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This research explores the emergence of col-
lective behaviors in predator-prey dynamics
using reinforcement learning to simulate how
survival pressures drive adaptive behaviors
like swarming and evasion. By modeling
multi-species interactions in a complex
environment, the study extends current
understanding of evolutionary survival
strategies and the role of learning in shaping
group dynamics.
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Collective animal behaviour, especially swarming in predator-prey dynamics, offers insights into
survival strategies that emerge under evolutionary pressures. This report outlines the initial
objectives and foundational concepts for simulating predator-prey. Inspired by previous work,
we examine how survival pressures can drive emergent group behaviours in prey through rein-
forcement learning. We begin with an overview of related work, from classic rule-based models to
more recent reinforcement learning approaches, highlighting advances that allow agents to adapt
to changing environments. Our primary objective is to recreate a reinforcement learning-based
model where predator-prey interactions lead to swarming and evasion behaviours. The model
will then extend to include environmental obstacles and an additional species, enabling us to
investigate the interplay between interspecies interactions and survival strategies.
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The sudden emergence of swarming behaviours in animals is one of the most strik-
ing examples of collective animal behaviour. These behaviours have been exten-

sively studied for their implications for the evolution of cooperation, social cognition
and predator–prey dynamics[1]. Swarming, which appears in many different species
like starlings, herrings, and locusts, has been linked to several benefits including en-
hanced foraging efficiency, improved mating success, and distributed problem-solving
abilities. Furthermore, they are hypothesized to help with improving group vigilance,
reducing the chance of being encountered by predators, diluting an individual’s risk
of being attacked, enabling an active defence against predators and reducing predator
attack efficiency by confusing the predator. [2].

In this project we will be taking inspiration from the work of Li et al. (2023) and
Olson et al. (2013) to explore how survival pressures can drive the emergence of
swarming behaviour. The first goal will be to create a realistic simulation where both
prey and predators learn to adapt through reinforcement learning based on their drive
to survive. Modelling these interactions, we will observe how simple survival pressures
can lead to evolution of more complex behaviours like flocking, swirling and edge pre-
dation.

Then, we will extend our research by evolving out existing model by introducing
new environmental obstacles and new species to observe how interspecies interactions
lead to new survival strategies.

Related Work

The modeling of swarming behavior has evolved from static rule-based frameworks to
adaptive reinforcement learning (RL) models, with intermediate advances in topologi-
cal and vision-based approaches enhancing realism.

Rule-Based Models. Early models like Aoki’s Zone Model (1982) defined interaction
zones—repulsion, alignment, and attraction—based on proximity [3]. Vicsek’s Model
(1995) and Reynolds’ Boids Model (1987) added alignment, cohesion, and separation
rules to simulate group dynamics [4][5]. However, these fixed-rule systems lack adapt-
ability to dynamic environments.

Topological and Vision-Based Models. Topological models incorporated sensory con-
straints for more realism. Hemelrijk & Hildenbrandt (2008) introduced a perception
model where agents respond only to neighbors within a variable radius [6]. Kunz &
Hemelrijk (2012) added visual occlusion, simulating sensory limits [7]. While more
realistic, these models remain static compared to adaptive RL approaches.

Learning-Based Models. Learning-based methods allow agents to adapt dynamically,
producing emergent behaviors like flocking and evasion.

• Olson et al. (2013): Used genetic algorithms (GA) to model predator confu-
sion, where prey evolved clustering to reduce predation risk [1].

• Lowe et al. (2017): Introduced MADDPG, an RL algorithm enabling agents
to learn strategies in mixed cooperative and competitive environments [8].
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• Li et al. (2023): Demonstrated prey swarming in an RL model, where agents
maximize survival rewards and evade predators adaptively [2].

Methods

Our proposed methodology aims to simulate swarming behaviours in a predator-prey
environment using reinforcement learning (RL). We will define and test a RL-based
model where agents, such as prey and predators interact within a two-dimensional
space. The goal is to observe how different pressures and interactions influence collec-
tive behaviours like swarming, evasion, and strategic movement.

Environment Setup. The simulation will take place in a 2D environment with open and
confined spaces. The confined space will have stiff boundaries, meaning that agents
will bounce off them when they collide, whereas the open space will have periodic
boundaries, meaning that agents will reappear on the opposite side when they cross
the boundary. Such setup with periodic boundaries serves as an approximation of an
infinite space, allowing agents to move freely without encountering physical borders.
Later on, we wish to place random obstacles, which will be distributed across the
space to create a complex and realistic setting that challenges the agents to adapt
their movement and coordination.

We will apply the perception and action models from Li et al. (2023) [2] to guide
agent interactions in the simulation.

• Perception Model: Each agent detects others only within a specified range
and limited to a maximum number of nearby agents, simulating real-world sen-
sory limitations.

• Action Model: Agents adjust their movement through forward propulsion and
directional changes, governed by RL policies that optimize goals like survival and
prey capture.

Agent Dynamics. Agents in our simulation are subject to both active and passive
forces.

Active forces are self-generated by agents to drive their movement. These forces
consist of two components:

• Forward Propulsion: Drives the agent in the direction of its heading. This
force is represented as aF .

• Rotational Force: Allows the agent to rotate its heading within a threshold
value. This force is denoted as aR, where aR controls the angular velocity.

Passive forces act on agents due to interactions with the environment and other
agents. These include:

• Dragging Force: Acts opposite to the agent’s velocity, simulating frictional
effects. It is proportional to the magnitude of the velocity v.

