction of a pathogen. Throughout these
experiments, we will track the same agents in pairs of pre- and
post-introduction conditions. Additionally, we may continue
refining our reward policies or explore alternative information
exchange mechanisms beyond simple collisions.

As the final presentation requires a presentation video, we
are thinking of implementing dynamic disease spread, where
healthy agents can become infected, which would include
infected agent mortality after a set number of time steps. This
would allow us to directly visualize the effectiveness of social
distancing by observing whether the disease dies off (due to
infected agents not spreading the infection and eventually
dying in isolation) or if all agents succumb to the pathogen.

CONTRIBUTIONS: LT prepared/fixed the environment
setup and did the basic avoid/touch experiments, INS and
AZ did the reward policy experiments and the network statis-
tics, NL did the alternative interactions experiment and orga-
nized/polished the report. Each member wrote their own parts
of the report.
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