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This report presents an improved simulation of collective fish behavior, enhancing a mathemat-
ical model that incorporates hydrodynamic interactions. Through detailed implementation and
real-time interactive simulations, we have accurately replicated complex fish behaviors such as
swarming, schooling, milling, and turning. These behaviors were classified using polarization
and milling parameters. The simulation’s realism is enhanced by features like collision avoidance,
boundary interactions, predator simulation, and external flow dynamics. This paper outlines our
implementation strategy, highlighting the integration of a user-friendly interface and advanced
features, which contribute to the study of collective fish behavior.
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1. Introduction

Collective behaviour is a branch of computer science that attempts to model, recre-
ate and visualize the behaviours of groups of animals, such as birds, sheep and in-
sects. This paper focuses on the collective behaviour of fish, called schooling. While
fish schooling has already been modeled numerous times, the incorporation of water
physics into these models, is often overlooked. Our research is built upon the works of
Filella et al. (2018) [1], where they explored and successfully modeled hydrodynamic
effects on schooling of fish. In this paper we explain all the techniques used in the pa-
per and present our additions and improvements to their model. The code of our im-
plementation can be found at https://github.com/gregorkovac/collective-fish-behaviour
and a short video demonstration can be found at

https://youtu.be/F9MiLQuiUbI?si=CFtHVC8VPbDy-sTO.

Literature review. Early studies of swarm behaviour, such as fish behaviour, employed
mathematical models to simulate and understand the behaviour. The simplest mathe-
matical models of animal swarms generally represent individual animals as individuals
following rules of similar directional movement, proximity and collision avoidance with
their neighbours. One such early example is the boids computer program created by
Craig Reynolds [2], which simulates swarm behaviour following the above rules.

Within the specific domain of fish behavior, some of the early models expanded on
the general swarm behaviour and introduced further complexities. For instance, some
models focused on calculating velocity and angle based on probability distributions of
random influences, as presented in a notable paper [3].

As research progressed, researchers undertook the challenge of modeling specific
fish behavioral factors, including schooling, swarming, and milling. A particular study
[4] analyzed all conceivable initial states to discern transitions between stationary
states, such as schooling, swarming, or milling. A significant finding from this research
highlighted that fish density in certain stationary states causes global interactions,
where each fish perceives the presence of all others. The swarm algorithm proposed in
this study adheres to the Lagrangian approach.

Recently, the research has expanded and includes various machine learning tech-
niques to further improve the understanding and modelling of fish swarm behaviour.
A case in point is a recent paper [5], wherein machine learning and computer vision
methodologies were employed to track and gather fish pattern data for constructing a
fish movement model.

Apart from new emerging modelling techniques, traditional mathematical models
often overlook or oversimplify the intricate hydrodynamic interactions among fish.
This is where we hope to improve and expand the research by implementing and im-
proving the fish model to support hydrodynamic interactions, as proposed by [1].

2. Methods

In this section we outline the theoretical background of the proposed behavior model
and briefly describe our design approach.

Fish behaviour model. To model fish we use so-called self-propelled particle (SPP)
models, which can be constructed from simple rules to induce relatively complex be-
haviour. Each fish is modeled as a particle moving around in a plane. It moves for-
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Figure 1. Visualization of the parameters used to model the interaction between fish i and j.

ward at some constant velocity v. Now we want to introduce interaction between a
fish and its neighbours. All of the spacial parameters that we use to achieve this are
shown in the figure 2 and we will use them in the explanation later on.