• Elastic Forces Between Agents: When agents are in contact, elastic forces
prevent overlap and simulate collision dynamics. These forces follow Hooke’s law
and are represented as fa.

The RL framework optimizes the agents’ use of active forces aF and aR to maxi-
mize their survival and goal-driven behaviors. By learning policies through interaction,
agents adapt their propulsion and rotation dynamically to respond effectively to their
environment and other agents.

Agent Types and Behaviour.

• Prey: These agents aim to survive by avoiding predators and moving as a
group.

• Predators: Predators are designed to pursue and catch prey.

• New Species: We will introduce a third type of agent. We will experiment and
observe different behaviours when adding a new prey species, a new predator
species or a species which is both.
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Reinforcement Learning Framework.

• Algorithm: We plan to use the Multi-Agent Deep Deterministic Policy Gradi-
ent (MADDPG) algorithm.

• Reward Structure:

– Prey: Rewarded for survival over time, with penalties for being caught.

– Predators: Rewarded for capturing prey, with penalties for colliding with
obstacles.

– New Species: Rewarded based on interactions like resource competition
or cooperation with other agents.

• Training Setup: Agents will be trained through episodic simulations, allowing
them to learn and adapt from each episode’s interactions. We will vary condi-
tions to observe how changes influence learned behaviours.

Proposed Methodology for Verification. To verify the behavior of our model, we will
adopt the methodology described in Li et al. (2023) [2], utilizing two key metrics: the
Degree of Alignment (DoA) and the Degree of Separation (DoS).

• Degree of Sparsity (DoS): This metric measures the spatial aggregation of
agents, capturing how densely the agents cluster together. It is defined as:

DoS = 1
T ND

T∑
t=1

N∑
j=1

∥xj(t) − xk(t)∥

where: xj(t) is the position of the j-th agent at time step t, xk(t) is the position
of the nearest neighbor k = arg mink ∥xj(t) − xk(t)∥, T is the episode length, N
is the total number of agents, and D is the maximum possible distance between
two agents in the environment.
A smaller DoS value indicates denser clustering, while a value of 0 represents all
agents aggregating at a single point.

• Degree of Alignment (DoA): This metric quantifies the alignment of the
agents’ headings, assessing how consistently agents move in the same direction.
It is defined as:

DoA = 1
2T N

T∑
t=1

N∑
j=1

∥hj(t) + hk(t)∥

where: hj(t) is the heading of the j-th agent at time step t, hk(t) is the heading
of the nearest neighbor of agent j (the same nearest neighbor as in the DoS
calculation), T is the episode length, and N is the total number of agents.
Higher DoA values indicate stronger alignment in agent movement. It is impor-
tant to note that the DoA measures local alignment between neighboring agents
rather than the mean heading of the entire group, making it more suitable for
detecting relative alignment within swarms.

By analyzing these metrics during and after training, we aim to verify whether our
model reproduces swarming behaviors.

Results

In the initial phase of our project, we implemented a basic model where we created
our environment with periodic borders and successfully populated it with agents which
followed a reward system following the article. At this stage we only implemented
active forces with fixed values. Our results looked promising.

Now we have improved the model by first adding passive forces. We also fine-tuned
some parameters such as the agents’ speed, size and passive forces. The passive forces
include dragging forces, elastic forces between contacting agents, and elastic forces
between agents and boundaries. Next we initiated active forces as random instead
of fixed valued. That was crucial for our next step, since we were gonna build our
reinforcment model based on them.

Lastly we added a RL component. The RL component was built to fine-tune the
active forces af and af to enable the agents to move efficiently and maximize their
results. However so far, after successfully training our model numerous times over
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Figure 1. (a) Our model with no RL component, following the reward system and fixed active forces. (b) Our model with
no RL component, with added fixed passive forces and random initialization of active forces (c) Our model with RL.

1000 episodes, the results were not great. Instead of the agents moving to maximize
their reward, they end up moving in circles.

Recognizing these limitations, we decided to adopt the RL model from the Li et
al. article [2]. Using their code, we were able to successfully run simulations of their
model in our environment. This provided a functioning baseline for comparison and
further experimentation. Preliminary results from this approach, however, did not
fully replicate the swarming behaviors reported in their study. Our results show sig-
nificant variability in both the Degree of Separation (DoS) and Degree of Alignment
(DoA) across episodes, with no clear trends indicating improvement. The fluctuating
DoS suggests that agents fail to form stable clusters, while the inconsistent DoA val-
ues indicate a lack of coordinated alignment among agents. These results suggest that
the model has not converged effectively, likely due to issues with the reward structure
or suboptimal parameter tuning. Further refinement is needed to achieve consistent
swarming behaviors.

Figure 2. Degree of Alignment (DoA) and Degree of Separation (DoS) across episodes without collision penalty. The
DoA remains highly variable, while the DoS shows no clear clustering trend.

Discussion

In this stage of the project, we successfully ran the code from the main article but
encountered challenges with the agents’ behavior. The DoA and DoS metrics remain
highly variable, indicating that swarming behaviors have not yet emerged. These re-
sults suggest the need for further tuning of the reward structure and additional train-
ing.

Despite the setbacks, we are motivated to continue refining the model and address-
ing these issues. Our next steps are to improve the code to produce results similar to
the article, introduce obstacles to the environment, and add a ecies, which we have yet
to finalize.

CONTRIBUTIONS. AK worked on models with and without RL component implementations
and writing agent dynamics and results, TB worked on graphs, methods, results and discus-
sion, VL worked on training and testing the original model.
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