
Simulation-driven gym layout
optimisation
Andrej Jočić, Matic Stare, and Martin Starič

Collective behaviour course research seminar report

January 7, 2024

Iztok Lebar Bajec | izredni professor | mentor

Significance statement

A common occurrence in gyms during peak
hours is over-crowding of popular equipment and
lots of wandering around searching for a free
machine. Through simulating gym-goer behavior,
we aimed to identify the most effective arrange-
ment of exercise equipment to improve the flow,
accessibility, and overall customer satisfaction.
Our goal is to offer practical insights for gym
owners, managers, and designers seeking to
optimise their facility layout for the benefit of their
clients and business success.

This report describes our work on simulation-driven gym layout optimisation. We begin with a
brief overview of the problem, followed by a description of our agent-based model of gym-goer
behaviour. Next, we describe a constrained multi-objective optimisation procedure for finding
optimal gym layouts with genetic algorithms, and present some preliminary results. We conclude
with a discussion of our solution’s limitations and possible future work.

gym layout | crowd simulation | gym-goer behaviour | gym traffic

Introduction

In this report we describe our work on gym layout optimisation. A common occur-
rence in gyms during peak hours is over-crowding of popular equipment and lots of
wandering around searching for a free machine. Through simulating gym-goer be-
havior, we aimed to identify the most effective arrangement of exercise equipment to
improve the flow, accessibility, and overall customer satisfaction. Our goal is to offer
practical insights for gym owners, managers, and designers seeking to optimise their
facility layout for the benefit of their clients and business success.

To simplify the problem we will limit ourselves to simulating the behaviour of body-
builders (performing resistance exercises for muscle hypertrophy). In this case, a typ-
ical workout routine partitions the body into several sets of muscles, cycling through
them on a per-workout basis. To further simplify the problem, we will only simulate
the push-pull-legs (PPL) partitioning1, which is a popular choice for beginners and
intermediate lifters. We will model the gym as a rectangular grid of cells with pre-set
equipment locations, distributed similarly as isles in a grocery store.

Related work. The only publication related to gym layout optimisation we could find
was ref. [1], which assumed all gym clients had fixed-order workout routines (including
ones with weight loss as a goal) and optimised a circular gym layout to minimise back-
ward movement. Unfortunately, this does not give a good foundation for our work, as
the assumptions diverge too far from what we are trying to model.

Thus we started from a crowd modelling review [2] for basic model design princi-
ples. We also found two articles on incremental urban layout optimisation [3, 4] useful
when designing the optimisation procedure, especially the cost function.

Methods

We used Python’s Mesa library for simulation, analysis, and visualization of agent-
based models.

Gym layout model. A gym is represented as a subclass of mesa.Model with two rectan-
gular cell grids: the agent layer (where gym-goers move around) and the equipment
layer (where machines are statically placed for one simulation cycle). One cell on the
grid’s border serves as the locker area entrance, where agents enter the gym. The
agents can only move around in cells that are not occupied by a piece of equipment,
but there can be multiple agents in a single cell. We do not feel that agent collision
resolution is necessary for realistic modelling of gym traffic.

For generating a concrete placement of machines, we have to assign certain cells
to be equipment locations (where one machine is placed) while making sure we don’t
create unreachable areas. We have developed some basic layout templates mimicking
the arrangement of isles in a grocery store, with sensible walkways in between. In this
case, layout optimisation comes down to choosing the best assignment of machines to
equipment locations.

Gym-goer behaviour model. A gym-goer is represented as a subclass of mesa.Agent
with a training checklist (multiset of muscles) and its current state. The agent’s goal is
to exhaust the checklist as quickly as possible and exit the gym.

1A push workout consists of pushing movements, mainly targeting the chest, frontal deltoids (shoulders), and triceps. Pull muscles are those
involved in pulling movements, such as the back musculature, rear deltoids, and biceps. The content of a leg workout is self-evident.

BM-RI | FRIteza | 2023/24 | CB:G1 | 1–4

ilb
Cross-Out

ilb
Highlight
informal

Figure 1. A gym traffic simulation cycle frozen at 272 time steps. On the left we can see the gym environment, gener-
ated from a layout template with the entrance at the bottom. Red pentagons are occupied machines, while green ones
are free. Agents that are currently walking around in search of a machine are shown with blue stars. On the right, we
can see the time progression of one of our gym evaluation metrics (described in a later section).