Firstly, we add an attraction factor kp[m−1s−1] that attracts a fish towards its
nearest neighbours and an alignment factor kv[m−1] that makes a fish align with its
neighbours. We also add some Gaussian-distributed rotational noise σ to introduce
randomness. This is approximately how fish schools are usually modeled. On top of
this, we add a fish’s response to flow disturbance from other fishes. This is represented
by an elementary dipole (a flow of a shape that is similar to the shape of a magnet’s
force field) with intensity Sv where S = πr2

0 is the surface of a fish with length r0.
We have previously stated that fish will be modeled as points, but in terms of hydro-
dynamics we need to model them as objects with a surface. Now we will also intro-
duce some new variables for readability purposes: I|| = kv

√
v
kp

represents alignment,

In = σ(vkp)−
1
4 represents noise and If = S

kp

v
represents dipole intensity. We can put

all of this together to obtain motion equations:

ṙi = e
||
i + Ui [1]

θ̇i = 〈ρij sin(θij) + I|| sin(φij)〉+ Inη + Ωi [2]

The equation 1 represents the movement of a fish from ṙi at constant speed in
the direction of its orientation e||i . We call Ui the drift term that takes into account
hydrodynamics. It is defined as:

Ui =
∑
j 6=i

= uji, uji = If
π

eθj sin(θji) + eρj cos(θji)
ρ2
ij

.

Each fish generates a flow field and uji is the field velocity generated by the j-th fish,
affecting i-th fish. The spacial relation between a pair of fish is represented with polar
coordinates in the framework of the j-th fish, hence the angles in the expression.

The equation 2 represents the rotation of a fish. The term η represents a standard
Wiener process (a stochastic process used to model noise and disturbances) that is
multiplied by the noise term. This introduces a model of free will in a fish. Ωi is the
rotation introduced by hydrodynamics and is defined as

Ωi =
∑
j 6=i

e
||
i · ∇uji · e

⊥
i .

This essentially means taking the gradient of uji along x and y axis and multiply-
ing it with the directions of a fish.

The notation 〈?〉 indicates the averaging of all terms over the Voronoi neighbours
(νi) (a selection of neighbours based on Voronoi diagrams) of a fish, weighted with
1 + cos(φij):

〈?〉 =

∑
j∈νi

?(1 + cos(θij))∑
j∈νi

(1 + cos(θij))

Implementation. After mutual consideration, Python was chosen as the primary pro-
gramming language used for the implementation of the model. Its versatility and the
extensive library support made it the ideal choice for our simulation’s needs. We used
NumPy for efficient array and numerical operations and also for its built-in parallelism
to make the simulation run fast, SciPy for finding Voronoi neighbours and DearPyGUI
for the visualization of the simulation and the graphical user interface.
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Implementation improvements. To make the simulation more interesting and realistic
we have added two new features to the original model.

Predators. We have added another type of fish, that takes the role of a predator. It
works in a similar way to the other fish, but it is attracted to the fish based on some
attraction parameter that is separate from the attraction parameter of the normal
fish. The behaviour of the fish is also changed such that they try to turn away from a
predator if it is close. Since we have a relatively small mobility space we have decided
not to give predators the ability to eat fish, because they would eat all of them very
fast, so in reality we have modeled another type of fish that others are scared of.

External flow. To enhance the realism of the simulation we have also added an external
water flow that we can think of as waves in the sea. We calculate the strength of the
flow for each fish position using the sine function and move each fish into the direction
of the flow according to this. We also use the gradient similarly as in the original
model to apply rotational change.

3. Results

Our implementation of the described fish behavior model in the methods section has
enabled us to successfully replicate key stages of fish swimming, as outlined in the pa-
per [1]. Our model accurately captures the intricate dynamics of milling, swarming,
schooling, and turning behaviors through the change in model parameters. Addition-
ally we classified these stages using new parameters P (polarization) and M (milling)
defined as:

P = |e||i | M = |e
r
i × ṙi|
|eri ||ṙi|

,

where eri is the vector from the center of mass to the i-th fish and ri is the position
of the fish. The classification can be seen in table 1. The parameter thresholds were
provided in the paper [1].

P ≤ 0.5 P > 0.5
M ≤ 0.4 swarming schooling
M > 0.4 milling turning

Table 1. Classification of schooling phases.

Figure 2. Visualization of the four distinct phases in swimming fish (upper left - swarming, upper right - schooling, lower
left - milling, lower right - turning). The parameter values for each stage can be observed on the right side. The orange
shapes are the standard fish, the blue shapes are predators and in the background we can see the visualization of the
external flow.

Swarming is a behavior characterized by the formation of sparse groups without a
discernible orientation (figure 2 - top left) that emerges prominently when the noise
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level is comparable to or exceeds the alignment factor (kp ≤ σ). This setting of the pa-
rameters results in a dynamic simulation where fish exhibit cohesive yet uncoordinated
movements, similar to real fish movements during non-directed motion.

Further, the model successfully captures schooling behavior, as depicted in figure
2 (top right), which leads to the creation of denser fish groups moving in a specific
direction. This behavior is depicted when the alignment factor dominates over noise
(kp > σ). Through fine-tuning parameters, the simulation portrays cohesive and direc-
tional movement similar to natural schooling behavior observed in fish populations.

Milling, represented in figure 2 (bottom left) manifests as a vortex-like pattern in
fish movements. This behavior arises when alignment and attraction factors become
comparable (kp ∼ kv), while maintaining a relatively low noise level (σ). The model
properly reproduces this phenomenon, portraying dynamic swirling motions reminis-
cent of milling behaviors observed in certain fish species.

Finally looking at the turning behaviour in figure 2 (bottom right), which can only
be observed with the incorporation of hydrodynamics into the model, we can see fish
groups following a larger circular trajectory. In order to see this behaviour, the model
parameters must reach a specific value. This behaviour usually arises when transition-
ing between different behaviours, for example right before fish enter the milling stage.
The model’s ability to replicate this behavior highlights its complexity, showcasing
how neighbouring fish dynamics and specific parameter settings influence the collective
movement of fish.

In addition to successfully implementing the fish behavior model, we’ve integrated
a simple graphical interface where users can change parameters and observe fish dy-
namics in real time as well as collision checking to prevent fish overlap and introduced
bounding box logic for custom interactions with simulation boundaries.

In the simulation we can also observe that the addition of the predators adds a
sense of disorder to the schools, making them less dense and making the individual’s
behaviour more “noisy” (with some exceptions at different parameter values), as com-
pared to the simulation without predators. Furthermore, the addition of an external
flow drastically improves the realism of the simulation, making it more life-like.

4. Discussion

The implementation of an advanced simulation model for fish behaviour has been
successful. The simulation effectively mirrors complex behavioural patterns seen in
real fish, including swarming, schooling, milling, and turning. The addition of hy-
drodynamic factors provides a deeper understanding of these behaviours, especially
regarding environmental influences.

Recent developments in the project include the addition of external flow and preda-
tors, and enhancements in visual aspects. These new features add more realism to the
simulation, allowing for more detailed behavioural analysis.

However, the development process faced many challenges. A major difficulty was
interpreting and implementing specific aspects of the model, such as rotation induced
by hydrodynamics. The absence of clear benchmarks for accuracy meant that our
validation relied mainly on visual pattern recognition, which, while effective, could be
supplemented with more quantitative measures.

An important goal would be to develop metrics to evaluate the efficiency and speed
of fish swimming under different hydrodynamic conditions. These metrics would pro-
vide a more objective way to assess the model’s accuracy and effectiveness. By un-
derstanding these dynamics, we could better predict fish behaviour in response to
environmental changes, which is essential for effective marine ecosystem management
and conservation strategies.

Overall, the project represents a significant step forward in the simulation of col-
lective fish behavior, offering valuable insights into the complex interplay between
individual movements and environmental factors.

CONTRIBUTIONS. GK wrote the introduction, described the collective behaviour model and
wrote the discussion. AČ wrote abstract and results. JP wrote the literature review. MŠ
reviewed the report. AČ and JP finalized the report. AČ and JP created basic foundation
for the implementation as a proof of concept. MŠ and GK implemented the behaviour of fish,
added the graphical interface and polished the implementation. MŠ added predators and
external water flow. GK added the new visual design.
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