A simulation cycle begins with an empty gym. Then, one agent is spawned at the
entrance every ti time steps, where ti is a fixed inter-arrival time given as a parame-
ter to the simulation. When an agent is created, it is assigned a workout routine (e.g.
push) and a corresponding workout plan (e.g. chest, chest, triceps, frontal deltoids).
In our experiments we sampled the routine selection from a uniform probability distri-
bution. The workout plans are constructed ad hoc, in keeping with general workout
programming practice. The agent also keeps track of the machines it has already used,
so it can avoid using the same machine twice in one workout.

Upon entering the gym, an agent starts in state searching, where it looks for a free
piece of equipment it can use to check any muscle off its training checklist. A path
to the nearest free machine is found using the A* algorithm, which the agent begins
to follow. If the target machine is no longer free upon arrival, the agent continues in
state searching. When a free machine is found, the agent enters state exercising and
occupies the machine for a certain amount of time. In our experiments, we used a
deterministic exercise duration of 30 time steps for all exercises. After the time has
elapsed, the agent re-enters state searching or exits the gym if it has completed its
workout.

Layout optimisation. We formalized our problem as a constrained multi-objective op-
timisation problem, where a layout is constrained by a given layout template. This
constraint makes the optimisation problem more tractable, and we can also ensure
that no unreachable areas are ever created. With multiple optimisation objectives, we
didn’t have to combine all aspects of a well-designed gym into one number and thus
make arbitrary decisions about the relative importance of each aspect.

The procedure begins with a set of random layouts (meaning random assignments
of machines to locations in the template), and evolves them with a genetic algorithm.
We used Python’s PyGAD library for genetic algorithms, since it supports multi-
objective optimisation with the NSGA-II algorithm [5]. This converges to a set of
Pareto-optimal solutions, meaning that no other solution can improve on any of the
objectives without worsening at least one of the others.

A chromosome in our genetic algorithm is a list of exercise machines. To evaluate a
chromosome, we first sequentially assign machines to locations in the layout template.
The locations are ordered in a way that largely preserves the spatial structure of the
template, so that a k-point crossover operation doesn’t completely destroy the layout
topology. For example, the 4-isle layout template (Figure 4b) is ordered as follows:
first come the locations around the walls in counter-clockwise order, starting from the
bottom-left. Then, all the isles are traversed in row-major order.

After a gym is instantiated, its fitness values are calculated by running a simula-
tion cycle on it and extracting selected metrics (described in the next section). These
metrics constitute the compound objective function. Note that random mutations
and crossover can easily lead to layouts on which some of our hand-crafted workout
routines cannot be completed; we simply set their fitness to negative infinity, effec-
tively discarding them from the population. In this way, roughly 15% of solutions were
discarded from each generation on average.

We used population sizes around 50 in our experiments. Since this optimisation
problem has a complex fitness landscape, we would ideally use even larger ones, but

2 | Jočić et al.

ilb
Highlight
why fixed time? is this normal; shouldn't this be modelled with a poisson or at least normal distribution?

ilb
Highlight

ilb
Sticky Note
shouldn't this come naturally from the ABM

ilb
Highlight

ilb
Highlight

we were limited by the performance of our simulation. We used a relatively small inter-
arrival time ti = 2 to speed up the convergence of optimisation objectives, stopping
each simulation after 300 steps. The random mutation rate was set to 15%, and we
selected the 2-point crossover operator.

Objective functions. The layout quality metrics which we maximized were:

• agent efficiency: proportion of time spent exercising, averaged over all agents in
the simulation cycle,

• gym utilization: proportion of machines in use at any given time, averaged over
the whole cycle, and

• gym crowdedness: proportion of pairs of agents that are “too close” to each other
at any given time. This was defined as having an inter-cell manhattan distance
≤ 2, and computed only on agents in state searching. After being averaged over
the simulation cycle, this value also had to be inverted since PyGAD only sup-
ports fitness maximization.

Results

We tested our optimiser on a few small layout templates. First we used a template
which has machines around the walls and two 2-by-2 islands of machines in the middle
(Figure 2b). The fitness functions converged at around 40 generations. Note that the
utilization criterion (2a, blue line) decreases as the other two increase. This represents
the trade-off between customer satisfaction and gym revenue, as an efficiently utilized
gym is cheaper to set up and maintain, but ends up being more crowded.

(a) Evolution of fitness functions over generations. (b) A Pareto-optimal gym layout.

Figure 2. Optimisation constrained to a 2-island layout template. Machines (on the right) are labeled with name abbre-
viations, see the Equipment class in gym_model.py on our GitHub repository [6] for the list of machines we used. See
Figure 3 for an interpretation of the colors.

Figure 3. The colormap we used for visualizing a gym layout. Each machine is colored by the muscle it trains, where
muscles are mapped onto the color spectrum in (roughly) the same order as they appear in the human body (from
fingertips to heels).

Next, we ran the optimiser on a template with 4 islands of machines (Figure 4b).
Using the same parameters as before, the optimiser converged after around 110 genera-
tions. Due to increasing gym size and a more complex search space, the performance
of our simulation prevented us from experimenting with larger layouts.

Jočić et al. BM-RI | FRIteza | 2023/24 | CB:G1 | 3

ilb
Highlight
10 excercises for the first agent?

ilb
Sticky Note
a discrete/class based color scheme would be better than a continuous one.

(a) Evolution of fitness functions over generations. (b) A Pareto-optimal gym layout.

Figure 4. Optimisation constrained to a 4-island layout template.

Discussion

We successfully implemented a gym layout optimisation framework, but our results
stand only as a proof of concept. We made many simplifying assumptions which likely
render our model too unrealistic to be of practical use. Since we didn’t invest much
time into code optimisation, we couldn’t perform comprehensive experiments.

Future work. Our gym layout model could be made more realistic by dropping the con-
straints on layout topology and adding support for shared resources (e.g. free weights)
and multipurpose equipment. We could also implement more fine-grained agent be-
haviour, such as parallel use of gym equipment (where one agent is working while the
other is resting), random inter-arrival times (e.g. according to a Poisson process) and
random exercise durations, as well as more realistic routine selection (perhaps with
parameters estimated from real-world data).

It would be interesting to let our optimiser come up with a layout from scratch,
without the need for hand-crafted templates. Perhaps this could be done with a Metropolis-
Hastings state search variation, which has been successfully applied to urban layout
optimisation [3, 4]. Another interesting idea in ref. [3] is the use of nonlinear regres-
sors to predict the quality of a layout based on topological features, circumventing the
need for computationally expensive simulations. We could also try to account for the
cost of equipment (given by a gym designer) in the optimisation criteria.

CONTRIBUTIONS. Everyone worked on the report and gym-goer behaviour model. Andrej
Jočić worked on model implementation and the layout optimiser. Martin Starič implemented
the pathfinding algorithm. Matic Stare made the project presentation.

Bibliography
1. Küçükdeniz T (2022) Gym layout modeling and optimization.

Management Science Letters 12(3):185–192.
2. Yang S, Li T, Gong X, Peng B, Hu J (2020) A review on crowd

simulation and modeling. Graphical Models 111:101081.
3. Feng T, Yu LF, Yeung SK, Yin K, Zhou K (2016) Crowd-driven

mid-scale layout design. ACM Trans. Graph. 35(4):132–1.
4. Mathew CT, Knob PR, Musse SR, Aliaga DG (2019) Urban

walkability design using virtual population simulation in Com-
puter Graphics Forum. (Wiley Online Library), Vol. 38, pp.
455–469.

5. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-
tist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions
on Evolutionary Computation 6(2):182–197.

6. (2024) Github repository: gymulator (https://github.com/
andrejjocic/gymulator).

4 | Jočić et al.

http://dx.doi.org/10.1109/4235.996017
https://github.com/andrejjocic/gymulator
https://github.com/andrejjocic/gymulator
ilb
Cross-Out

ilb
Inserted Text
 [3]

	contributions

